ENG-418 OTIMIZAÇÃO DE PROCESSOS QUÍMICOS

Tamanho: px
Começar a partir da página:

Download "ENG-418 OTIMIZAÇÃO DE PROCESSOS QUÍMICOS"

Transcrição

1 Universidade Federal da Bahia - UFBA Escola Politécnica EP Departamento de Engenharia Química - DEQ Laboratório de Controle e Otimização de Processos Industriais - LACOI Disciplina: Otimização de Processos Químicos ENG-418 Professor: Ricardo de Araújo Kalid ([email protected]) ENG-418 OTIMIZAÇÃO DE PROCESSOS QUÍMICOS OBJETIVOS Introduzir os estudantes na teoria e prática de otimização de processos. A ênfase é dada na metodologia de desenvolvimento da formulação matemática do problemas, ou seja, na definição da função objetivo e das restrições. Atenção também é dispensada nos algoritmos mais utilizados na resolução de problemas de otimização de processos químicos. Assim o aluno estará apto a formular o problema e a escolher e utilizar as ferramentas computacionais mais apropriados a cada situação. EMENTA Introdução e definições do problema de otimização. Conceitos matemáticos necessários a solução de problemas de otimização. Formulação matemática de um problema de otimização. Otimização unidimensional sem restrições. Otimização multidimensional com e sem restrições. Ajuste de modelos matemáticos a dados experimentais. Programaçã0o linear. Multiplicadores de Lagrange. Método da função penalidade. Programação quadrática. Método do gradiente reduzido generalizado. Programação inteira e mista. Controle Ótimo.

2 2 PROGRAMA DA DISCIPLINA 1. Introdução e Definições 1.1. Objetivos da Disciplina 1.2. Referências Bibliográficas Principais 1.4. Por que Otimizar? 1.5. Exemplos de Aplicação de Otimização 1.6. Formulação de um Problema de Otimização A Função Objetivo (FO) As Restrições A Região Viável As Variáveis de Decisão (VD) 1.7. Procedimento Geral para Solucionar um Problema de Otimização Mapeamento da Função Objetivo Obstáculos à Otimização 2. Conceitos Matemáticos 2.1. Definições 2.2. Operações Básicas com Matrizes e Vetores 2.3. Independência Linear, Matriz Singular e Rank ou Posto de uma Matriz 2.4. Operadores Linha ou Coluna 2.5. Solução de Sistema de Equações Lineares 2.6. Graus de Liberdade 2.7. Autovalores e Autovetores 2.8. Estudo de Função 2.9. Continuidade de Funções Funções Unimodais e Multinodais Funções Côncavas e Convexas Região Convexa Condições Necessárias e Condições Suficientes para um Extremo de uma Função Irrestrita Interpretação da Função Objetivo em Termos de uma Aproximação Quadrática

3 3 3. Formulação Matemática de um Problema de Otimização 3.1. A Função Objetivo (FO) Tolerância ou Critério de Parada Objetivos Econômicos Objetivos Operacionais Combinação de Objetivos Operacionais com Objetivos Econômicos 3.2. As Funções de Restrição (FR) 3.3. Otimização On-Line 4. Otimização Unidimensional Sem Restrições (OUSR) 4.1. Métodos Indiretos (MI) para OUSR Método de Newton Método de Quasi-Newton Método da Secante 4.2. Métodos Diretos (MD) para OUSR Métodos por Diminuição da Região de Busca Métodos por Aproximação Polinomial - Interpolação Quadrática Métodos por aproximação polinomial - Interpolação cúbica 4.3. Avaliação dos Métodos Unidimencionais de Otimização 5. Otimização Multidimensional Sem Restrições (OMSR) 5.1. Métodos Indiretos (MI) para OMSR Método do Gradiente ou Método do Gradiente Descendente Método do Gradiente Conjugado Método de Newton Método de Levenberg-Marquardt Método da Secante ou Quasi-Newton 5.2. Métodos Diretos (MD) para OMSR Busca Randômica Grade de Busca Busca Unidimensional Método Simplex ou do Poliedro Flexível 5.3. Avaliação dos MD's e MI's para Problemas de OMSR

