Resolver equações: como e para quê? (reflexões e reminiscências)

Tamanho: px
Começar a partir da página:

Download "Resolver equações: como e para quê? (reflexões e reminiscências)"

Transcrição

1 Resolver equações: como e para quê? (reflexões e reminiscências) Instituto Nacional de Matemática Pura e Aplicada

2 Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir nova matemática.

3 Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir nova matemática. Na sala de aula: Para quê mesmo?

4 Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir nova matemática. Na sala de aula: Para quê mesmo? Objetivo de formação: capacitação do aluno para abordar problemas concretos. Oportunidade didática: caminho para a aprendizagem de conceitos matemáticos. Reminiscência: Na escola, resolver equações era a maior diversão!

5 Resolver equações como? Por meio de fórmulas. Por meio de algoritmos (numéricos).

6 Resolver equações como? Por meio de fórmulas. Por meio de algoritmos (numéricos). No mundo real: Praticamente todas as equações resultantes de problemas concretos são resolvidas por métodos numéricos.

7 Resolver equações como? Por meio de fórmulas. Por meio de algoritmos (numéricos). No mundo real: Praticamente todas as equações resultantes de problemas concretos são resolvidas por métodos numéricos. Na sala de aula: Fórmulas são priorizadas. Métodos numéricos estão praticamente ausentes.

8 Resolver equações como? Por meio de fórmulas. Por meio de algoritmos (numéricos). No mundo real: Praticamente todas as equações resultantes de problemas concretos são resolvidas por métodos numéricos. Na sala de aula: Fórmulas são priorizadas. Métodos numéricos estão praticamente ausentes. Análise crítica: Fórmulas são mais exatas (pelo menos, é o que dizem). Fórmulas são mais fáceis de usar (sem precisar pensar). Algoritmos obrigam, em certa medida, a entender o assunto. Algoritmos obrigam a entender outras coisas.

9 Sistemas de equações lineares Como se resolve um sistema de equações deste tipo? a 1 x +b 1 y +c 2 z = d 1 a 2 x +b 2 y +c 2 z = d 2 a 3 x +b 3 y +c 3 z = d 3

10 Sistemas de equações lineares Como se resolve um sistema de equações deste tipo? a 1 x +b 1 y +c 2 z = d 1 a 2 x +b 2 y +c 2 z = d 2 a 3 x +b 3 y +c 3 z = d 3 Na sala de aula: pela Regra de Cramer! d 1 b 1 c 1 d 2 b 2 c 2 d 3 b 3 c 3 x = y = z = a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3

11 Sistemas de equações lineares Análise crítica: A Regra de Cramer é a pior maneira que existe para resolver um sistema de equações lineares (custo computacional). Ela é importante do ponto de vista conceitual (teórico) como um aplicação do conceito de determinante. Mas as razões disso estão, geralmente, fora do escopo da disciplina, mesmo na licenciatura. Assim, o uso da Regra de Cramer em sala de aula tende a ser muito pobre do ponto de vista didático.

12 Equação de grau 2 Como se resolve uma equação deste tipo? ax 2 +bx +c = 0, a 0

13 Equação de grau 2 Como se resolve uma equação deste tipo? ax 2 +bx +c = 0, a 0 Na sala de aula: usando a Fórmula Resolvente! x = b ± b 2 4ac 2a

14 Equação de grau 2 Análise crítica: A resposta está certa: essa é a melhor maneira de resolver esta equação. A Fórmula Resolvente tem enorme importância conceitual. Ela pode ser bem explorada em sala de aula, por exemplo, na análise do gráfico da função f(x) = ax 2 +bx +c. Mas, na prática, o seu uso em sala de aula tende a ser muito pobre. Além disso, ela é muito limitadora, uma vez que este tipo de abordagem só pode ser usado em situações muito particulares (equações polinomiais de graus 2, 3 ou 4). Reminiscência: No Ensino Médio, fiquei achando as equações polinomiais de grau 5 objetos extremamente misteriosos.

