TERMODINÂMICA QUÍMICA. Espontaneidade e Equilíbrio
|
|
|
- Lorenzo Bandeira Castilho
- 7 Há anos
- Visualizações:
Transcrição
1 ERMODINÂMICA QUÍMICA Espontaneidade e Equilíbrio
2 A questão química: a espontaneidade de processos... 1) Como saber se uma reação química é espontânea ou não? 2) Uma dada reação em dadas condições é não-espontânea. É possível alterar essa situação? Como? 2) Como quantificar a espontaneidade de uma reação química?
3 ermodinâmica: modelo criado para descrever sistemas e suas transformações. A termodinâmica está fundamentada em dois conceitos e construída a partir de dois princípios, gerais! Dois princípios: 1ª Lei da D: O princípio da conservação de energia. 2ª Lei da D: Em processos espontâneos há aumento da entropia total do Universo.
4 Voltando ao critério de espontaneidade... Processos espontâneos são aqueles aumentam a entropia do Universo. S(total) = S(sistema) + S(vizinhanças) S(total) = S(sistema) + S(vizinhanças) > 0 Processo espontâneo S(total) = S(sistema) + S(vizinhanças) < 0 S(total) = S(sistema) + S(vizinhanças) = 0 Processo não espontâneo Processo está no equilíbrio
5 A hipótese de Boltzmann: Há uma conexão entre a entropia (S) de um sistema e a distribuição mais provável (W max ) de energia dos seus constituintes microscópicos S k lnw = B max [S] = [k B ] = J K -1 Entropia (S) é uma função termodinâmica que aumenta com o número de possíveis distribuições energéticas microscópicas dos componentes do sistema (microestados) para um dado estado macroscópico (macroestado).
6 Entropia (S) é uma função termodinâmica que aumenta com o número de possíveis distribuições energéticas microscópicas dos componentes do sistema (microestados) para um dado estado macroscópico (macroestado). Ex: Dois sistemas formados por 2 partículas, uma azul e outra vermelha, energia total de 4 J. W max = 1 W max = 2 S(sistema 2) > S(sistema 1)
7 Usando a hipótese de Boltzmann a) Aquecimento de uma amostra Nosso sistema exemplo: 14 moléculas. A energia total das 14 moléculas é 10, em unidades arbitrárias. Inicialmente: Energia, ε i População, n i Ao aquecer: mais níveis se tornam disponíveis. Ex:aenergia das moléculas aumenta de 10 para 15 Energia, ε i População, n i
8 Aumento de temperatura As moléculas têm mais níveis de energia disponíveis; podem se espalhar mais nesses níveis. W aumenta. Como S = k B lnw S aumenta!
9 b) Efeito da temperatura O nosso sistema exemplo em 3 diferentes situações (mesmo aumento de energia: 5 unidades): ε i n i : baixa ( E = 5) n i : média ( E = 10) n i : alta ( E = 15)
10 = 5 = 5 ε i W lnw n i : baixa ( E = 5) ,0 x ,29 n i : média ( E = 10) ,8 x ,1 n i : alta ( E = 15) ,5 x ,7 Para um mesmo aumento de energia, quanto menor a temperatura, maior o aumento de entropia!
11 c) Expansão de um gás Matéria: movimentos internos: translação, vibração, rotação, eletrônico, nuclear... Gás: a maioria dos níveis energéticos está associado à translação. Da mecânica quântica: o espaçamento dos níveis translacionais é inversamente proporcional ao volume ocupado pelo gás. O nosso sistema exemplo: ao aumentar o volume do recipiente que contém as 14 moléculas:... A temperatura constante, aumento de volume (ou diminuição de pressão) aumenta a entropia!