4 4 6. Ajuste de Modelos Matemáticos 6.1. Ajuste de Modelos Lineares nos Parâmetros Com Uma Variável Independente Escolha da Forma do Modelo Linear Ajuste do Modelo Linear Univariável 6.2. Ajuste de Modelos Lineares de Várias Variáveis 6.3. Ajuste de Modelos Matemáticos Não-Lineares Ajuste de Modelos por Métodos Diretos - Método do Poliedro Flexível Ajuste de Modelos por Métodos Indiretos 6.4. Observações e "Macetes" Procedimento Geral para Ajuste de Modelos 7. Programação Linear (PL) 7.1. Convertendo Problemas para a Forma Padrão da PL 7.2. A Dualidade em Programação Linear Análise de Sensibilidade em PL 7.4. Programação Linear Sucessiva (PLS) 7.5. Exercícios 8. Multiplicadores de Lagrange 8.1. Análise de Sensibilidade por Multiplicadores de Lagrange 8.2. Condições de Kuhn-Tucker - CKT 8.3. Vantagens e Desvantagens dos Multiplicadores de Lagrange 8.4. Exercícios 9. Função Penalidade 10. Programação Quadrática - PQ Programação Quadrática Sucessiva - PQS 11. Gradiente Reduzido Generalizado -GRG Relação entre o GRG e os Multiplicadores de Lagrange Algoritmo do Gradiente Reduzido Generalizado 12. Programação Inteira e Mista - PIM Branch and Bound Technique

5 5 13. Controle Ótimo - CO Algoritmos para o Problema de Controle Ótimo BIBLIOGRAFIA Beveridge, G. S. and Schehter, R. S.; Optimization Theory and Practice. McGraw-Hill, Traz uma discussão mais profunda a respeito dos fundamentos matemáticos em que os métodos de otimização são baseados. Himmelblau, D. M. and Edgar, T. F.; Optimization of Chemical Process. McGraw-Hill, Livro essencial para quem quer iniciar e/ou aprofundar seus estudos sobre otimização de processos químicos. Himmelblau, D. M.; Process Analysis by Statistical Methods. Jonh Wiley & Sons, Livro que traz os algoritmos de vários métodos de otimização e aplica esses métodos principalmente ao ajuste de modelos matemáticos a dados experimentais. Kalid, Ricardo de A., Otimização de Processos Químicos. Departamento de Engenharia de Química, Universidade Federal da Bahia, material não publicado Reklaitis, G. V.; Ravindran, A.; Ragsdell, K. M.; Engineering Optimization: Methods and Applications. Jonh Wiley & Sons, Livro importante e complementar ao de Himmelblau e Edgar (R1). OBSERVAÇÕES: Requer como pré-requisito a disciplina Cálculo Numérico (MAT-174). O curso será ministrado em 60 horas (4 horas semanais) sendo distribuídas do seguinte modo: aulas teóricas = 30 horas aulas práticas = 30 horas

DEPARTAMENTO DE ENGENHARIA MECÂNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA Otimização: Algoritmos e Aplicações na Engenharia Mecânica ENG1786 & MEC2403 Ivan Menezes 2018-2 1 EMENTA 1. Introdução 1.1 Definições Básicas 1.2 Classificação dos

Leia mais

Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR)

Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR) Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR). Algoritmos de Otimização P. Estabeleça o intervalo de busca ou estimativa inicial que contenha o ponto de mínimo da

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: [email protected] CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Alexey Izmailov Mikhail Solodov VOLUME II MÉTODOS COMPUTACIONAIS. Rio de Janeiro 2 007

Alexey Izmailov Mikhail Solodov VOLUME II MÉTODOS COMPUTACIONAIS. Rio de Janeiro 2 007 page 1 Alexey Izmailov Mikhail Solodov OTIMIZAÇÃO, VOLUME II MÉTODOS COMPUTACIONAIS Rio de Janeiro 2 007 page Copyright c 2007 by Alexey Izmailov and Mikhail Solodov Direitos reservados, 2007 pela Associação