15 Métodos alternativas Para a maioria das equações (não polinomiais), por exemplo, cosx = x não é razoável esperar que exista algo semelhante à Fórmula Resolvente da equação de grau 2. No entanto, tais equações podem ser muito fáceis de resolver.

16 A equação cosx = x cos ± =

17 A equação cosx = x cos ± =

18 A equação cosx = x cos ± =

19 A equação cosx = x cos ± =

20 A equação cosx = x cos ± =

21 A equação cosx = x cos ± =

22 A equação cosx = x cos ± =

23 A equação cosx = x cos ± =

24 A equação cosx = x cos ± =

25 A equação cosx = x cos ± =

26 A equação cosx = x cos ± =

27 A equação cosx = x cos ± =

28 A equação cosx = x cos ± =

29 A equação cosx = x cos ± =

30 A equação cosx = x cos ± =

31 A equação cosx = x cos ± =

32 A equação cosx = x cos ± =

33 A equação cosx = x cos ± =

34 Resolvendo cosx = x

35 Entendendo o método iterativo Para desenvolver: Claro que não basta verificar que este método funciona em alguns exemplos. É necessário compreender por que funciona ou, melhor, em que condições funciona.

36 Entendendo o método iterativo Para desenvolver: Claro que não basta verificar que este método funciona em alguns exemplos. É necessário compreender por que funciona ou, melhor, em que condições funciona. Teorema Suponha que f (ponto fixo) < 1 (ou seja, que a inclinação do gráfico de f é menor que 45 o, para cima ou para baixo). Dizemos que se trata de um ponto fixo atrator. Então a sequência dos iterados converge para o ponto fixo, desde que o valor inicial esteja suficientemente próximo.

37 Entendendo o método iterativo Para desenvolver: Claro que não basta verificar que este método funciona em alguns exemplos. É necessário compreender por que funciona ou, melhor, em que condições funciona. Teorema Suponha que f (ponto fixo) < 1 (ou seja, que a inclinação do gráfico de f é menor que 45 o, para cima ou para baixo). Dizemos que se trata de um ponto fixo atrator. Então a sequência dos iterados converge para o ponto fixo, desde que o valor inicial esteja suficientemente próximo. Este enunciado pode ser descoberto experimentalmente (Geogebra etc) O aluno pode ser conduzido a demonstrar o enunciado, usando fatos conhecidos sobre sequências.

38 Método iterativo de Newton O método de Newton permite reduzir uma equação geral φ(x) = 0 a uma equação de ponto fixo: consideramos a função f(x) = x φ(x) φ (x)

39 Método iterativo de Newton O método de Newton permite reduzir uma equação geral φ(x) = 0 a uma equação de ponto fixo: consideramos a função f(x) = x φ(x) φ (x) Exemplo: No caso da equação cosx x = 0 encontramos a função f(x) = x + cosx x senx +1 Podemos (re)encontrar a solução da equação φ(x) = 0 iterando a transformação f.

40 A equação cosx = x f ± =

41 A equação cosx = x f ± =

42 A equação cosx = x f ± =

43 A equação cosx = x f ± =

44 A equação cosx = x f ± =

45 A equação cosx = x f ± =

46 A equação cosx = x f ± =

47 Método iterativo de Newton Para desenvolver: Porque o método de Newton funciona tão rapidamente? Teorema Qualquer solução da equação φ(x) = 0 é um ponto fixo super atrator da transformação f(x). Neste caso f (ponto fixo) = 0, ou seja o gráfico de f é horizontal no ponto fixo. Isto tem a grande vantagem de fazer com que a convergência seja muito rápida.

48 Método para resolver qualquer equação polinomial Ideia: a partir de um polinômio p 0 (x) = x n +a 1 x n 1 + +a 1 x +a 0 com raízes x 1,...,x n construímos outro polinômio p 1 (y) = y n +b 1 y n 1 + +b n 1 y +b n cujas raízes são x 2 1,...,x2 n.