12 e) Aumento da massa molar Da mecânica quântica: o espaçamento dos níveis translacionais é inversamente proporcional à massa das moléculas. Maior volume, maior massa menor o espaçamento maior a entropia. Ex: a 298 K e 1 bar: Gás He Ne Ar Kr Xe S / J K -1 mol
13 e) Mudanças de estado Gás: possui muitos níveis de energia translacional disponíveis. Moléculas no líquido têm menos graus de liberdade, no sólido menos ainda. S(gás) >> S(líquido) > S(sólido) Água a 298 K S / J K -1 sólido 38 líquido 70 gás 189
14 Conclusão: A entropia aumenta com a temperatura; i.é., ao fornecer energia ao sistema, sua entropia aumentará. Absorção de uma dada quantidade de energia resultará num maior aumento de entropia quanto menor for a temperatura. A entropia aumenta com a expansão de um gás e decresce com a compressão. A entropia de um gás aumenta com o aumento da massa dos átomos/moléculas. A entropia de uma substância no estado gasoso é maior do que quando está no estado líquido que é maior do que quando está no estado sólido. A teoria apresentada para conceituar a entropia chama-se termodinâmica estatísitca! Note que na tabela acima não aparece uma vez sequer a palavra desordem, portanto, a sua relação com a entropia deve ser abandonada, excluída. Hoje, só mesmo para tentar explicar a leigos e crianças (mas é uma explicação falha, incompleta)
15 Apergunta: O que se pode falar sobre a qualidadeda energia do sistema depois de sofrer um processo espontâneo? Houve piora na qualidade da energia. Houve degradação da energia. pt.wikipedia.org; Atkins & de Paula, Physical Chemistry, 8th ed.
16 Em conclusão: processos espontâneos não são aqueles que levam a uma maior desordem do sistema. Processos espontâneos são aqueles nos quais o sistema, no seu estado final tem a energia de seus átomos e/ou moléculas mais distribuída entre os possíveis níveis de energia. A qualidade da energia do sistema piora num processo espontâneo. Processos espontâneos ocorrem com degradação de energia. Essa senhora sabe termodinâmica?
17 Em busca de uma maneira de se calcular a entropia... ermodinâmica Estatística: S = k lnw B max Forma de cálculo de entropia não muito trivial. ermodinâmica Clássica: Calor: energia transferida devido a uma diferença de temperatura!
18 Como calcular calor numa transformação? calorimetria (quantidade de calor fornecida) capacidadecalorífica = (massadesubstância)x(variaçãodetemperatura) Capacidade molar específica: C m capacidade molar específica = = (quantidade de calor fornecido) (quantidade de substância,em mol)x(variação de temperatura) C m dq = nxd
19 Para gases: C m = q nxd Capacidade molar a pressão constante: C P,m q = P Capacidade molar a volume constante: C V,m q = V Calor não é propriedade ou função de estado do sistema. É energia transferida ao sistema duranteuma transformação!
20 Uma propriedade de Estado: Energia Interna (U) Sistema: Propriedades de Estado: P, V,, S, U ermodinâmica Estatística: a energia interna de um sistema é a soma das energias das partículas constituintes do sistema. ermodinâmica Clássica: O calor transferido a um sistema numa transformação a volume constante é igual à sua variação de energia interna. V = cte Sistema, estado inicial ( i, P i, S i, U i ) Quando V = constante: q V U = U f U i = q V Sistema, estado final( f, P f, S f, U f )
21 Determinação de calores de combustão Bomba calorimétrica: sistema com V = constante 1) Mede-se 2) Usando as equações da calorimetria: calcula-se q reação 3) Como V = cte q reação = r U! Usando as equações da termodinâmica calcula-se r H!
22 Outra função de estado: Entalpia, H Definimos: H = U + PV Sistema: Propriedades de Estado: P, V,, S, U, H ermodinâmica Clássica: O calor transferido a um sistema numa transformação a pressão constante é igual à sua variação de entalpia. P = cte Sistema, estado inicial ( i, V i, S i, U i ) Quando P = constante: q P H = H f H i = q P Sistema, estado final( f, V f, S f, U f )
23 Da ermodinâmica Clássica: Se uma pequena quantidade de calor, dq rev, é fornecida em condições reversíveis a um sistema na temperatura sis, a variação de entropia do sistema é dada por ds sis dq = rev sis Já vimos que: A entropia aumenta com a temperatura; i.é., ao fornecer energia ao sistema, sua entropia aumentará. Absorção de uma dada quantidade de energia resultará num maior aumento de entropia quanto menor for a temperatura. Processo reversível