Leia mais

Capítulo 5 - Optimização Não-Linear

Capítulo 5 - Optimização Não-Linear Capítulo 5 - Optimização Não-Linear [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia

Leia mais

Prática 02. Total. Pré-requisitos 2 MTM112. N o

Prática 02. Total. Pré-requisitos 2 MTM112. N o Disciplina Pesquisa Operacional I MINISTÉRIO DA Departamento DEPARTAMENTO DE COMPUTAÇÃO Carga Horária Semanal Pré-requisitos 1 CIC170 Teórica EDUCAÇÃO E CULTURA DIRETORIA DE ENSINO 1 PROGRAMA DE DISCIPLINA

Leia mais

ENG-032 INSTRUMENTAÇÃO APLICADA À INDÚSTRIA DO PETRÓLEO E GÁS NATURAL DISCIPLINA OPTATIVA

ENG-032 INSTRUMENTAÇÃO APLICADA À INDÚSTRIA DO PETRÓLEO E GÁS NATURAL DISCIPLINA OPTATIVA 1 Universidade Federal da Bahia - UFBA Escola Politécnica EP Departamento de Engenharia Química - DEQ Laboratório de Controle e Otimização de Processos Industriais - LACOI Disciplina: Instrumentação aplicada

Leia mais

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná

Introdução à Otimização de Processos. Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Introdução à Otimização de Processos Prof. Marcos L Corazza Departamento de Engenharia Química Universidade Federal do Paraná Otimização Não-Linear Algumas definições e conceitos preliminares: 1. Derivadas

Leia mais

Programa Analítico de Disciplina MEC494 Introdução à Análise por Elementos Finitos

Programa Analítico de Disciplina MEC494 Introdução à Análise por Elementos Finitos 0 Programa Analítico de Disciplina Departamento de Engenharia de Produção e Mecânica - Centro de Ciências Exatas e Tecnológicas Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga

Leia mais

Tópicos em Simulação e Otimização de Processos Aula 1 2: Plano de Ensino e Conceitos Básicos

Tópicos em Simulação e Otimização de Processos Aula 1 2: Plano de Ensino e Conceitos Básicos Tópicos em Simulação e Otimização de Processos Aula 1 2: Plano de Ensino e Conceitos Básicos, MSc [email protected] Curso de Universidade Federal do Pampa Campus Bagé 22 de janeiro de 2013 BA000379

Leia mais

CYNTHIA FEIJO SEGATTO 25/10/2017 (2017/2) 05/11/2018 (2019/1)

CYNTHIA FEIJO SEGATTO 25/10/2017 (2017/2) 05/11/2018 (2019/1) Instituto de Matemática e Estatística Departamento de Matemática Pura e Aplicada Dados de identificação Disciplina: ÁLGEBRA LINEAR I - A Período Letivo: 019/1 Período de Início de Validade : 017/ Professor

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

Cálculo Numérico Computacional

Cálculo Numérico Computacional Cálculo Numérico Computacional Apresentação Prof. Márcio Bueno [email protected] Ementa } Oferecer fundamentos e instrumentos da matemática aplicada e computacional, com a finalidade de permitir

Leia mais

Programa de Unidade Curricular

Programa de Unidade Curricular Programa de Unidade Curricular Faculdade Ciências Empresariais Licenciatura Ciências Económicas e Empresariais Unidade Curricular Investigação Operacional Semestre: 5 Nº ECTS: 6,0 Regente José Manuel Brito

Leia mais

Resolvendo algebricamente um PPL

Resolvendo algebricamente um PPL Capítulo 6 Resolvendo algebricamente um PPL 6.1 O método algébrico para solução de um modelo linear A solução de problemas de programação linear com mais de duas variáveis, não pode ser obtida utilizando-se

Leia mais

SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação...

SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3 PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... 7 CAPÍTULO 1 Modelagem matemática e resolução de problemas de engenharia...10

Leia mais

Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões.

Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões. Edgard Jamhour Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões. Procura encontrar soluções ótimas ou próximo de ótimas para problemas de engenharia industrial, economia e finanças,

Leia mais

Minicurso Inteligência Artificial Aplicada a Sistemas Elétricos. Niterói, 12 de Maio de 2018

Minicurso Inteligência Artificial Aplicada a Sistemas Elétricos. Niterói, 12 de Maio de 2018 Minicurso Inteligência Artificial Aplicada a Sistemas Elétricos Niterói, 12 de Maio de 2018 Realização 2 Realização 3 Programação: manhã 9:30h-10:30H VISÃO GERAL: OTIMIZAÇÃO E INTELIGÊNCIA COMPUTACIONAL

Leia mais

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yara de Souza Tadano [email protected] 03/2014 Aula 1 Yara de Souza Tadano Email: [email protected] Página Pessoal: paginapessoal.utfpr.edu.br/yaratadano Cálculo

Leia mais

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Forma geral de um problema Em vários problemas que formulamos, obtivemos: Um objetivo de otimização

Leia mais

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30.

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: SEGUNDO BIMESTRE: EDGARD JAMHOUR Eemplo A: Interpolação polinomial Funções de interpolação: fa() = 2 - /2 + 2 /2 fb() = 5/2-17/12 + 2-3 /12 fc() = 23/2-1183/60 +133

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Otimização Combinatória - Parte 4

Otimização Combinatória - Parte 4 Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Métodos Numéricos C Apresentação da Disciplina

Métodos Numéricos C Apresentação da Disciplina Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/iapinho/

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: CÁLCULO II CÓDIGO: 2DB014 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 6 aulas Créditos: 6 Modalidade: Teórica Integralização:

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013

Leia mais

Unidade: Modelo Simplex e Modelo Dual. Unidade I:

Unidade: Modelo Simplex e Modelo Dual. Unidade I: Unidade: Modelo Simplex e Modelo Dual Unidade I: 0 Unidade: Modelo Simplex e Modelo Dual Segundo Wikipédia (2008), em teoria da otimização matemática, o algoritmo simplex de George Dantiz é uma técnica

Leia mais

DISCIPLINAS OPTATIVAS PERFIL TEÓRICO

DISCIPLINAS OPTATIVAS PERFIL TEÓRICO DISCIPLINAS OPTATIVAS PERFIL TEÓRICO DCC003- Algoritmos e Estruturas de Dados I Desenvolvimento de computadores e de linguagens de computação. Fases do desenvolvimento de programas. Desenvolvimento de

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear AULA 1 - Matrizes Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Matrizes 2. Determinantes 3. Sistemas de

Leia mais

MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB

MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB Bruno Avila Farenzena 1 Eliete Biasotto Hauser 2 Resumo: Neste trabalho

Leia mais

Representação de poliedros

Representação de poliedros Representação de poliedros Marina Andretta ICMC-USP 8 de novembro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 -

Leia mais

Otimização Multiobjetivo

Otimização Multiobjetivo Otimização Multiobjetivo Otimização Restrita Prof. Frederico Gadelha Guimarães Lucas S. Batista Eduardo G. Carrano Universidade Federal de Minas Gerais Programa de Pós-Graduação em Engenharia Elétrica,

Leia mais

Sumário I PROGRAMAÇÃO LINEAR, 1

Sumário I PROGRAMAÇÃO LINEAR, 1 Sumário I PROGRAMAÇÃO LINEAR, 1 1 CRIAÇÃO E EVOLUÇÃO HISTÓRICA, 3 1.1 George Dantzig e o Algoritmo Simplex, 3 1.2 Algoritmos de tempo polinomial, 4 1.3 Prêmio Nobel de Economia de 1975, 4 Exercícios, 5

Leia mais

Índice. Prefácio Os modelos de programação linear e a investigação operacional 17

