Física Estatística. Introdução. Vitor Oguri
|
|
|
- Dina Gesser da Cunha
- 8 Há anos
- Visualizações:
Transcrição
1 Física Estatística Introdução Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 20 de qbril de 2018 V. Oguri 1/19 Física Estatística
2 Sumário 1 Introdução Sistemas macroscópicos Abordagem estatística Conceitos básicos 2 Gases ideais degenerados 3 V. Oguri 2/19 Física Estatística
3 Sistemas macroscópicos Abordagem estatística Conceitos básicos Teorias para sistemas macroscópicos Termodinâmica: descrição de sistemas em interação com a vizinhança, ou campos externos, a partir de relações (leis e equações de estado) entre poucos parâmetros macroscópicos (variáveis de estado) Joule, Carnot, Clapeyron, Mayer, Helmholtz, Kelvin, Clausius, Maxwell, Nernst, Duhem, Massieu, Planck, Gibbs. Teoria Cinética: gases são constituídos por moléculas que só interagem durante pequenos períodos de colisões aleatórias (caos molecular) Boyle, Clausius, Maxwell, Boltzmann. Física Estatística: variáveis de estado representam valores médios de grandezas que flutuam quando um sistema encontra-se em equilíbrio termodinâmico Clausius, Maxwell, Boltzmann, Planck, Gibbs, Einstein, Bose, Fermi, Dirac. V. Oguri 3/19 Física Estatística
4 Sistemas macroscópicos Abordagem estatística Conceitos básicos Abordagem estatística descrição probabilística condicionada às leis da Mecânica Clássica, do Eletromagnetismo ou da Mecânica Quântica determinação (previsão) dos valores dos parâmetros macroscópicos de um sistema, das equações de estados, e das próprias leis da Termodinâmica para processos reversíveis todo sistema macroscópico possui um grande número de níveis de energia, associados a um grande número de estados (muitos graus de liberdade) em situações de equilíbrio, a probabilidade de ocorrência de qualquer estado, praticamente, não depende do tempo as incertezas relativas associadas aos diversos parâmetros de um sistema em equilíbrio são tão pequenas, que as previsões são praticamente "exatas" V. Oguri 4/19 Física Estatística
5 Sistemas macroscópicos Abordagem estatística Conceitos básicos Conceitos básicos Microestado: coleção de variáveis dinâmicas (posição, momentum, spin,...) associadas aos constituintes de um sistema, em um dado instante. Macroestado: coleção de parâmetros macroscópicos (pressão, volume, temperatura,...) que correspondem a vários microestados. Reversibilidade: evolução de um sistema por uma sucessão de estados de equilíbrio (processos quase-estáticos com efeitos dissipativos praticamente desprezíveis). V. Oguri 5/19 Física Estatística
6 Variáveis de estado extensivas número de partículas (N) entropia (S) volume (V ) magnetização (M) polarização (P) energia interna (U) intensivas potencial químico (µ) temperatura (T ) pressão (P) campo magnético (H) campo elétrico (E) densidade de energia (u) propriedades { capacidade térmica (C) calor específico (c) susceptibilidade (χ) V. Oguri 6/19 Física Estatística
7 Equações de estado equação de Clapeyron: PV = nrt n = N N A R J/mol.K cal/mol. C PV = NkT k = R N A J/K lei de Curie: M = C H T (C constante de Curie) lei de Stefan-Boltzmann: u = at 4 equação de Langevin: a = pe kt P = NpL(a) L(a) = coth a 1 a V. Oguri 7/19 Física Estatística
8 1- a lei da Termodinâmica variação da energia interna (U) de um sistema trabalho(w ) : P dv, B dm calor(q) : C T (não envolve qualquer tipo de trabalho nem ganho ou perda de partículas) a capacidade térmica (C) é uma medida da resistência à variação de temperatura ao receber ou ceder calor enquanto a energia interna (U) é uma variável de estado extensiva, o calor (Q) e o trabalho (W ) são quantidades definidas apenas quando há a variação do estado de um sistema, ou seja, dependem dos processos envolvidos (isotérmicos, isométricos, isobáricos, adiabáticos, isentrópicos,... ) V. Oguri 8/19 Física Estatística
9 1- a lei da Termodinâmica 1- a lei da Termodinâmica (Helmholtz ) U = 0 (sistema isolado) U = Q W = U = W adiab. (processos adiabáticos ) A energia interna de um sistema isolado é constante V. Oguri 9/19 Física Estatística
