Fotónica. Nesta primeira parte do trabalho pretende-se obter uma representação gráfica da curva lemniscata de Bernoulli.

Tamanho: px
Começar a partir da página:

Download "Fotónica. Nesta primeira parte do trabalho pretende-se obter uma representação gráfica da curva lemniscata de Bernoulli."

Transcrição

1 Fotónica Ano Lectivo: 4/5 Trabalho T Pretende-se neste trabalho utilizar os conhecimentos adquiridos em álgebras (geométricas) de Clifford para algumas aplicações nomeadamente na representação gráfica em MATLAB Estuda-se também o movimento hiperbólico uma aplicação específica da álgebra do espaçotempo de Minkowski (plano hiperbólico) PARTE A Nesta primeira parte do trabalho pretende-se obter uma representação gráfica da curva lemniscata de Bernoulli Seja z x ye um spinor de ie z x y x i y e tal que com p z p e Comece por provar que e e z p z p z p p Portanto (explique porquê) z p p Faça agora Página Fotónica Trabalho T

2 p z exp e cos e sin z x y 4 Nestas condições mostre que z p cos Mostre ainda que x y y x tan cos x y y x tan Podemos então concluir o seguinte: a lemniscata tem a equação cartesiana que se indica a seguir x y p x y Assim a lemniscata obedece às equações paramétricas pcos cos x cos x x y p cos y sin y psin cos Note que o ramo direito se obtém fazendo 4 4 O ramo esquerdo por sua vez obtém-se fazendo A figura a obter encontra-se representada a seguir Página Fotónica Trabalho T

3 PARTE B Nesta segunda parte do trabalho pretende-se obter uma representação gráfica de várias cónicas com o mesmo pericentro (antónimo de apocentro) No caso de uma órbita em torno da Terra o pericentro designa-se por perigeu e o apocentro por apogeu No caso de uma órbita em torno do Sol o pericentro designa-se por periélio e o apocentro por afélio Uma cónica é representada genericamente pela seguinte equação em coordenadas polares: r cos Designa-se por o semi-latus rectum e por a excentricidade Note-se que d sendo d a distância da directriz da cónica ao foco considerado como pericentro (correspondente ao ponto para o qual a distância r assume o valor mínimo) Quando a cónica degenera numa circunferência Para a cónica é uma elipse Para a cónica representa uma parábola E finalmente quando a cónica é uma hipérbole Suponhamos que em coordenadas cartesianas o foco corresponde ao centro O x y e o pericentro ao ponto P x p y Nestas condições a equação das cónicas com os mesmos foco e pericentro é dada com p por p r cos Note-se que o pericentro ocorre para a que corresponde portanto r p Em coordenadas cartesianas vem então: xr y r cos sin p p cos cos sin cos Note-se que deste modo a equação genérica de uma cónica corresponde ao spinor z x y e r exp e r r cos Pretende-se que represente numa única figura as cónicas correspondentes a: (i) (circunferência); (ii) 8 (elipse); (iii) (parábola); (iv) 5 (hipérbole) Considere em todos os casos p A figura a obter é a representada na página seguinte Note que para efeitos de representação gráfica o valor máximo x max de todas as curvas (à excepção da circunferência) deve coincidir com o valor da elipse ie sendo a excentricidade da elipse (o valor numérico aqui adoptado é 8 ) tem-se Página 3 Fotónica Trabalho T

4 x max p PARTE C Nesta terceira parte do trabalho pretende-se obter uma representação gráfica de uma elipse e de uma hipérbole Em ambos os casos a equação é agora caracterizada por um vector r xe ye C B é a base ortonormada da parte ímpar da álgebra (geométrica) do plano em que e e euclidiano Para ambas as cónicas considere sin cos a a cos e e b b sin e e com 3 a b a b No caso da elipse a equação é dada por r a cos b sin a b Para a elipse faça Página 4 Fotónica Trabalho T

5 a elipse b A correspondente figura encontra-se a seguir No caso da hipérbole a equação é dada por r a cosh b sinh a b Para a hipérbole faça a 5 hipérbole b Deve no caso da hipérbole representar as duas assímptotas A correspondente figura encontra-se a seguir (na página seguinte) Página 5 Fotónica Trabalho T

