Condições de equilíbrio
|
|
|
- Manoel Carreiro Fagundes
- 8 Há anos
- Visualizações:
Transcrição
1 UFABC - BC0205 Princípios de Termodinâmica - Curso Prof. Germán Lugones CAPÍTULO 2 Condições de equilíbrio Paul Klee, Highways and Byways (1929)
2 Parâmetros intensivos Diferenciando a equação fundamental du = ds V,N 1,...,N r U = U(S, V, N 1,N 2,...,N S,N 1,...,N r dv + j S,V,N k6=j dn j As derivadas parciais que aparecem acima se apresentam com muita frequência na Termodinâmica e por isso recebem nomes V,N 1,...,N S,N 1,...,N r j S,V,N k6=j temperatura pressão potencial químico do componente j
3 Com a notação apresentada antes, temos du = TdS P dv + µ 1 dn µ r dn r Lembremos da expressão dada na aula anterior para a variação de energia interna em um processo infinitesimal reversível: du = dq + dw M + outros tipos de trabalho = dq P dv + X i µ i dn i +... Comparando ambas expressões, vemos que as definições de pressão e potencial químico concordam com as definições dadas antes ao introduzirmos diversas formas de trabalho. Essa comparação também permite identificar a troca de calor em um processo infinitesimal reversível: dq = TdS
4 Equações de estado Por serem derivadas de U(S, V, N 1,..., N r ), a temperatura, a pressão e os potenciais químicos devem ser também funções de S, V, N 1,..., N r. Temos então uma serie de relaciones funcionais que expressam os parâmetros intensivos em função dos parâmetros extensivos: T = T (S, V, N 1,...,N r ) P = P (S, V, N 1,...,N r ) µ i = µ i (S, V, N 1,...,N r ) Estas relações recebem o nome de equações de estado.
5 Observações: Conhecer una única equação de estado no permite o conhecimento completo das propriedades termodinâmicas de um sistema. Porém, veremos mais adiante que o conhecimento de todas as equaciones de estado de um sistema é equivalente a conhecer sua equação fundamental. T, P, μ i, etc. são funções homogêneas de grau zero, i.e. T ( S, V, N 1,..., N r )=T (S, V, N 1,...,N r ) P ( S, V, N 1,..., N r )=P (S, V, N 1,...,N r ) µ i ( S, V, N 1,..., N r )=µ i (S, V, N 1,...,N r )
6 Na aula passada foram introduzidas as grandezas molares: energia interna molar u = U/N, volume molar v = V/N, entropia molar s = S/N, etc. Para um sistema simples de um único componente químico temos: u = u(s, v) = 1 U(S, V, N) N Vamos escrever as grandezas intensivas em função das grandezas molares: V,N = (N=const.) De maneira análoga, obtemos: @S/N v
7 Agora é simples analisar a diferencial de u = u (s, v). Diferenciando, obtemos: v s dv Utilizando as expressões do slide anterior temos: du = Tds P dv
8 Equações de estado na representação de entropia Nos slides anteriores consideramos a equação fundamental na forma U = U(S, V, N 1,..., N r ) representação de energia. Podemos também desenvolver o formalismo na representação de entropia, partindo da função S = S(U, V, N 1,..., N r ). Diferenciando, temos dv + i dn i Por outro lado, consideremos a expressão du = T ds P dv + μ i N i, ou equivalentemente ds = 1 T du + P T dv + X - i µ i T dn i
9 Comparando ambas eqs. temos: - 1 V,Ni P U,Ni µ i i U,V,N j6=i Estas são as equações de estado na representação de entropia. Nesta representação, as variáveis intensivas dependem são dadas em função das variáveis U, V, N 1,..., N r.
10 Equilíbrio Térmico Consideremos um sistema composto isolado, constituído por dois sistemas simples separados por una parede rígida e impermeável e diatérmica. Los volumes e números de moles de cada um dos sistemas simples estão fixos, mas as energias U (1) e U podem variar livremente, desde que verifiquem: U (1) + U = constante rígida, impermeável e diatérmica O nosso objetivo é determinar os valores de U (1) e U quando o sistema atinge o equilíbrio.