10 2- a lei da Termodinâmica Entropia e irreversibilidade a entropia (S) é a variável de estado que caracteriza a irreversibilidade dos fenômenos macroscópicos a variação da entropia de um sistema fechado ao receber ou ceder reversivelmente uma pequena quantidade de calor (Q) à temperatura T é dada por S = Q T rev. (Clausius ) do mesmo modo que a energia interna, a entropia é definida a menos de uma constante, ou seja, apenas variações de energia e entropia são determinadas pela Termodinâmica V. Oguri 10/19 Física Estatística
11 2- a lei da Termodinâmica a variação de entropia de um sistema isolado devido a processos naturais nunca é negativa a entropia de um sistema isolado nunca decresce S 0 S final S inicial O equilíbrio de um sistema isolado é um estado de máxima entropia V. Oguri 11/19 Física Estatística
12 1- a e 2- a leis da Termodinâmica du = T ds dw como a entropia é uma variável de estado, pode-se calcular a variação de entropia de um sistema em qualquer processo (reversível ou irreversível), a partir de um processo reversível concebível que leve o sistema do estado inicial ao estado final, determinando-se a variação de energia interna e o trabalho para realizar tal processo ds = 1 T du + P T dv V. Oguri 12/19 Física Estatística
13 Capacidade térmica e calor específico Capacidade térmica dq rev = du + P dv = d(u + PV ) V dp = T ds C V = dq dt C P = dq dt = V = P ( ) U = T T V T (U + PV ) P = T ( ) S > 0 T V ( S T ) P > 0 V. Oguri 13/19 Física Estatística
14 Capacidade térmica e calor específico Calores específicos c = C m (calor específico) c m = C n (calor específico molar) calores específicos de alguns sólidos Substância c (cal/g o C) µ(g/mol) c m (cal/mol o C) Alumínio Carbono Cobre Chumbo Prata Tungstênio V. Oguri 14/19 Física Estatística
15 Variação do calor específico molar com a temperatura c 3R V T T D V. Oguri 15/19 Física Estatística
16 Relação de Mayer c P c V = R Relação entre os calores específicos molares de alguns gases Gás c (J/mol.K) P c V (J/mol.K) c P c V (J/mol.K) γ = c P /c V He Ar Hg O CO Cl SO C 2 H V. Oguri 16/19 Física Estatística
17 du = T ds P dv + i µ i dn i Gibbs (1875) N i é o número de partículas do tipo i, e µ i é o potencial químico associado, que representa a energia necessária para variar de uma unidade o número de partículas do tipo i. A energia interna (U) de um sistema, para um processo reversível, é uma função monotonicamente crescente da entropia (S). ( ) U = T > 0 S X X representa o volume (V ), a magnetização (M), a polarização (P), o número de partículas (N) ou qualquer outra grandeza extensiva associada ao trabalho realizado pelo sistema sobre o meio externo. V. Oguri 17/19 Física Estatística
18 A 3- a lei, enunciada originalmente por W. Nernst, em 1906, só é evocada quando se necessita tabular valores absolutos da entropia, ou se trabalha em baixas temperaturas. Segundo Nernst, o fato do calor específico tender a zero com a temperatura, decorre da hipótese de que qualquer variação de entropia também tende a cessar quando a temperatura de um sistema se aproxima lentamente do zero absoluto. Desse modo, pode-se considerar que o valor da entropia a 0 K é uma constante arbitrária. De acordo com Planck, levando-se em conta o comportamento quântico dos sistemas essa constante tem valor nulo. 3- a lei da Termodinâmica A entropia de qualquer sistema se anula quando sua temperatura se aproxima lentamente de 0 K. V. Oguri 18/19 Física Estatística
19 M. J. de Oliveira Termodinâmica Ed. Livraria da Física, 2ed., R. Bowley & M. Sanchez Introductory Statistical Mechanics Oxford University Press, 2ed., C. Kittel & H. Kroemer Thermal Physics Freeman and Company, 2ed., F. Mandl Statistical Physics Wiley, 2ed., V. Oguri 19/19 Física Estatística
Programa da cadeira Termodinâmica e Teoria Cinética
Programa da cadeira Termodinâmica e Teoria Cinética Cursos: Engenharia Civil, Engenharia de Instrumentação e Electrónica Ano lectivo 2004-05, 2º semestre Docentes: Prof. Dr. Mikhail Benilov (aulas teóricas,
20/Mar/2015 Aula 9. 18/Mar/ Aula 8
18/Mar/2015 - Aula 8 Diagramas TS Entropia e a Segunda Lei da Termodinâmica; formulações de Clausius e de Kelvin-Planck Segunda Lei da Termodinâmica e reversibilidade Gases reais (não-ideais) Equação de
Entropia e Segunda Lei