6 De acordo com a mecânica clássica newtoniana as órbitas planetárias (dos planetas do sistema solar em torno do Sol) obedecem às leis de Kepler: são as trajectórias de uma massa (pontual) sob a acção de uma força gravitacional central (no foco) inversamente proporcional ao quadrado da distância (do planeta ao foco ocupado pelo Sol) Seja M a massa do Sol (no foco) e m a massa do planeta (que orbita em torno do Sol) A energia total do movimento (ie a soma da energia cinética com a energia potencial) é uma constante E dada por (em que v é a velocidade do planeta e r a sua distância ao Sol) k mk E m v constante k G M m r 3 sendo G a constante de gravitação universal: G m kg s Uma trajectória elíptica corresponde a ter-se corresponde E Uma trajectórica parabólica E Uma trajectória hiperbólica corresponde a E a trejectória circular corresponde a mk E O caso particular de uma No caso relativista a órbita elíptica correspondente a E dá lugar a uma precessão da elipse Esta precessão claramente observável no caso da órbita de Mercúrio corresponde (no caso geral) a uma equação da forma r cos Página 6 Fotónica Trabalho T

7 Quando a órbita é exactamente elíptica A precessão da órbita observa-se para As correspondentes equações paramétricas correspondem a xr y r cos cos cos sin sin cos As três figuras seguintes representam sempre a situação em que e 8 Porém no primeiro caso tem-se (órbita elítica) e fez-se ; no segundo caso tem-se 95 e fez-se ; no terceiro caso tem-se (tal como no caso anterior) 95 mas agora fez-se 4 Página 7 Fotónica Trabalho T

8 PARTE D Nesta quarta parte do trabalho pretende-se obter uma representação gráfica do sistema de coordenadas bipolares Começa-se por considerar dois vectores constantes ab tais que ade b d e e ainda o vector variável r xe ye Como anteriormente e e do plano euclidiano B é a base ortonormada da parte ímpar da álgebra (geométrica) A primeira tarefa desta parte do trabalho consiste em analisar a representação gráfica da equação (escrita em ) exp a r b r e Mostre primeiro que x y d y d e a r b r x d y Logo atendendo a que exp e cos e sin Página 8 Fotónica Trabalho T

9 obtêm-se as seguintes equações paramétricas x y d x d y yd x d y cos sin das quais se tira por divisão ordenada cot x y d yd Atendendo à identidade csc tan infere-se então a equação paramétrica da primeira família de circunferências: primeira família de circunferências x y d cot d csc Por outro lado atendendo a que a r b r expe b r a r expe a r b r b r a r b r a r r b r a e ainda a que r a r b x d y x d y infere-se portanto que x y d x d xd x d y x y d x d y x y d x d xd x y d Introduzamos agora o novo parâmetro tal que e ln Nestas condições obtém-se sucessivamente Página 9 Fotónica Trabalho T

10 exp cosh sinh tanh exp exp cosh sinh tanh Logo das duas expressões alternativas para coth x y d xd Assim atendendo à identidade coth csch resulta obtém-se a equação paramétrica da segunda família de circunferências: segunda família de circunferências x d coth y d csch Estas duas famílias de circunferências revelam duas formas alternativas de descrever o plano A saber: ) Coordenadas cartesianas: x y x & y ; ) Coordenadas bipolares: & Nas coordenadas bipolares existem dois pontos especiais P d a de P d b de que correspondem respectivamente a e a Quando se faz obtém-se o segmento de recta que une estes dois pontos: PP Questão: O que se obtém para e quando se faz? Note-se que as equações paramétricas das duas famílias de circunferências são dadas pelas equações seguintes (verificar!): equações paramétricas x y cosh cosh sinh cos d sin cos d Representar as duas famílias de circunferências para: Página Fotónica Trabalho T

11 ; Nota importante: Só deve incluir na representação gráfica a parte de cada curva que se encontra no interior da região delimitada pela circunferência x y R com R d sin 5 cos 5 tal como se ilustra na figura seguinte PARTE E Nesta quinta parte do trabalho analisa-se em termos da álgebra o movimento hiperbólico Este tipo de movimento em teoria da relatividade restrita é o análogo do movimento uniformemente acelerado da mecânica newtoniana Tem-se (álgebra geométrica do plano hiperbólico) Página Fotónica Trabalho T

12 em que r t e xe t x & e e & e e O espaço quadrático tem portanto a métrica e e e e e e e e G Um multivector genérico u tem a forma u a e a e e e e e onde u a u e u e e e e e e e e e e e e e e e e e e e e e A tabuada de apresenta-se a seguir e e e e e e e e e e e e Dados dois vectores interno como segue: ab tais que a a e a e e b b e b e define-se o produto ab a b a b Assim na sub-álgebra par tem-se u e u e e e Além disso porque Cen e e vem u exp exp e exp exp e exp cosh e sinh No entanto o reverso de u a e é o multivector u a e Mas então a e a e a e a a ae e e a uu a a ae uu dado que Página Fotónica Trabalho T