24 Para uma transformação infinitesimal: ds sis = dq rev sis ou
25 Determinando a entropia 1) Variação de temperatura Em sistemas químicos, geralmente as medidas são feitas a pressão constante. Capacidade molar a pressão constante: q C P,m() = P A pressão constante: dq P = dh dqp = dhm = C P,m()d ds sis = dq rev sis ds dh rev = = C P()d S S f i ds = f i C P()d Admitindo C P = constante S S f i ds = C P f i d = f S CPln i
26 f S = i C P()d Valores tabelados: C() = a + b 2 + c
27 E se houver mudanças de fase? ds dh rev = = C P()d Como calcular a variação de entropia para o aquecimento a pressão constante de i a f? A uma dada pressão: para uma mudança de fase: = ctee H é constante!! trans H S = trans trans H i f
28 Calcular a variação de entropia dex para o aquecimento a pressão constante de i a f. X S = S S f i Independe do caminho! i f X(s, i ) X(s, m ) X(l, m ) X(l, b ) X(g, b ) X(g, f ) S 1 fus S S vap S S 3 2 P fush P vaph P + + m b f C (s)d C (l)d C S = + + m b i m b (g)d
29 Entropias absolutas e a 3ª Lei da ermodinâmica Se a temperatura inicial for 0 K: m b C P(s)d fush C P(l)d vaph C P(g)d S = + + S() S(0) + + = 0K m b m b = 0 3ª Lei da ermodinâmica: odos os sólidos cristalinos perfeitos têm a mesma entropia a0 K. Por convenção toma-se o valor zero para a entropia de todos os sólidos cristalinos perfeitos a 0 K. Remember Boltzmann: S = k B lnw
30 P fush P vaph P S() = m b C (s)d C (l)d C (g)d 0K m b m b Permite tabelar valores de entropias absolutas
Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia. Aula Interlúdio molecular
Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula Interlúdio molecular Energia Interna somatório de energias (cinética + potencial) Energia cinética relacionada
QB70C:// Química (Turmas S71/S72) Termodinâmica. Prof. Dr. Eduard Westphal ( Capítulo 8 Atkins (5ª ed.
QB70C:// Química (Turmas S71/S72) Termodinâmica Prof. Dr. Eduard Westphal (http://paginapessoal.utfpr.edu.br/eduardw) Capítulo 8 Atkins (5ª ed.) Entalpia Em um sistema rígido (onde não exista outra forma
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 2
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 2 [texto baseado nas seções 3.5, 3.6 e 3.9 de Physical Chemistry, P. Atkins e J. de Paula, Freeman 2006] As energias livres de Helmholtz
Segunda Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Segunda Lei da Termodinâmica Espontaneidade das reações químicas Entropia Terceira Lei da Termodinâmica Primeira Lei da Termodinâmica Estabelece que as transformações
Primeira Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trabalho de expansão Trocas térmicas Entalpia Termodinâmica Estudo das transformações de
Disciplina de Química Geral Profa. Marcia Margarete Meier
Processos espontâneos A termodinâmica está relacionada com a pergunta: uma reação pode ocorrer? 2 Al (s) + Fe 2 O 3 (s) Al 2 O 3 (s) + 2 Fe (s) H 2 (g) + 1/2O 2 (g) H 2 O(g) 2 2 2 A primeira lei de termodinâmica:
Profª. Drª. Ana Cláudia Kasseboehmer Monitor: Israel Rosalino
Universidade de São Paulo Instituto de Química de São Carlos Departamento de Físico-Química Laboratório de Investigações em Ensino de Ciências Naturais Profª. Drª. Ana Cláudia Kasseboehmer [email protected]
Entropia e energia livre de Gibbs. Prof. Leandro Zatta
Entropia e energia livre de Gibbs Prof. Leandro Zatta 1 Segunda e a terceira leis Ideias importantes Sentido Natural Desordem Medido por Energia livre de Gibbs 2 Chave para compreensão da ocorrência ou
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127. Termodinâmica
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127 Termodinâmica Prof. Antonio Guerra Departamento de Química Geral e Inorgânica - DQI Energia e Trabalho Energia A capacidade de realizar
REVISÃO. Avaliação do Conceito de Entalpia
ERMODINÂMICA RACIONAL REIÃO Avaliação do Conceito de Entalpia Existe uma certa confusão na conceituação de entalpia, principalmente em relação a sua natureza. Os físico-químicos estão acostumados a lidar
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 1