Entropia e Segunda Lei BC0205 Roosevelt Droppa Jr. [email protected] Entropia e Segunda Lei Sentido de um processo Desordem no processo Conceito de entropia Entropia em proc. reversíveis e
2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3
6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho
6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais
6/Mar/01 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da
Física estatística. Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST
Física estatística Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST Fourth Law of Thermodynamics: If the probability of success is not almost one, then it is damn near zero. David Ellis A
Introdução à Termodinâmica
Introdução à Termodinâmica Definição de Termodinâmica De maneira sucinta, Termodinâmica é definida como a ciência que trata do calor e do trabalho, e daquelas propriedades das substâncias relacionadas
Problemas de Física Estatística e Termodinâmica
1 Problemas de Física Estatística e Termodinâmica Todas as grandezas físicas se supõem expressas no Sistema Internacional de Unidades. 1. Uma variável aleatória y pode tomar valores no conjunto {1,2,3,4,5}
11/Mar/2016 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais
11/Mar/016 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis
Física II-P1 INTRODUÇÃO 1 ENTROPIA
Física II-P1 INTRODUÇÃO Fala, galera!! Fizemos aqui um resumão com o que mais tem caído nas P1s de Física II, abordando os temas de entropia, reversibilidade, cinética dos gases e distribuição de Maxwell.
Interpretação microscópica da entropia
Interpretação microscópica da entropia (entropia, probabilidade e desordem) Ω probabilidade termodinâmica (ou estatística) de um certo estado -A probabilidade estatística de um estado é uma medida da desordem
Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron
Capítulo 1 Vapor d água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Funções Termodinâmicas e condições de equilíbrio Em estados de equilíbrio (P,T e são
Condições de equilíbrio
UFABC - BC0205 Princípios de Termodinâmica - Curso 2015.2 Prof. Germán Lugones CAPÍTULO 2 Condições de equilíbrio Paul Klee, Highways and Byways (1929) Parâmetros intensivos Diferenciando a equação fundamental
CAPITULO 2 A Primeira lei da termodinâmica
Neste capítulo são introduzidos alguns dos conceitos fundamentais da termodinâmica. O foco da exposição é a conservação de energia a observação experimental de que a energia não pode ser destruída nem
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127. Termodinâmica
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127 Termodinâmica Prof. Antonio Guerra Departamento de Química Geral e Inorgânica - DQI Energia e Trabalho Energia A capacidade de realizar
Fisica do Corpo Humano ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01. Temperatura Aula 5 e 1/2 da 6
Fisica do Corpo Humano (4300325) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01 Temperatura Aula 5 e 1/2 da 6 1. Existem em torno de uma centena de átomos 2. Cada átomo
A Seta do Tempo e o Ensino da 2ª Lei da Termodinâmica
A Seta do Tempo e o Ensino da 2ª Lei da Termodinâmica Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ Ensino das Leis da Termodinâmica Equilíbrio Lei Zero
Prefácio. Lista de Símbolos. Modelo do Gás Perfeito 2 Mistura de Gases Perfeitos. Lei de Dalton 4 Problemas 6
Índice Geral Prefácio xv Lista de Símbolos xvii 1 Modelo do Gás Perfeito 1 Modelo do Gás Perfeito 2 Mistura de Gases Perfeitos. Lei de Dalton 4 Problemas 6 2 Princípio da Conservação da Energia. A 1.ª
18/Mar/2016 Aula 9. 16/Mar/ Aula 8
16/Mar/2016 - Aula 8 Gases reais (não-ideais) Equação de van der Waals Outras equações de estado Isotérmicas, diagramas e transições de fase Constantes críticas. Diagramas PT e PT 18/Mar/2016 Aula 9 Processos
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os
Capítulo 21 Temperatura
Capítulo 21 Temperatura 21.1 Temperatura e equilíbrio térmico Mecânica: lida com partículas. Variáveis microscópicas: posição, velocidade, etc. Termodinâmica: lida com sistemas de muitas partículas. Variáveis