13 ae a e a e e a e a e e a e a e a e a e a e ae e a ie o bivector unitário da álgebra anticomuta com todos os vectores Define-se o conjugado de Clifford do multivector u a e como sendo u a e de forma que u u a e uu a Podemos estabelecer a norma (que neste caso pode ser positiva negativa ou nula) u uu a Em particular tem-se a a a a a a a a a e e e e e e Este vector a diz-se: (i) do tipo tempo se a a a a a a ; (iii) do tipo espaço se a a a escrever ; (ii) do tipo luz se No caso (i) podemos a a e a e f \ f a exp f cosh f sinh ; no caso (ii) é exp a e e a e e e e ; no caso (iii) é a a e a e f \ f a exp f cos f sin Represente o plano de Minkowski (ou plano hiperbólico) tal como se indica na primeira figura contida na página seguinte Devido ao facto da métrica não ser euclidiana ie ter-se G I os vectores f e f são unitários tal como e e e (tal como provam as hipérboles de calibração t x e x t ): e e f f Usam-se unidades geométricas em que se considera c Assim as duas assímptotas correspondem a t x e t x Página 3 Fotónica Trabalho T

14 Consideremos agora a linha de universo de uma partícula material descrita pela sequência contínua de acontecimentos (em que é o tempo próprio medido por um relógio ideal movendose em conjunto com a partícula) t x r e e f Portanto vem re t xe t x e r e x r re e r t x t x t x t x t Página 4 Fotónica Trabalho T

15 Assim o teorema de Minkowski estabelece que o tempo próprio é t t t x t x Apresente uma ilustração gráfica deste teorema: num diagrama de Minkowski considere um acontecimento x t A do tipo tempo e marque nesse diagrama as coordenadas t t e ; dê uma interpretação física A A A velocidade absoluta desta partícula é dada por dr d t d x d t u e e f d d d t d u d t d x t t d e e d t u f Seja então o bivector da velocidade (normalizada) relativa t t β e β Seja ainda v e a velocidade absoluta do laboratório (referencial inercial) onde se observa o movimento da partícula Então como v dt t dt u v u v u v d β u t d β v dt vu u v u v t d β dt u v u v β d u v Como dt u u v vu β d define-se o coeficiente de Lorentz dt d u v uv β u e e f Note-se que Página 5 Fotónica Trabalho T

16 u v β u v u v u v vu u v u v vu u v u v u v u v pelo que atendendo a que se tem u v vu u v infere-se u v u v β β u v u v u v A aceleração própria da partícula define-se como d u u d Deste modo vem (em que o ponto por cima designa derivação em relação ao tempo próprio) d d d uv β β β a u v β a d t d t d t uma vez que d t d β a ae d d t onde a é a aceleração relativa Tratando-se de movimento unidimensional vem ainda (com a a ) d d d a a d u e e a d t d t d t e e e f e d t pois f e e e f f f e e e f f De resulta também e f d d d d d a d t d t d t d t d t 3 3 Assim infere-se que u f u u f 3 a 3 a f u Designa-se deste modo por o valor da aceleração própria (ou absoluta) da partícula Notese que é sempre Página 6 Fotónica Trabalho T

17 u u u u u No chamado movimento hiperbólico a partícula material descreve uma linha de universo tal que movimento hiperbólico x t X em que X x é uma constante Daqui resulta imediatamente que d x t t x x d x t dt t X dt x X X t X Logo como d X t X sinh t X sinh d t t X X X infere-se com base na equação da linha de universo que x X cosh X Portanto obtém-se t t tanh x t X X x t cosh X X X Note-se que t t t X X X X X sinh ln A aceleração relativa tem o valor d X a dt t X 3 Consequentemente a aceleração absoluta é dada por a X 3 Página 7 Fotónica Trabalho T

18 Prova-se assim que o movimento hiperbólico tem aceleração própria constante ie é o equivalente ao movimento uniformemente acelerado da mecânica newtoniana Com efeito consideremos a nova trajectória x X t X x X t X Restauremos de momento as unidades SI: c c 4 c c t c c x c t t c c onde a aproximação é válida para c t Obtém-se assim x t como é bem conhecido no caso do movimento com aceleração constante em mecânica newtoniana Para terminar esta parte vai-se introduzir o parâmetro da rapidez tal que tanh X As equações paramétricas do movimento hiperbólico escrevem-se então na forma x X cosh t X sinh Represente graficamente a linha de universo para X 3 5 Note que um fotão emitido em x no instante t nunca será capaz de alcançar a partícula apesar da velocidade desta ser sempre inferior à do fotão Página 8 Fotónica Trabalho T