Índice. Prefácio Os modelos de programação linear e a investigação operacional 17 Índice Prefácio 13 Capítulo 1 Introdução 1. Os modelos de programação linear e a investigação operacional 17 2. O problema de programação linear 18 2.1. O problema de programação linear em substituição

Leia mais

Programação Linear: Profa. Silvana Bocanegra UFRPE - DEINFO

Programação Linear: Profa. Silvana Bocanegra UFRPE - DEINFO Programação Linear: Profa. Silvana Bocanegra UFRPE - DEINFO Tipos de Problemas 1. Dada uma variedade de alimentos, escolher uma dieta de menor custo que atenda as necessidades nutricionais de um indivíduo?

Leia mais

Objetivo da Programação Inteira

Objetivo da Programação Inteira Universidade Federal de Itajubá Instituto de Engenharia de Produção e Gestão Pesquisa Operacional Programação inteira Prof. Dr. José Arnaldo Barra Montevechi Objetivo da Programação Inteira Max Z = 20X1

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 11 Sistemas de Equações não-lineares SISTEMAS NÃO-LINEARES Cálculo Numérico 3/39 SISTEMA NÃO LINEAR Vamos considerar o problema

Leia mais

Métodos de Aproximação em Engenharia

Métodos de Aproximação em Engenharia Métodos de Aproximação em Engenharia [email protected] Departamento de Matemática Mestrados em Engenharia da Construção 1 o Semestre 2011/2012 Métodos de Aproximação em Engenharia 1/ 11 Sumário Primeira Aula

Leia mais

Matemática computacional: métodos numéricos, programação linear, otimização

Matemática computacional: métodos numéricos, programação linear, otimização Matemática computacional: métodos numéricos, programação linear, otimização Ricardo Terra rterrabh [at] gmail.com Ricardo Terra (rterrabh [at] gmail.com) Matemática computacional Fevereiro, 2013 1 / 46

Leia mais

Capítulo 4 - Interpolação Polinomial

Capítulo 4 - Interpolação Polinomial Capítulo 4 - Interpolação Polinomial Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng Civil e Electrotécnica Carlos Balsa Métodos Numéricos

Leia mais

CCI - 22 Matemática Computacional

CCI - 22 Matemática Computacional Matemática Computacional Prof. Paulo André http://www.comp.ita.br/~pauloac [email protected] Sala 110 Prédio da Computação Estrutura do Curso Introdução ao estudo de matemática numérica Representação de dados

Leia mais

Sumário e Objectivos. Elementos Finitos 1ªAula. Setembro

Sumário e Objectivos. Elementos Finitos 1ªAula. Setembro Sumário e Objectivos Sumário: Apresentação da Disciplina de Elementos Finitos. Conteúdo, Objectivos, Metodologia de Ensino e Avaliação e Bibliografia. Alguns Conceitos Fundamentais. Objectivos da Aula:

Leia mais

1-1 PESQUISA OPERACIONAL INTRODUÇÃO

1-1 PESQUISA OPERACIONAL INTRODUÇÃO 1-1 PESQUISA OPERACIONAL INTRODUÇÃO Regra do Jogo 1-2 Provas MAN ADM 1 a Prova: 8 ou 10 de maio 2 a Prova: 12 ou14 de junho Substitutiva: 18 ou 21 de junho Média P = Média das Provas T = Média dos Testes

Leia mais

Aula 10: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo

Aula 10: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo Aula 10: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br 2018/2 - PCC174/BCC464 Aula Prática - Laboratório COM30!1 Breve Revisão Modelagem Método gráfico O Algoritmo Simplex

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Métodos de Pesquisa Operacional

Métodos de Pesquisa Operacional Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução

Leia mais

UENF - COORDENAÇÃO ACADÊMICA -

UENF - COORDENAÇÃO ACADÊMICA - UENF - COORDENAÇÃO ACADÊMICA - Universidade Estadual do Norte Fluminense Darcy Ribeiro PROGRAMA ANALÍTICO DE DISCIPLINA (PÓS-GRADUAÇÃO) Centro CCT IDENTIFICAÇÃO Laboratório LECIV Pré-requisito Co-requisito