Profa. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Conceitos Fundamentais 1 Conceitos Fundamentais Termodinâmica:
Fundamentos da Termodinâmica
1 Fundamentos da Termodinâmica Objetivos: Definição de sistema e vizinhança Compreender o trabalho P-V Compreender processos reversíveis e irreversíveis Definir a primeira Lei da termodinâmica Cálculo
Aula 4 A 2ª Lei da Termodinâmica
Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência
TERMODINÂMICA QUÍMICA
TERMODINÂMICA QUÍMICA Processos Espontâneos 1ª Lei da termodinâmica: Energia de um sistema é conservada ΔE = variação da energia interna q = calor absorvido pelo sistema w = trabalho realizado pela vizinhança
Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos
Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume
BIJ-0207 Bases Conceituais da Energia
BIJ-0207 Bases Conceituais da Energia Aula 01 Conceituação da Energia Prof. João Moreira CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade Federal do ABC UFABC Principais
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Profª Drª Marivone Nunho Sousa
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL Profª Drª Marivone Nunho Sousa 5 de agosto de 2016 ALGUNS ILUSTRES PESQUISADORES QUE CONSTRUÍRAM A TERMODINÂMICA Sadi Carnot 1796-1832 James
Curso de Engenharia Civil
Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que
ESTO Termodinâmica Aplicada I
Universidade Federal do ABC ESTO010-13 Termodinâmica Aplicada I Prof. Dr. Gilberto Martins [email protected] Bloco A, Torre 1, 6 o andar, sala 636 Conteúdo Conceitos Básicos: Sistema e Volume
Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então.
Introdução À Termodinâmica Estatística Aula 15 Meta Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então. Objetivos Ao final
Capítulo 3 A Segunda Lei da Termodinâmica
Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei
Transmissão de Calor
Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.
Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia. Aula Interlúdio molecular
Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula Interlúdio molecular Energia Interna somatório de energias (cinética + potencial) Energia cinética relacionada
Instituto de Física USP. Física Moderna I. Aula 4. Professora: Mazé Bechara
Instituto de Física USP Física Moderna I Aula 4 Professora: Mazé Bechara Aula 04 Modelos de estrutura da matéria e a mecânica estatística clássica 1. Uma teoria para a dinâmica de um sistema de muitas
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Mecânica Mecânica: estuda o estado de movimento (ou repouso) de corpos sujeitos à ação
A origem molecular da Entropia
6. Segunda Lei da Termodinâmica A segunda lei da termodinâmica trata dos conceitos de "ordem" e "desordem" da matéria, estabelecendo de forma precisa como a energia térmica e a transferência de calor estão
1 a Lei da Termodinâmica
1 a Lei da Termodinâmica Processos termodinâmicos. Gases ideais. Calor específico de gases ideais. Equação para processos adiabáticos de gases ideais. 1 a Lei da Termodinâmica Calor, Trabalho e Energia
TEM701 Termodinâmica dos Materiais
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TEM701 Termodinâmica dos Materiais Conceitos, definições e motivação Prof. Rodrigo Perito Cardoso Onde estamos Introdução
ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana
ESTUDO DOS GASES Prof. Patricia Caldana Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo
Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica:
Esta aula tratará de gases e termodinâmica: Estudando a matéria, os cientistas definiram o mol. Um mol corresponde a 6,02. 10 " unidades de algo, número conhecido por N A, número de Avogadro. A importância
Aula Calor e 1ª Lei da Termodinâmica. As leis da Termodinâmica foram inicialmente obtidas empiricamente e somente
1 Aula Calor e 1ª Lei da Termodinâmica Tema: Termodinâmica a serem abordados os assuntos: - Lei zero da Termodinâmica; - 1ª Lei da Termodinâmica calor e energia; - 2ª Lei entropia; - Aplicações da Termodinâmica
Primeira Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia
Apresentar as aplicações conjuntas do primeiro e do segundo princípio; apresentar as equações fundamentais da termodinâmica.