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 1 [texto baseado nas seções 2.5 (a e b) e 2.7 de Physical Chemistry, P. Atkins e J. de Paula, Freeman 2006] Funções de estado termodinâmico
TERMODINÂMICA QUÍMICA
TERMODINÂMICA QUÍMICA Processos Espontâneos 1ª Lei da termodinâmica: Energia de um sistema é conservada ΔE = variação da energia interna q = calor absorvido pelo sistema w = trabalho realizado pela vizinhança
Calor Específico Molar, Transformações Adiabáticas e Expansão Livre
Calor Específico Molar, Transformações Adiabáticas e Expansão Livre Revisando Deduzimos que a temperatura determina a energia cinética média (via a velocidade média). O modelo de gás ideal não considera
Segunda e Terceira Lei da Termodinâmica Entropia Energia Livre de Gibbs
Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Segunda e Terceira Lei da Termodinâmica Entropia Energia Livre de Gibbs Primeira Lei da Termodinâmica U = q
TERMODINÂMICA QUÍMICA. Espontaneidade e Equilíbrio
TERMODINÂMICA QUÍMICA Espontaneidade e Equilíbrio Calculando a variação de entropia do Universo... Critério de espontaneidade: ΔS universo > 0 processo espontâneo ΔS universo = 0 equilíbrio ΔS universo
Termodinâmica. Termodinâmica é o estudo das mudanças de energia que acompanham os processos físicos e químicos. QUÍMICA GERAL Fundamentos
Termodinâmica é o estudo das mudanças de energia que acompanham os processos físicos e químicos 1 Calor e Trabalho Calor e trabalho são formas relacionadas de energia Calor pode ser convertido em trabalho
Primeira Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia
QUÍMICA GERAL Termodinâmica: 2a e 3a Leis
QUÍMICA GERAL Termodinâmica: 2a e 3a Leis Prof. Dr. Anselmo E. de Oliveira Instituto de Química, UFG anselmo.quimica.ufg.br [email protected] 14 de Setembro de 2018 Agronomia Entropia 1 Entropia
Diagramas de Energia
Diagramas de Energia 1.1- Análise Gráfica Reação exotérmica Reação endotérmica (a) Energia de ativação (Ea) para a reação inversa (b) Energia de ativação (Ea) para a reação direta (c) ΔH 1.2- Entropia
Física Estatística. Introdução. Vitor Oguri
Física Estatística Introdução Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 20 de
PMT Físico-Química para Metalurgia e Materiais I
PM 3205 Físico-Química para Metalurgia e Materiais I ermodinâmica Balanço térmico 17. Calcular a variação de entalpia das seguintes reações:[80] a. Fe (25 C) + ½ O 2 (25 C) = FeO(25 C) b. Fe (25 C) + ½
Resolução das questões objetivas* da 1ª e da 2ª Prova de Física II Unificada do Período UFRJ
Resolução das questões objetivas* da ª e da ª Prova de Física II Unificada do Período 0.-UFRJ *Assuntos: Termodinâmica, Hidrodinâmica e Hidrostática. Resolução: João Batista F. Sousa Filho (Graduando Engenharia
6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais
6/Mar/01 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis
Termodinâmica e Estrutura da Matéria
Termodinâmica e Estrutura da Matéria Conceitos básicos J. Seixas Sistema Índice da lição e Sistema Porque falamos de sistema? Para descrever um fenómeno físico precisamos de especificar do que estamos
Interpretação microscópica da entropia
Interpretação microscópica da entropia (entropia, probabilidade e desordem) Ω probabilidade termodinâmica (ou estatística) de um certo estado -A probabilidade estatística de um estado é uma medida da desordem
Termodinâmica Química
Termodinâmica Química Prof. Alex Fabiano C. Campos, Dr Naturezas de Energias Energia cinética é a energia do movimento (translacional, vibracional e rotacional). Energia potencial é a energia que um objeto
Termodinâmica A primeira Lei
Departamento de Química e Bioquímica Termodinâmica A primeira Lei Cap. 7 Atkins FUNDAMENTOS DE QUÍMICA Termodinâmica Estudo das transformações de energia entre as suas diferentes formas Sistema + Vizinhança
CAPITULO 3 A Segunda lei da termodinâmica
O objetivo deste capitulo é explicar a origem da espontaneidade das mudanças ísicas e quimicas. Procura mostrar que é possivel deinir, medir e usar uma propriedade, a entropia, na discussão quantitativa
Neste modelo o gás é estudado de uma forma microscópica, onde a temperatura, a pressão e a. o resultado do movimento dos átomos e moléculas.