19 PARTE F Nesta sexta e última parte do trabalho recupera-se o paradoxo dos gémeos já analisado no primeiro trabalho Porém aqui o gémeo astronauta (ALICE) tem uma linha de universo curva correspondente a movimento hiperbólico (estudado na parte anterior) A linha de universo de BOB é a mesma do trabalho T A linha de universo de ALICE corresponde a três troços Sejam T o tempo total decorrido de acordo com BOB e T o tempo total decorrido de acordo com ALICE A aceleração própria de ALICE tem como módulo o valor T em unidades geométricas (em que c ) como as que aqui se adoptam Em unidades SI é c T Introduziu-se aqui o parâmetro adimensional que caracteriza uma dada linha de universo de ALICE A primeira parte da linha de universo de ALICE é: T T t x t t 4 T A segunda parte é: Página 9 Fotónica Trabalho T

20 T 3 T T t t x t 4 4 T 6 Finalmente a terceira parte é: 3 T T t t T xt 4 T A primeira hipérbole (ie a que corresponde à primeira parte da linha de universo) é: t x T T A segunda hipérbole é: x t T 6 T A terceira hipérbole é: t x T T A máxima distância entre ALICE e BOB corresponde a T T t L 6 O tempo próprio da ALICE é dado por T t 4 T t T 3T sinh T t T 4 4 3T t T 4 e a relação entre os tempos totais de cada um dos gémeos é T 4 sinh T 4 Represente graficamente as linhas de universo de ALICE para T e 8 4 Página Fotónica Trabalho T

21 Na figura seguinte represente T em função de t T também para 8 4 Na figura anexa da página seguinte pretende-se ilustrar a relação dos dois tempos totais T T em função do parâmetro (para ) Página Fotónica Trabalho T

22 Tem-se T lim T Explique porquê O trabalho deve incluir uma secção intitulada Introdução bem como uma secção intitulada Conclusões Todos os programas MATLAB desenvolvidos devem aparecer em ANEXO ao trabalho Nota Final Este trabalho deve ser apresentado para avaliação de duas formas distintas: numa versão PDF (a enviar para o professor responsável: carlospaiva@lxitpt) e numa versão física ie em papel (a entregar na Área Científica de Telecomunicações) Pode e deve ser utilizada a cor nas figuras mesmo se a versão em papel for a preto e branco Sugere-se que as figuras criadas em MATLAB sejam comentadas (com expressões matemáticas) em PowerPoint Assim as figuras criadas em MATLAB serão exportadas para o PowerPoint no formato TIFF Da mesma forma ao integrar as figuras do PowerPoint num documento WORD deve-se utilizar o formato TIFF O WORD e o PowerPoint têm a possibilidade de integrar o programa MathType que melhora consideravelmente a escrita de fórmulas matemáticas Página Fotónica Trabalho T

Pequena Introdução à Trigonometria Hiperbólica

Pequena Introdução à Trigonometria Hiperbólica Pequena Introdução à Trigonometria Hiperbólica (Filipe Oliveira, 9) 1 Motivação Consideremos o plano euclidiano munido de um referencial ortonormado (, e 1, e ). Quando θ percorre o intervalo [; π[, o

Leia mais

Aula de Problemas 1. Problema 1. Demonstre o teorema de Pitágoras (geometria euclidiana):

Aula de Problemas 1. Problema 1. Demonstre o teorema de Pitágoras (geometria euclidiana): Aula de Problemas 1 Problema 1 Demonstre o teorema de Pitágoras (geometria euclidiana): sin cos 1. Mostre que outra forma de exprimir este teorema é a seguinte: ab ab a b, em que ab, 3. Faz-se a a e b

Leia mais

DEEC Área Científica de Telecomunicações Instituto Superior Técnico. Propagação & Antenas Prof. Carlos R. Paiva SOBRE O CONCEITO DE SIMULTANEIDADE

DEEC Área Científica de Telecomunicações Instituto Superior Técnico. Propagação & Antenas Prof. Carlos R. Paiva SOBRE O CONCEITO DE SIMULTANEIDADE 3 DEEC Área Científica de Telecomunicações Instituto Superior Técnico Propagação & ntenas Prof Carlos R Paiva SORE O CONCEITO DE SIUTNEIDDE Consideremos uma vagão de comboio que se desloca, em relação

Leia mais

Propagação e Antenas Teste 9 de Novembro de Duração: 2 horas 9 de Novembro de 2015

Propagação e Antenas Teste 9 de Novembro de Duração: 2 horas 9 de Novembro de 2015 Propagação e Antenas Teste 9 de Novembro de 5 Docente Responsável: Prof Carlos R Paiva Duração: horas 9 de Novembro de 5 Ano Lectivo: 5 / 6 PRIMEIRO TESTE Uma nave espacial deixa a Terra com uma velocidade

Leia mais

Aulas práticas: Óptica relativista. Problema 1 Considere as equações de Maxwell. grupo da magnetodinâmica. grupo da electrodinâmica

Aulas práticas: Óptica relativista. Problema 1 Considere as equações de Maxwell. grupo da magnetodinâmica. grupo da electrodinâmica Aulas práticas: Óptica relativista Problema Considere as equações de Mawell grupo da magnetodinâmica B E= t B = grupo da electrodinâmica E B=µ j+ε t ρt E = ε (a) Mostre que a escrita do segundo grupo de

Leia mais

EAC-082: Geodésia Física. Aula 2: Introdução à Teoria do Potencial

EAC-082: Geodésia Física. Aula 2: Introdução à Teoria do Potencial EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 2: Introdução à Teoria do Potencial 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/18 Lei da Gravitação Universal Embora os

Leia mais

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados.