ENERGIA LIVRE E POTENCIAL QUÍMICO Metas Apresentar as aplicações conjuntas do primeiro e do segundo princípio; apresentar as equações fundamentais da termodinâmica. Objetivos Ao final desta aula, o aluno
Curso de Mecânica Estatística. curso de verão 2012 departamento de física - ufpe
Curso de Mecânica Estatística curso de verão 2012 departamento de física - ufpe 1 Programa 1. Por que e para que saber Mecânica Estatística. 2. Um pouco sobre Termodinâmica de equilíbrio Conceitos básicos.
Termodinâmica. Lucy V. C. Assali
Termodinâmica Calor Física II 2016 - IO O Equivalente Mecânico da Caloria A relação entre a caloria (unidade de quantidade de calor em termos da variação de temperatura que produz numa dada massa de água)
Resolução da 1ª Prova de Física II Unificada do Período UFRJ. Assuntos: Termodinâmica, Hidrodinâmica e Hidrostática.
Resolução da ª Prova de Física II Unificada do Período 04.-UFRJ Assuntos: Termodinâmica, Hidrodinâmica e Hidrostática. Resolução: João Batista F. Sousa Filho (Graduando Engenharia Civil 04.) Contato: [email protected]
Halliday Fundamentos de Física Volume 2
Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Chapter 4 Thermodynamic Variables and Relations
Universidade de São Paulo Instituto de Física de São Carlos - IFSC Chapter 4 Thermodynamic Variables and Relations (Thermodynamics in Materials Science. DeHoff) Prof. Dr. José Pedro Donoso Capítulo 4 4.1-Definitions
Calor, Trabalho e a Primeira Lei da Termodinâmica
Calor, Trabalho e a Primeira Lei da Termodinâmica Bibliografia e figuras: Halliday, Resnick e Walker, vol 2, 8a. Edição Vamos estudar como a energia pode ser transferida em forma de calor e trabalho de
Física de Altas Pressões (P > 1 GPa = atm)
Física de Altas Pressões (P > 1 GPa = 10.000 atm) Naira Maria Balzaretti Márcia Russman Gallas As 4 aulas estarão disponíveis em pdf na página da Profa. Márcia R. Gallas http://www.if.ufrgs.br/~marcia/mrg_ensino_2007_2.html
PROGRAMA DE ENSINO CÓDIGO DISCIPLINA PERÍODO IDEAL PRÉ-REQUISITO CO-REQUISITO ANUAL SEMESTRAL NÚMERO MÁXIMO DE ALUNOS POR TURMA
PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: ENGENHARIA MECÂNICA (Resolução UNESP n O 74/2004 - Currículo: 4) HABILITAÇÃO: OPÇÃO: DEPARTAMENTO RESPONSÁVEL: ENGENHARIA
TEM701 Termodinâmica dos Materiais
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TEM701 Termodinâmica dos Materiais Introdução Histórica Prof. Rodrigo Perito Cardoso Onde estamos Introdução histórica.
Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães
Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: [email protected] Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei
Enunciados da Segunda lei da Termodinâmica. Enunciado de Kelvin e Planck ( referente a motor térmico)
Enunciados da Segunda lei da ermodinâmica Enunciado de Kelvin e Planck ( referente a motor térmico) " É impossível a um motor térmico operar trocando calor com uma única fonte de calor Universidade " Santa
Equações-chave FUNDAMENTOS. Seção A. Seção E. Seção F. Seção G. mv 2. E c E P. mgh. Energia total energia cinética energia potencial, ou E E c.