49 Método para resolver qualquer equação polinomial Ideia: a partir de um polinômio p 0 (x) = x n +a 1 x n 1 + +a 1 x +a 0 com raízes x 1,...,x n construímos outro polinômio p 1 (y) = y n +b 1 y n 1 + +b n 1 y +b n cujas raízes são x 2 1,...,x2 n. Tal polinômio está dado por ou, em termos dos coeficientes, p 1 (x 2 ) = ( 1) n p 0 (x)p 0 ( x) k 1 b k = ( 1) k ak 2 +2 ( 1) j a j a 2kj. j=0

50 Método para resolver qualquer equação polinomial Iterando este procedimento, obtemos p 0 (x) com raízes x 1,...,x n p 1 (x) com raízes x 2 1,...,x 2 n p 2 (x) com raízes x 4 1,...,x 4 n p m (x) com raízes x1 2m,...,xn 2m

51 Método para resolver qualquer equação polinomial Iterando este procedimento, obtemos p 0 (x) com raízes x 1,...,x n p 1 (x) com raízes x 2 1,...,x 2 n p 2 (x) com raízes x 4 1,...,x 4 n p m (x) com raízes x1 2m,...,xn 2m Suponha que as raízes são reais e distintas: x 1 > > x n. Então, escrevendo p m (x) = x n +a m,1 x n 1 + +a m,n 1 x +a m,n, a m,1 = x 2m 1 + +x 2m n x 2m 1.

52 Método para resolver qualquer equação polinomial Iterando este procedimento, obtemos p 0 (x) com raízes x 1,...,x n p 1 (x) com raízes x 2 1,...,x 2 n p 2 (x) com raízes x 4 1,...,x 4 n p m (x) com raízes x1 2m,...,xn 2m Suponha que as raízes são reais e distintas: x 1 > > x n. Então, escrevendo p m (x) = x n +a m,1 x n 1 + +a m,n 1 x +a m,n, a m,1 = x 2m 1 + +x 2m n x 2m 1. Desta forma podemos obter aproximações tão boas quanto se queira da maior raíz de p 0 (x).

53 Método para resolver qualquer equação polinomial É possível estender esta ideia para calcular todas as raízes e também para tratar os casos em que existem raízes múltiplas e/ou raízes complexas.

54 Método para resolver qualquer equação polinomial É possível estender esta ideia para calcular todas as raízes e também para tratar os casos em que existem raízes múltiplas e/ou raízes complexas. Reminiscência: Tomei conhecimento deste método (chamado de Dandelin-Graeffe) nos textos do Prof. José Sebastião e Silva para o Ensino Médio (Portugal). Ele me fez sentir muito poderoso!

55 Obrigado! Boa viagem, até o próximo Simpósio!

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função afim Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 A função afim Proposição O gráfico

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Desvendando o futuro: Matemática Computacional

Desvendando o futuro: Matemática Computacional Desvendando o futuro: Matemática Computacional L. Felipe Bueno lfelipebueno@gmail.com Universidade Federal de São Paulo (UNIFESP) São José dos Campos 11/03/15 Resumo O que é Matemática Computacional Habilidades

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange os três primeiros tópicos da ementa do curso, teoria dos erros, sistemas lineares, e zeros de funções. Ela abrange

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais

Resolução de sistemas de equações não-lineares: Método de Newton

Resolução de sistemas de equações não-lineares: Método de Newton Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Cálculo Numérico Computacional

Cálculo Numérico Computacional Cálculo Numérico Computacional Apresentação Prof. Márcio Bueno cnctarde@marciobueno.com Ementa } Oferecer fundamentos e instrumentos da matemática aplicada e computacional, com a finalidade de permitir

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo III Resolução Numérica de Sistemas de Equações Normas, Erros e Condicionamento.