TEORIA CINÉTICA Neste modelo o gás é estudado de uma forma microscópica, onde a temperatura, a pressão e a energia interna são interpretadas como o resultado do movimento dos átomos e moléculas. Pressão
1 Termodinâmica: Modelos e Leis 1. 2 Princípio da Conservação da Energia: A 1.ª Lei da Termodinâmica 13
Prefácio Lista de Símbolos xiii xvii 1 Termodinâmica: Modelos e Leis 1 1.1 Introdução 1 1.2 Modelo do Gás Perfeito 3 1.3 Mistura de Gases Perfeitos: Lei de Dalton 6 1.4 Leis da Termodinâmica 7 1.5 Expansão
Entropia. Energia de Gibbs e Equilíbrio
Entropia Energia de Gibbs e Equilíbrio Mestrado integrado em Engenharia Biológica Disciplina Química II, 2º semestre 2009/10 Professsora Ana Margarida Martins TRANSFORMAÇÕES ESPONTÂNEAS Uma reacção diz-se
Física Estatística. Entropia de Boltzmann. Vitor Oguri
Física Estatística Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 23 de abril de 2018
ENSINO MÉDIO QUÍMICA
ENSINO MÉDIO QUÍMICA TERMOQUÍMICA TERMOQUÍMICA Termoquímica é a parte da química que estuda o calor associado a uma reação química. A unidade usada para medir a energia liberada ou absorvida por um sistema
Instituto de Física USP. Física V - Aula 03. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 03 Professora: Mazé Bechara Aula 03 AVISOS 1. Página da disciplina: se organize e use os mecanismos de apoio para o seu bom aproveitamento e desenvolvimento nos
Instituto de Física USP Física V - Aula 04
Instituto de Física USP Física V - Aula 04 Professora: Mazé Bechara Aula 04 Mecânica estatística clássica. Estimativa dos do calor específico molar a volume constante em gases mono e poliatômicos e nos
2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3
6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho
TERMODINÂMICA. Radiação Solar. Anjo Albuquerque
TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA Termodinâmica - é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo.
TERMODINÂMICA. Radiação Solar. Anjo Albuquerque
TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA A Termodinâmica é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo;
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia
ermodinâmica Entropia v.. Introdução Falamos nas aulas anteriores sobre a a Lei da ermodinâmica. Vimos dois enunciados da a Lei, o de Kelvin-Planck e o de Clausius. Falamos sobre sentido natural dos processos,
Termodinâmica. Prof.: POMPEU
1. DEFINIÇÃO A estuda a relação entre calor e trabalho que um sistema (por exemplo, um gás) troca com o meio exterior. 2. ENERGIA INTERNA (U) É a soma das várias formas de energia das moléculas que constituem
Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então.
Introdução À Termodinâmica Estatística Aula 15 Meta Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então. Objetivos Ao final
FCAV/ UNESP NOÇÕES DE TERMODINÂMICA
FCAV/ UNESP NOÇÕES DE TERMODINÂMICA Profa. Dra. Luciana Maria Saran 1 1.TERMODINÂMICA Compreende o estudo da energia e suas transformações. Em grego, thérme-; calor, dy namis, energia. Termoquímica: área
Capítulo 18 Entropia, Energia de Gibbs e Equilíbrio
Capítulo 18 Entropia, Energia de Gibbs e Equilíbrio As Três Leis da Termodinâmica Processos Espontâneos Entropia A Segunda Lei da Termodinâmica Energia de Gibbs Energia de Gibbs e Equilíbrio Químico Termodinâmica
Halliday Fundamentos de Física Volume 2
Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
FÍSICA MÓDULO 19 ENTROPIA. Professor Ricardo Fagundes
FÍSICA Professor Ricardo Fagundes MÓDULO 19 ENTROPIA ENTROPIA, UMA BREVE ANÁLISE MICROSCÓPICA A figura abaixo mostra como duas moléculas podem se organizar um uma região de volume total V, com uma fresta.