Equações-chave FUNDAMENTOS Seção A 3 A energia cinética de uma partícula de massa m relaciona-se com sua velocidade v, por: E c mv 2 4 Um corpo de massa m que está a uma altura h da Terra tem energia potencial
CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases
CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2 Propriedades Moleculares dos Gases Estado Gasoso Dentre os três estados de agregação, apenas o estado gasosos
Físico-Química Farmácia 2014/02
Físico-Química Farmácia 2014/02 1 2 Aspectos termodinâmicos das transições de fase A descrição termodinâmica das misturas Referência: Peter Atkins, Julio de Paula, Físico-Química Biológica 3 Condição de
Potenciais Termodinâmicos
Universidade Federal de Juiz de Fora Minas Gerais Deivid Edson Delarota Campos Lucas do Carmo Silva Mateus de Landa Couto Otávio Coutinho Arruda Raphael José Pereira Yuri Panoeiro de Abreu Potenciais Termodinâmicos
As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana.
Estudo dos gases Gás Ideal As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana. As moléculas não exercem força uma sobre as outras, exceto quando
Físico-Química I. Profa. Dra. Carla Dalmolin. Gases. Gás perfeito (equações de estado e lei dos gases) Gases reais
Físico-Química I Profa. Dra. Carla Dalmolin Gases Gás perfeito (equações de estado e lei dos gases) Gases reais Gás Estado mais simples da matéria Uma forma da matéria que ocupa o volume total de qualquer
Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães
Física II FEP 11 (4300110) 1º Semestre de 01 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: [email protected] Fone: 3091-7104(05) Aula 1 Temperatura e Teoria
25/Fev/2015 Aula 2. 20/Fev/2015 Aula 1
/Fe/15 Aula 1 Temperatura e a Lei Zero da Termodinâmica Sistema Termodinâmico Termómetros e Escalas de Temperatura Descrição macroscópica dos gases ideais Equação dos gases ideais 5/Fe/15 Aula Teoria Cinética
Revisão de Termodinâmica
Capítulo 2 Revisão de Termodinâmica No final de 1940, o físico teórico alemão Arnold Sommerfeld, depois de ter escrito uma série de livros de física sobre Mecânica, Eletrodinâmica, Ótica, etc., foi indagado
TERMODINÂMICA NO EQUILÍBRIO QUÍMICO 1
TERMODINÂMICA NO EQUILÍBRIO QUÍMICO 1 1. Conceitos fundamentais A ciência da termodinâmica se originou do reconhecimento de que a transformação de calor e trabalho poderia ser prevista através de umas
IDENTIFICAÇÃO: Atenção: Esteja atento à numeração das páginas Questão 1
Atenção: Esteja atento à numeração das páginas Questão 1 Determine o volume molar (em unidades de L mol 1 ) e o fator de compressibilidade Z do vapor saturado de água à pressão de 1,00 bar e temperatura
TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA
3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou
SISTEMAS DE COMPOSIÇÃO VARIÁVEL EQUILÍBRIO QUÍMICO
ESCOLA DE ENGENHARIA DE LORENA EEL/USP TERMODINÂMICA QUÍMICA PROF. ANTONIO CARLOS DA SILVA SISTEMAS DE COMPOSIÇÃO VARIÁVEL EQUILÍBRIO QUÍMICO 1. EQUAÇÃO FUNDAMENTAL DA ENERGIA DE GIBBS Para uma substância
Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases
Universidade Federal do ampa UNIAMA Teoria inética do Gases 7.alores específicos molares de um gás ideal A quantidade de gás ideal é medida pelo número de moles n, em vez da massa m O gás é submetido
BC0205. Fenômenos Térmicos Gustavo M. Dalpian Terceiro Trimestre/2009. Aula 2 Dalpian
BC0205 Fenômenos Térmicos Gustavo M. Dalpian Terceiro Trimestre/2009 Fenômenos Térmicos? Ementa: Temperatura e calor. Sistemas termodinâmicos. Variáveis termodinâmicas e sua natureza macroscópica. Teoria
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Manaus, 27 de julho de 2015 A Óptica Geométrica Fenômenos
Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases
Universidade Federal do Pampa UNIPAMPA Teoria Cinética do Gases Introdução A descrição de um gás por inteiro (descrição macroscópica) pode ser feito estabelecendo as grandezas macroscópicas que caracterizam
Interpretação Molecular da Temperatura de um Gás Ideal
Interpretação Molecular da Temperatura de um Gás Ideal Já vimos que a pressão está relacionada com a energia cinética média das moléculas. Agora relacionaremos a temperatura à uma descrição microscópica
Gás Ideal (1) PMT2305 Físico-Química para Metalurgia e Materiais I César Yuji Narita e Neusa Alonso-Falleiros 2012
Gás Ideal (1) Para um gás, uma equação de estado é uma relação entre pressão (P), volume (V), temperatura (T) e composição ou número de mols (n). O primeiro passo para a determinação de uma equação de
Capítulo 3: Propriedades de uma Substância Pura
Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas
Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução
Fisica do Calor (4300159) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01 Introdução Data Programa do curso agosto 9 agosto 12 agosto 16 agosto 19 agosto 23 agosto 26 Temperatura
2. Conceitos e Definições
2. Conceitos e Definições Sistema e Volume de Controle Sistema Termodinâmico: região do espaço delimitada fisicamente por superfícies geométricas arbitrárias reais ou imaginárias, que podem ser fixas ou
Física estatística MEFT, IST. Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.