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais

Resolução de Sistemas de Equações Lineares

Resolução de Sistemas de Equações Lineares 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Resolução de Sistemas de Equações

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Diferenças finitas e o polinômio interpolador de Lagrange

Diferenças finitas e o polinômio interpolador de Lagrange Diferenças finitas e o polinômio interpolador de Lagrange Cícero Thiago B. Magalhães 19 de janeiro de 014 1 Diferenças finitas Seja P(x) um polinômio de grau m. Defina +1 P(n) = P(n +1) P(n), 1, com 1

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves luis.goncalves@ucp.br

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

Métodos Numéricos C Apresentação da Disciplina

Métodos Numéricos C Apresentação da Disciplina Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho iapinho@dps.uminho.pt http://www.norg.uminho.pt/iapinho/

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

DIVISÃO DE POLINÔMIOS

DIVISÃO DE POLINÔMIOS DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo

Leia mais

CONCEITO E APLICAÇÃO DE INTEGRAÇÃO NUMÉRICA PELOS MÉTODOS DE NEWTON-CÔTES: 1ª E 2ª REGRAS DE SIMPSON

CONCEITO E APLICAÇÃO DE INTEGRAÇÃO NUMÉRICA PELOS MÉTODOS DE NEWTON-CÔTES: 1ª E 2ª REGRAS DE SIMPSON CONCEITO E APLICAÇÃO DE INTEGRAÇÃO NUMÉRICA PELOS MÉTODOS DE NEWTON-CÔTES: 1ª E 2ª REGRAS DE SIMPSON Júlio Paulo Cabral dos Reis¹ Dimas Felipe Miranda² ¹PUC-MG/DME, julio.cabral.reis@hotmail.com ²PUC-MG/DME,

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2 PLANO DE ENSINO Componente Curricular: Cálculo Numérico Turma: EC - 2013/2 Carga Horária: 60 horas semestrais Créditos: 4 Professores: arcus Vinicius achado Carneiro Ricardo Antonello Período: 2015/1 EENTA:

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

PAULO XAVIER PAMPLONA

PAULO XAVIER PAMPLONA Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental-UACTA Cálculo Numérico por PAULO XAVIER PAMPLONA

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Funções da forma x elevado a menos n

Funções da forma x elevado a menos n Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções da forma x elevado a menos n Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 Funções

Leia mais

Exercícios de Matemática Computacional

Exercícios de Matemática Computacional Exercícios de Matemática Computacional 1 Teoria dos erros 1.1 Representação de números reais 1. Os resultados aproximados da medição de uma ponte e de uma viga foram, respectivamente, 9999 cm e 9 cm. Se

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência Busca Binária Aula 05 Equações com Recorrência Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Idéia: Divisão e Conquista Busca_Binária(A[l...r],k) 1:if r < lthen 2: index = 1

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3 1. Inequações Uma inequação é uma expressão algébrica dada por uma desigualdade. Por exemplo: 3x 5 < 1 ou 2x+1 2 > 5x 7 3 ou x 1 2 + 2 > 3 Resolver a inequação significa encontrar os intervalos de números

Leia mais

Tópico 4. Derivadas (Parte 1)

Tópico 4. Derivadas (Parte 1) Tópico 4. Derivadas (Parte 1) 4.1. A reta tangente Para círculos, a tangencia é natural? Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num único ponto. Na situação da figura

Leia mais

Capítulo 5 - Interpolação Polinomial

Capítulo 5 - Interpolação Polinomial Capítulo 5 - Interpolação Polinomial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

2.3- Método Iterativo Linear (MIL)

2.3- Método Iterativo Linear (MIL) .3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Cálculo Numérico - DCC034. Ana Paula

Cálculo Numérico - DCC034. Ana Paula - DCC034 Introdução Sumário 1 Sobre o Curso 2 Introdução Sobre o Curso Sobre o Curso Sobre o Curso Informações Gerais Professores ana.coutosilva@dcc.ufmg.br Rosklin Juliano rosklinjuliano@gmail.com Moodle

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

n i=1 &' ll i! #" $ % )( *

n i=1 &' ll i! # $ % )( * n 0 1 2 3 4 5 6 7 8 50 40 30 20 10 0 0 10 20 30 40 50 i=1 ll! #"$ % &' )(* i PARA ELIANE... Sumário 1 Sistemas Lineares 1 1.1 Introdução......................... 1 1.1.1 Solução de um sistema n n..........

Leia mais