Leia mais

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yara de Souza Tadano [email protected] Aula 1 Yara de Souza Tadano Email: [email protected] Página Pessoal: paginapessoal.utfpr.edu.br/yaratadano Cálculo Numérico

Leia mais

Programação Linear Inteira. C. Requejo (UA) Métodos de Investigação Operacional MIO / 30

Programação Linear Inteira. C. Requejo (UA) Métodos de Investigação Operacional MIO / 30 Programação Linear Inteira Programação Linear Inteira C. Requejo (UA) Métodos de Investigação Operacional MIO 2016 1 / 30 Programação Linear Inteira Programação Linear Inteira Resolução de problemas de

Leia mais

SUPPORT VECTOR MACHINE - SVM

SUPPORT VECTOR MACHINE - SVM SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento

Leia mais

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e Programação Linear A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Existe um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento

Leia mais

DESENVOLVIMENTO DE UM MÓDULO DE PROGRAMAÇÃO LINEAR NO PROGRAMA OPTIMI

DESENVOLVIMENTO DE UM MÓDULO DE PROGRAMAÇÃO LINEAR NO PROGRAMA OPTIMI DESENVOLVIMENTO DE UM MÓDULO DE PROGRAMAÇÃO LINEAR NO PROGRAMA OPTIMI BIONDI C. O.¹, VIANNA S. S. V. 2, RODRIGUES M. T. M.³ 1 Universidade Estadual de Campinas, Departamento de Engenharia de Sistemas Químicos

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

O método Simplex Aplicado ao Problema de Transporte (PT).

O método Simplex Aplicado ao Problema de Transporte (PT). Prof. Geraldo Nunes Silva (Revisado por Socorro Rangel) Estas notas de aula são Baseadas no livro: Hillier, F. S. e G. J. Lieberman. Introdução à Pesquisa Operacional, Campus, a ed., 9 Agradeço a Professora

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Benemar Alencar de Souza

Benemar Alencar de Souza Benemar Alencar de Souza Métodos de Otimização Aplicados Questões introdutórias O que é otimização? i Por que otimização é importante? Como tratar a otimização i como um problema? Quais objetivos são usuais?

Leia mais

SEM5874: Mecânica de Corpos Rígidos

SEM5874: Mecânica de Corpos Rígidos SEM5874: Mecânica de Corpos Rígidos Introdução e Revisão de Álgebra Linear Prof. Dr. Marcelo A. Trindade Departamento de Engenharia Mecânica Escola de Engenharia de São Carlos - USP Prédio da Mecatrônica

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ANÁLISE NUMÉRICA Ano Lectivo 2014/2015

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ANÁLISE NUMÉRICA Ano Lectivo 2014/2015 Programa da Unidade Curricular ANÁLISE NUMÉRICA Ano Lectivo 2014/2015 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Informática 3. Ciclo de Estudos 1º 4. Unidade Curricular

Leia mais

NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016

NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 8 : O método Simplex. Casos particulares. Empate no critério de entrada. Óptimo não finito. Soluções óptimas alternativas. Degenerescência. INÍCIO Forma Padrão Faculdade

Leia mais

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2 PLANO DE ENSINO Componente Curricular: Cálculo Numérico Turma: EC - 2013/2 Carga Horária: 60 horas semestrais Créditos: 4 Professores: arcus Vinicius achado Carneiro Ricardo Antonello Período: 2015/1 EENTA:

Leia mais

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7

CAPÍTULO 2 Visão Geral da Abordagem de Modelagem da Pesquisa Operacional 7 SUMÁRIO CAPÍTULO 1 Introdução 1 1.1 A origem da pesquisa operacional 1 1.2 A natureza da pesquisa operacional 2 1.3 O impacto da pesquisa operacional 3 1.4 Algoritmos e/ou courseware 3 Referências selecionadas

Leia mais