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados. 13 Funções Vetoriais Copyright Cengage Learning. Todos os direitos reservados. 1 13.4 Movimento no Espaço: Velocidade e Aceleração Copyright Cengage Learning. Todos os direitos reservados. Movimento no

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GAX1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Cônicas e Quádricas Prof.

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

LINHAS DE TRANSMISSÃO

LINHAS DE TRANSMISSÃO INHAS DE TRANSMISSÃO Propagação e Antenas IST - 15 PROF CAROS R PAIVA DEEC Área Científica de Telecomunicações INHAS DE TRANSMISSÃO IST - 15 INHAS DE TRANSMISSÃO NOTA PRÉVIA Este é o único capítulo desta

Leia mais

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos

Leia mais

Questões Conceituais

Questões Conceituais Questões em Sala de Aula Módulo 3 Parte B Questões Conceituais QC.1) Num oscilador harmônico simples, massa-mola, a velocidade do bloco oscilante depende (a) da constante elástica k da mola e da amplitude;

Leia mais

Condições especiais de Acesso e Ingresso ao Ensino Superior

Condições especiais de Acesso e Ingresso ao Ensino Superior Condições especiais de Acesso e Ingresso ao Ensino Superior Provas especialmente adequadas destinadas a avaliar a capacidade, dos maiores de 23 anos, para a frequência dos cursos ministrados na Escola

Leia mais

Aula de Programas 4. Introdução

Aula de Programas 4. Introdução Aula de Programas 4 Introdução Nesta aula um dos aspectos fundamentais consiste em utiliar o MATLAB para resolver numericamente equações modais. Basicamente trata-se de determinar numericamente as raíes

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva

SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva SECÇÕES CÔNICAS Usando o programa winplot visualize as cônicas disponíveis em nosso AVA Moodle. 1. Elementos da Elipse: F1, F2:

Leia mais

HISTÓRICO GEOCÊNTRICO MODELOS: HELIOCÊNTRICO

HISTÓRICO GEOCÊNTRICO MODELOS: HELIOCÊNTRICO HISTÓRICO MODELOS: GEOCÊNTRICO HELIOCÊNTRICO Modelo geocêntrico Cláudio Ptolomeu, no século II d.c. formulou o universo com a terra ao centro. Modelo que duraria até o século XVI, com discussões de Galileu

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Primeira lei de Kepler: um texto para professores de Física do Ensino médio

Primeira lei de Kepler: um texto para professores de Física do Ensino médio Primeira lei de Kepler: um texto para professores de Física do Ensino médio Kepler s first law: a text for high school physics teachers. Ricardo F.F. Cunha 1a*, A. C. Tort 2b. 1 Colégio Pedro II, Rio de

Leia mais

Aula 2: Relatividade Restrita

Aula 2: Relatividade Restrita Aula 2: Relatividade Restrita Postulados e transformações de Lorentz A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 17 de Março de 2010 Tort (IF UFRJ)

Leia mais

Relatividade Geral: o que é, para que serve

Relatividade Geral: o que é, para que serve Relatividade Geral: o que é, para que serve Ronaldo S. S. Vieira Astronomia ao meio-dia, 01 de junho de 2017 1 Mecânica clássica 1. Existem referenciais, ditos inerciais, tais que na ausência de forças

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

CÔNICAS NÃO DEGENERADAS Cônicas 3 CÔNICAS Estudaremos as (seções) cônicas, curvas planas que são obtidas da intersecção de um cone circular com um pla

CÔNICAS NÃO DEGENERADAS Cônicas 3 CÔNICAS Estudaremos as (seções) cônicas, curvas planas que são obtidas da intersecção de um cone circular com um pla CÔNICAS CLASSIFICAÇÃO DE CÔNICAS Cônicas CÔNICAS NÃO DEGENERADAS Cônicas 3 CÔNICAS Estudaremos as (seções) cônicas, curvas planas que são obtidas da intersecção de um cone circular com um plano. Cônicas