Termoquímica. Profa. Marcia Margarete Meier
Termoquímica Parte 3 Profa. Marcia Margarete Meier 1 Processos espontâneos Um processo que é espontâneo em um sentido não é espontâneo no sentido contrário. O sentido de um processo espontâneo pode depender
Fisica do Corpo Humano ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01. Temperatura Aula 5 e 1/2 da 6
Fisica do Corpo Humano (4300325) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01 Temperatura Aula 5 e 1/2 da 6 1. Existem em torno de uma centena de átomos 2. Cada átomo
Termoquímica. Iniciação à Química II. Prof. Edson Nossol
Termoquímica Iniciação à Química II Prof. Edson Nossol Uberlândia, 20/10/2017 Energia de ligação (dissociação): energia necessária para romper a ligação H (entalpia de ligação): variação de calor que acompanha
Segunda série de exercícios Mecânica Estatística - IFUSP - 23/8/2010
Segunda série de exercícios Mecânica Estatística - IFUSP - 23/8/2010 1- Obtenha uma expressão para o volume de uma hiperesfera de raio R num espaço de d dimensões. Utilize esta expressão para calcular
Unidade A: Introdução À Termologia Capítulo 1: Conceitos fundamentais de termologia Controlar as variações de temperatura no ambiente onde vivem é
Unidade A: Introdução À Termologia Capítulo 1: Conceitos fundamentais de termologia Controlar as variações de temperatura no ambiente onde vivem é uma preocupação dos seres humanos desde quando habitavam
Termoquímica Pa P rte t 2
Termoquímica Parte 2 Entalpiasde mudançade de estado físico O calor necessário para mudar o estado físico de uma substância é conhecido como: Entalpia de fusão H fus ; ENDOTÉRMICO Entalpia de vaporização
A Primeira Lei da Termodinâmica. Energia. U = variação na energia de um sistema U = U final -U inicial
Química Aplicada à Engenharia Civil Termodinâmica Química Continuação Profa. Geisamanda Pedrini Brandão Athayde Revisão Calor Sistema ganha calor Æ q > 0 Æ Processo Endotérmico Sistema perde calor Æ q
Ensino da 2ª Lei da Termodinâmica
Ensino da 2ª Lei da Termodinâmica Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ PEF-UFRJ, agosto de 2017 Baseado na dissertação de mestrado de Marcos Moura
11/Mar/2016 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais
11/Mar/016 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis
TERMODINÂMICA (Parte 1)
TERMODINÂMICA (Parte 1) Estudo das transformações da energia. Baseia-se em duas leis: 1ª Lei: acompanha as variações de energia e permite o cálculo da quantidade de calor produzida numa reação. 2ª Lei:
Balanço de Energia. Conceitos Básicos
Balanço de Energia Conceitos Básicos Sistema: arte de equipamento ou porção de material, escolhida arbitrariamente, onde a observação dos fenômenos é feita. Um sistema é delimitado por fronteiras. Um sistema
Equações-chave FUNDAMENTOS. Seção A. Seção E. Seção F. Seção G. mv 2. E c E P. mgh. Energia total energia cinética energia potencial, ou E E c.
Equações-chave FUNDAMENTOS Seção A 3 A energia cinética de uma partícula de massa m relaciona-se com sua velocidade v, por: E c mv 2 4 Um corpo de massa m que está a uma altura h da Terra tem energia potencial
Aula 7 A entropia e a sua interpretação microscópica Física II UNICAMP 2012
Aula 7 A entropia e a sua interpretação microscópica Física II UNICAMP 2012 O teorema de Clausius Se uma máquina irreversível (I ) opera entre as temperaturas T 1 e T 2 vimos que o seu rendimento é sempre
TERMODINÂMICA TERMOQUÍMICA
TERMODINÂMICA TERMOQUÍMICA Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações
DRAFT. Termodinâmica CONCURSO PETROBRAS. Questões Resolvidas ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR
CONCURSO PEROBRAS ENGENHEIRO(A) DE PROCESSAMENO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENO QUÍMICO(A) DE PERÓLEO JÚNIOR ermodinâmica Questões Resolvidas QUESÕES REIRADAS DE PROVAS DA BANCA CESGRANRIO
Física estatística. Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST
Física estatística Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST Fourth Law of Thermodynamics: If the probability of success is not almost one, then it is damn near zero. David Ellis A
Termodinâmica Olímpica. João C. Carvalho 2018
Termodinâmica Olímpica João C. Carvalho 2018 Albert Einstein (1949): Uma teoria tem tanto mais impacto quanto maior for a simplicidade das suas premissas, quanto mais diversas forem as coisas relacionadas
Termoquímica Entalpia e Lei de Hess
Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Termoquímica Entalpia e Lei de Hess Sistemas a Pressão Constante Quando o volume do sistema não é constante,
Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.
Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia
Linguagem da Termodinâmica
Linguagem da Termodinâmica Sistemas macroscópicos contêm um grande número de partículas constituintes (átomos, moléculas, iões,...) N A = 6, 022 10 23 Em Termodinâmica, Princípios e Leis são independentes
Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei:
Lei Zero da Termodinâmica 4300259 Termo- estatística REVISÃO DE TERMODINÂMICA Se dois sistema estão em equilíbrio térmico com um terceiro sistema, então eles também estão em equilíbrio entre si. Alguns
A origem molecular da Entropia
6. Segunda Lei da Termodinâmica A segunda lei da termodinâmica trata dos conceitos de "ordem" e "desordem" da matéria, estabelecendo de forma precisa como a energia térmica e a transferência de calor estão
Conceitos primordiais da Termodinâmica
Conceitos primordiais da Termodinâmica Miguel Almeida 1 Propriedades de Estado Propriedade de estado é aquela que sua variação não depende do "caminho" mas sim dos estados final e inicial. Pode ser equacionada
Lista de exercícios 2 QB70D
Lista de exercícios 2 QB70D 1) Suponha que você jogue uma bola de tênis para o alto. (a) A energia cinética da bola aumenta ou diminui à medida que ela ganha altitude? (b) O que acontece com a energia
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os
Físico-Química I. Profa. Dra. Carla Dalmolin. Termoquímica. Transformações físicas. Transformações químicas
Físico-Química I Profa. Dra. Carla Dalmolin Termoquímica Transformações físicas Transformações químicas Termoquímica Estudo do calor trocado quando ocorrem reações químicas Sistema Sistema Vizinhança Se
MÓDULOS 37 E 38 QUÍMICA. Termodinâmica I e II. Ciências da Natureza, Matemática e suas Tecnologias. 1. Trabalho de expansão à pressão constante
Ciências da Natureza, Matemática e suas Tecnologias QUÍMICA MÓDULOS 37 E 38 Termodinâmica I e II 1. Trabalho de expansão à pressão constante Vamos considerar um gás aprisionado em um cilindro com pistão
1ª Lei da Termodinâmica. Sistemas e vizinhanças. Trabalho, calor e energia. Termodinâmica 1ª Lei. SÉRiE. ENSiNO. PRÉ-UNIVERSITÁRIO PROFESSOR(a)
SÉiE umo ao IA Nº 0 ENSiNO É-UNIESIÁIO OFESSO(a) ALuNO(a) ANONINO FONENELLE SEDE Nº C uma uno Daa / / QUÍICA ermodinâmica ª Lei Sistemas e izinhanças Chama-se sistema o objeto de estudo que se submete
MEDIDA DO CALOR DE REAÇÃO
TERMOQUÍMICA A energia liberada nas reações químicas está presente em várias atividades da nossa vida diária. Por exemplo, á o calor liberado na queima do gás butano que cozinha os nossos alimentos, é
Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos
Disciplina : Termodinâmica Aula 17 Processos Isentrópicos Prof. Evandro Rodrigo Dário, Dr. Eng. Processos Isentrópicos Mencionamos anteriormente que a entropia de uma massa fixa pode variar devido a (1)
Aula 8 Entropia e espontaneidade
Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula 8 Entropia e espontaneidade Dr. Tiago P. Camargo Reações químicas e espontaneidade Ocorrer ou não ocorrer...
BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace GASES Professor Hugo B. Suffredini [email protected] Site: www.suffredini.com.br Pressão Atmosférica A pressão é a força atuando em um objeto por
Instituto de Física USP. Física Moderna I. Aula 4. Professora: Mazé Bechara
Instituto de Física USP Física Moderna I Aula 4 Professora: Mazé Bechara Aula 04 Modelos de estrutura da matéria e a mecânica estatística clássica 1. Uma teoria para a dinâmica de um sistema de muitas
Graça Meireles. Física -10º ano. Física -10º ano 2
Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em
Prefácio. Lista de Símbolos. Modelo do Gás Perfeito 2 Mistura de Gases Perfeitos. Lei de Dalton 4 Problemas 6
Índice Geral Prefácio xv Lista de Símbolos xvii 1 Modelo do Gás Perfeito 1 Modelo do Gás Perfeito 2 Mistura de Gases Perfeitos. Lei de Dalton 4 Problemas 6 2 Princípio da Conservação da Energia. A 1.ª
Processos Irreversíveis
Processos Irreversíveis Objeto solto de uma altura h v = 0 2gh Objeto lançado com velocidade V em superfície com atrito V V = 0 O que há de comum em todos os fenômenos irreversíveis? Movimentos organizados