Física estatística Gases ideais nas estatísticas quânticas: conjunto microcanónico MEFT, IST Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.
Primeira Lei da Termodinâmica
Primeira Lei da Termodinâmica Na termodinâmica existem dois princípios que precisam ser enfatizados.um deles é o princípio da conservação da energia e o segundo princípio é a inerente irreversibilidade
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 1
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 1 [texto baseado nas seções 2.5 (a e b) e 2.7 de Physical Chemistry, P. Atkins e J. de Paula, Freeman 2006] Funções de estado termodinâmico
Manómetro de mercúrio (P-P atm = ρ Hg g h) (ρ Hg )
ipos de termómetros ermómetro de gás a volume constante (a propriedade termométrica é a pressão do gás Manómetro de mercúrio (P-P atm ρ Hg g h h (ρ Hg Comportamento tende a ser universal (independente
Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q
Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação
2ª Lei Da Termodinâmica
2ª Lei Da Termodinâmica INTRODUÇÃO Agora que já sabemos os tipos de transformações e todas suas características e os comportamentos de todos os seus gráficos, podemos trazer aplicações e buscar novos conceitos,
UNIVERSIDADE PRESBITERIANA MACKENZIE CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE
UNIVERSIDADE PRESBITERIANA MACKENZIE CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PLANO DE ENSINO Código Unidade 040 CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE Curso Etapa Sem. / Ano 4045-1 Farmácia 2ª 2º /
Aplicações das Relações de Maxwell
Aplicações das Relações de Maxwell Compressão Adiabática Considere um sistema de componente simples de uma quantidade definida de matéria caracterizada por um número de mols N, fechada por uma parede adiabática.
Termodinâmica. Lucy V. C. Assali
Termodinâmica Gases Ideais Física II 2015 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P,V,T) uma relação funcional
Física Experimental III. Compressão isotérmica de um gás ideal
Física Experimental III Compressão isotérmica de um gás ideal Lei dos Gases Ideias Definimos um gás ideal como um gás para o qual a razão PV/nT é constante em todas as pressões. Portanto, essas variáveis
TERMODINÂMICA (Parte 1)
TERMODINÂMICA (Parte 1) Estudo das transformações da energia. Baseia-se em duas leis: 1ª Lei: acompanha as variações de energia e permite o cálculo da quantidade de calor produzida numa reação. 2ª Lei:
Aula 09: Termodinâmica. Disciplina: Química I (106201) Data: 25 / 07 / 11 1
Aula 09: Termodinâmica Disciplina: Química I (106201) Data: 25 / 07 / 11 1 Etimologia Aspectos iniciais Variáveis Unidades: J (joule), cal (caloria), BTU, 2 Aspectos iniciais Etimologia Estudo da composição
Termodinâmica A primeira Lei
Departamento de Química e Bioquímica Termodinâmica A primeira Lei Cap. 7 Atkins FUNDAMENTOS DE QUÍMICA Termodinâmica Estudo das transformações de energia entre as suas diferentes formas Sistema + Vizinhança
1 Gases Termodinâmica
FRENTE 3 UL 09 CONTINUÇÃO f: 11 4534.3388 1 Gases Termodinâmica 1.1 Gás Ideal lgumas condições para se assumir que um gás é ideal: 1. os átomos são considerados como esferas 2. as colisões se dão unicamente