Leia mais

Órbitas Keplerianas. Paulo J. S. Gil. Departamento de Engenharia Mecânica Mecânica Aplicada e Aeroespacial Instituto Superior Técnico

Órbitas Keplerianas. Paulo J. S. Gil. Departamento de Engenharia Mecânica Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Órbitas Keplerianas Paulo J. S. Gil Departamento de Engenharia Mecânica Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Cadeira de Satélites, MEAer, IST Última actualização: 4 de Outubro de

Leia mais

AS CÓNICAS. Alguns exemplos notáveis

AS CÓNICAS. Alguns exemplos notáveis 1 2 AS CÓNICAS Modificação de um texto de apoio a uma acção de formação FOCO (1999) Chamam-se cónicas às curvas que podem ser definidas em relação a algum sistema de coordenadas cartesianas em R 2 por

Leia mais

B equação de Maxwell-Faraday E t lei de Gauss magnética B 0. equação de Maxwell-Ampère

B equação de Maxwell-Faraday E t lei de Gauss magnética B 0. equação de Maxwell-Ampère ula de Problemas Problema Considere as equações de Maxwell Conservação do fluxo magnético B equação de Maxwell-Faraday E t lei de Gauss magnética B Conservação da carga eléctrica equação de Maxwell-mpère

Leia mais

MAT Poli Cônicas - Parte II

MAT Poli Cônicas - Parte II MAT2454 - Poli - 2011 Cônicas - Parte II Neste texto apresentamos definições de elipse, hipérbole e parábola e deduzimos suas equações reduzidas. Nos exercícios são apresentadas as propriedades ópticas

Leia mais

Lista 2. As leis de Kepler e gravitação universal de Newton

Lista 2. As leis de Kepler e gravitação universal de Newton Lista 2. As leis de Kepler e gravitação universal de Newton Nestor Caticha Física Geral IFUSP Universidade de São Paulo, CP66318, CEP 05315-970, São Paulo, SP, Brazil 25 de Outubro de 2012 Resumo Esta

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Uma abordagem elementar ao conceito de curvatura

Uma abordagem elementar ao conceito de curvatura Uma abordagem elementar ao conceito de curvatura André Bernardino e Rui Pacheco Escola Básica Integrada de Vendas Novas / Universidade da Beira Interior 1. Introdução O conceito de raio de curvatura de

Leia mais

MAT Poli Roteiro de Estudos sobre as Cônicas

MAT Poli Roteiro de Estudos sobre as Cônicas MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +

Leia mais

O PROBLEMA DE DOIS CORPOS

O PROBLEMA DE DOIS CORPOS O PROBLEMA DE DOIS CORPOS O que é? Por exemplo, para o caso de um veículo espacial orbitando a Terra... As equações de movimento do movimento orbital As principais forças atuando em um veículo espacial

Leia mais

Porque é que a definição geométrica e a métrica são equivalentes?

Porque é que a definição geométrica e a métrica são equivalentes? Comunicação: Cónicas: uma abordagem experimental Autor: Ana Cristina Oliveira Esta comunicação vem na sequência de uma Tese de Doutoramento que desenvolvi no âmbito da Divulgação da Matemática. Dado o

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas EXERCÍCIOS: Circunferência 1. Escreva a equação da circunferência de centro em C e de raio r, onde: a) C está

Leia mais

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 7 de dezembro de minutos

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 7 de dezembro de minutos Ano Letivo 2015/ 2016 Matriz do Teste de Avaliação de Física e Química A - 11.º ano 7 de dezembro de 2015 120 minutos Objeto de avaliação O teste tem por referência o programa de Física e Química A para

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

UNIDADE GRAVITAÇÃO

UNIDADE GRAVITAÇÃO UNIDADE 1.5 - GRAVITAÇÃO 1 MARÍLIA PERES 010 DA GRAVITAÇÃO UNIVERSAL DE NEWTON Cada partícula no Universo atraí qualquer outra partícula com uma força que é directamente proporcional ao produto das suas

Leia mais

Diagramas de Minkowski: dilatação do tempo e contracção do espaço

Diagramas de Minkowski: dilatação do tempo e contracção do espaço Diagramas de Minkowski: dilatação do tempo e contracção do espaço Consideremos a transformação de Lorentz 1 β 1 v γ, γ, β = β 1 = = 1 β c em que ( β 1) e = γ e + e e = γ e + e 1 1. Admitindo uma métrica

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais evidente entre objetos com grandes massas, ocasionada

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais evidente entre objetos com grandes massas, ocasionada

Leia mais

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial Órbita no Espaço Paulo J. S. Gil Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Cadeira de Satélites, Lic. Eng. Aeroespacial Paulo J. S. Gil (SMA, IST)

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas CONTEÚDOS DA PROVA DE RECUPERAÇÃO FINAL: Hidrostática, Velocidade Escalar Média, Gravitação Universal, 1ª e 2ª Leis de Kepler, Aceleração Escalar, Equações do Movimento Retilíneo Uniformemente Variado

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,

Leia mais

Exterior. Interior. C = Conjunção O = Oposição Q = Quadratura Oc. = Ocidental (W) Or. = Oriental (E) S = Superior I = Inferior ME = Máxima Elongação

Exterior. Interior. C = Conjunção O = Oposição Q = Quadratura Oc. = Ocidental (W) Or. = Oriental (E) S = Superior I = Inferior ME = Máxima Elongação Introdução à Astronomia Semestre: 2014.1 1 Sergio Scarano Jr 22/10/2013 Configurações Planetárias C Exterior CS Interior C = Conjunção O = Oposição Q = Quadratura Oc. = Ocidental (W) Or. = Oriental (E)

Leia mais

Exercícios Gravitação Universal

Exercícios Gravitação Universal Exercícios Gravitação Universal DISCIPLINA: FÍSICA SÉRIE: 9ª EF PROFESSOR: PATRICK DE ALMEIDA 01) Assinale com V as afirmações verdadeiras e com F as afirmações falsas. ( ) 1. Os planetas ao descreverem

Leia mais

Questão 01) TEXTO: 1 - Comum à questão: 2

Questão 01) TEXTO: 1 - Comum à questão: 2 Questão 0) "Eu medi os céus, agora estou medindo as sombras. A mente rumo ao céu, o corpo descansa na terra." Com esta inscrição, Johannes Kepler encerra sua passagem pela vida, escrevendo seu próprio

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

Fundamentos de Mecânica

Fundamentos de Mecânica Fundamentos de Mecânica 43151 Gabarito do estudo dirigido 3 (Movimento em uma dimensão) Primeiro semestre de 213 1. Um elevador sobe com uma aceleração para cima de 1, 2 m/s 2. No instante em que sua velocidade

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente Capítulo 2 Cálculo integral 2.1 Superfícies quádricas Uma superfície quádrica é um subconjunto de R 3 constituído por todos os pontos de R 3 que satisfazem uma equação com a forma A + B + Cz 2 + Dxy +

Leia mais

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 10 Relatividade Física 4 Ref. Halliday Volume4 ...RELATIVIDADE RESTRITA Sumário A relatividade das distâncias Contração do Espaço Transformada de Lorenz A transformação das velocidades Relembrando...

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE MATEMÁTICA MONOGRAFIA DE GRADUAÇÃO

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE MATEMÁTICA MONOGRAFIA DE GRADUAÇÃO UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE MATEMÁTICA MONOGRAFIA DE GRADUAÇÃO O PROBLEMA DE FORÇA CENTRAL: ESTUDO DO MOVIMENTO DE UM SATÉLITE ARTIFICIAL EDJANE OLIVEIRA DOS SANTOS Sob orientação

Leia mais

24/Abr/2014 Aula /Abr/2014 Aula 15

24/Abr/2014 Aula /Abr/2014 Aula 15 /Abr/014 Aula 15 Ondas de matéria; comprimento de onda de de Broglie. Quantização do momento angular no modelo de Bohr. Difracção e interferência. Função de onda; representação matemática do pacote de

Leia mais

PARTE III CÔNICAS CONTEÚDOS. Transformações de coordenadas. Translação dos eixos coordenados Rotação dos eixos coordenados. Lugares geométricos

PARTE III CÔNICAS CONTEÚDOS. Transformações de coordenadas. Translação dos eixos coordenados Rotação dos eixos coordenados. Lugares geométricos PARTE III CÔNICAS CONTEÚDOS Transformações de coordenadas Translação dos eios coordenados Rotação dos eios coordenados Lugares geométricos Cônicas Parábola Elipse Hipérbole Equação geral Equações paramétricas

Leia mais

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas CÔNICAS Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas Parábola Elipse Hipérbole Circunferência 1.Parábola 1.1 Definição Parábola é o lugar geométrico de todos

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes ETI / EI, 1 o Ano UC: Análise Matemática II Representação geométrica para Integrais Múltiplos - Volumes Elaborado de: Diana Aldea Mendes e Rosário Laureano Departamento de Métodos Quantitativos Fevereiro

Leia mais

Desenvolvimento de um modelo de ensino da Física

Desenvolvimento de um modelo de ensino da Física Desenvolvimento de um modelo de ensino da Física Modelação ou desenvolvimento de um modelo Processo cognitivo de aplicação dos princípios de uma teoria para produzir um modelo de um objecto físico ou de

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Mecânica e Ondas Série 3 Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Instituto Superior Técnico, Av. & 1049-001 Lisboa,

Leia mais

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas). MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da

Leia mais

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor Equação da recta tangente e da recta normal Como já vimos este ano a equação de uma recta na forma reduzida édadapor y y 0 = m(x x 0 ) Também sabemos que o declive da recta tangente ao gráfico de f no

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Data de entrega: 04/11/2015 (quarta-feira). Leitura: Landau capítulo 3. Thornton & Marion, capítulos 1, 2, 8 e 9. Regras do jogo: Você pode usar

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

4. CONTEÚDOS. 10.º ano

4. CONTEÚDOS. 10.º ano 4. CONTEÚDOS Em cada ano de escolaridade, os conteúdos encontram-se organizados por domínios. A articulação entre os domínios de conteúdos e os objetivos acima referidos que constituem o conjunto de desempenhos

Leia mais

PROGRAMAÇÃO DE COMPUTADORES I BCC Aula Prática 02

PROGRAMAÇÃO DE COMPUTADORES I BCC Aula Prática 02 PROGRAMAÇÃO DE COMPUTADORES I BCC701 2016-2 Aula Prática 02 Exercício 1 Define-se um circuito paralelo por um circuito composto exclusivamente por componentes elétricos ou eletrônicos conectados em paralelo.

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame.

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. I. CINEMÁTICA DO PONTO MATERIAL Posição: r = x e x + y e y + z e z Velocidade média/instantânea: v m = r

Leia mais

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange a c tort O princípio da ação mínima O que é o princípio da ação mínima? Como se usa a formulação lagrangiana da mecânica em um problema?

Leia mais

CÔNICAS. Cristianeguedes.pro.br/cefet

CÔNICAS. Cristianeguedes.pro.br/cefet CÔNICAS Cristianeguedes.pro.br/cefet Seções Cônicas São curvas obtidas pela interseção de um cone com um plano. Circunferência É o lugar geométrico plano dos pontos que estão à mesma distância r de um

Leia mais

Apostila de Física EJA

Apostila de Física EJA Apostila de Física EJA Professora Cátia Braga O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado.

Leia mais

Lista 13: Gravitação NOME:

Lista 13: Gravitação NOME: Lista 13: Gravitação NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Atividades de Lei de Kepler e Gravitação Universal

Atividades de Lei de Kepler e Gravitação Universal DISCIPLINA: Física DATA: 30/08/2017 Atividades de Lei de Kepler e Gravitação Universal 01 - A figura ilustra o movimento de um planeta em torno do sol. 04 - A sonda Galileu terminou sua tarefa de capturar

Leia mais

4.1 INTRODUÇÃO Geodésia Celeste - Objetivo científico e operacional Métodos geométricos e dinâmicos

4.1 INTRODUÇÃO Geodésia Celeste - Objetivo científico e operacional Métodos geométricos e dinâmicos 4 MECÂNICA CELESTE E GEODÉSIA 4. INTRODUÇÃO 4.. Geodésia Celeste - Objetivo científico e operacional 4.. Métodos geométricos e dinâmicos 4. MOVIMENTO ORBITAL 4.. Forças centrais. O problema dos dois corpos

Leia mais

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP Cônicas e Equações Quadráticas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Parábolas 2 3 4 5 Introdução Parábolas Parábolas

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/ minutos

Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/ minutos * Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág. Física Setor Prof.: Índice-controle de Estudo ula 9 (pág. 9) D TM TC ula 0 (pág. 9) D TM TC ula (pág. 94) D TM TC ula (pág. 95) D TM TC ula 3 (pág. 95) D TM TC ula 4 (pág. 97) D TM TC ula 5 (pág. 98) D

Leia mais

FIS Cosmologia e Relatividade Thaisa Storchi Bergmann

FIS Cosmologia e Relatividade Thaisa Storchi Bergmann FIS02012 - Cosmologia e Relatividade Thaisa Storchi Bergmann Relatividade Restrita: Postulados: 1) Princípio da relatividade: As leis da física são as mesmas em todos os referenciais inerciais. Nenhum

Leia mais

CONCEITOS DE RELATIVIDADE RESTRITA

CONCEITOS DE RELATIVIDADE RESTRITA 1. Introdução. O Experimento de Michelson-Morley 3. Postulados da Relatividade Restrita 4. Transformações de Lorentz 5. A Dilatação Temporal e a Contração Espacial 6. A Massa, a Energia e o Momento Linear

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Gravitação Universal, Trabalho e Energia. COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6

Gravitação Universal, Trabalho e Energia. COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6 Gravitação Universal, Trabalho e Energia COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6 UNIVERSO Andrômeda - M31. Galáxia espiral distante cerca de 2,2 milhões de anos-luz, vizinha da

Leia mais