11 Lembremos que no equilíbrio, o sistema composto atinge o máximo da entropia S = S (1) + S. No máximo, ds = 0. Calculemos ds. Como V (1), V, N (1), N são constantes, devemos ter dv (1) = dv = dn (1) = dn = 0. Portanto: (1) V (1),N (1) i = 1 T du (1) + 1 (1) T du (1) V,N i du Por outo lado, U (1) + U = constante du (1) = - du ; logo ds = 1 1 du (1) T (1) T
12 A condição de equilíbrio exige que ds=0 para qualquer valor de du (1), logo: 1 T = 1 (1) T condição de equilíbrio térmico Quando o sistema composto atinge o equilíbrio, as temperaturas de ambos subsistemas são iguais. A expressão acima pode ser escrita na forma: T (1) (U (1), V (1), N (1) ) = T (U, V, N ) a qual deve ser complementada com a condição U (1) + U = constante Estas duas equações permitem determinar os valores de U (1) e U quando o sistema atinge o equilíbrio.
13 Equilíbrio Mecânico Consideremos um sistema composto isolado, constituído por dois sistemas simples separados por una parede impermeável, móvel e diatérmica. Os números de moles de cada um dos sistemas simples estão fixos, mas as energias U (1) e U e os volumes V (1) e V podem variar livremente, desde que verifiquem os vínculos: U (1) + U V (1) + V = constante = constante Impermeável, móvel e diatérmica O nosso objetivo é determinar os valores de U (1), U e de V (1), V quando o sistema atinge o equilíbrio.
14 Novamente, lembremos que no equilíbrio, o sistema composto atinge o máximo da entropia S = S (1) + S. No máximo, ds = 0. Calculemos ds. Como N (1), N são constantes dn (1) = dn = 0. Portanto: (1) V (1),N (1) i du (1) U (1),N (1) i = 1 T du (1) + P (1) (1) T dv (1) + 1 (1) T du + P T dv (1) V,N i U,N i dv Por outo lado, temos du (1) = - du e dv (1) = - dv ; logo ds = 1 1 du (1) + T (1) T P (1) P dv (1) =0 T (1) T
15 A condição de equilíbrio exige que ds=0 para valores arbitrários e independentes de du (1) e dv (1), logo: 1 1 =0 T (1) T P (1) P =0 T (1) T equilíbrio térmico equilíbrio mecânico No equilíbrio, as temperaturas e pressões de ambos subsistemas são iguais. As expressões acima podem ser escritas na forma: T (1) (U (1), V (1), N (1) ) = T (U, V, N ) P (1) (U (1), V (1), N (1) ) = P (U, V, N ) as quais devem ser complementadas com as condições U (1) + U = constante; V (1) + V = constante Estas equações permitem determinar os valores de U (1) e U e de V (1), V quando o sistema atinge o equilíbrio.
16 Equilíbrio em relação à troca de matéria Consideremos um sistema composto isolado, constituído por dois sistemas simples separados por una parede fixa e diatérmica. A parede é permeável em relação a um tipo de substancia N 1 mas é impermeável em relação a todas as restantes. A variação de entropia é ds = 1 T du (1) µ (1) 1 (1) T (1) dn (1) T du µ 1 T dn 1 Neste caso valem os vínculos du (1) = - du e dn (1) = - dn. Logo, ds = 1 1 du (1) µ (1) 1 µ 1 T (1) T T (1) T! dn (1) 1
17 Como ds=0 para valores arbitrários e independentes de du (1) e dn (1) temos: 1 1 T (1) T µ (1) 1 µ 1 T (1) T =0 =0 equilíbrio térmico equilíbrio químico No equilíbrio, as temperaturas e potenciais químicos da substancia 1, são iguais em ambos subsistemas. As expressões acima podem ser escritas na forma: T (1) (U (1), V (1), N (1) ) = T (U, V, N ) μ 1 (1) (U (1), V (1), N (1) ) = μ 1 (U, V, N ) as quais devem ser complementadas com as condições U (1) + U = constante; N 1 (1) + N 1 = constante Estas equações permitem determinar os valores de U (1) e U e de N 1 (1), N 1 quando o sistema atinge o equilíbrio.
CAPÍTULO 6 Princípios de mínimo nas representações de Legendre
UFABC - BC0205 Princípios de Termodinâmica - Curso 2015.2 Prof. Germán Lugones Composition, Piet Mondrian (1916) CAPÍTULO 6 Princípios de mínimo nas representações de Legendre o A transformação de Legendre
Revisão de termodinâmica
Mecânica Estatística - PG UFPel A formulação axiomática Introduzida por Constantin Caratheodory em 1909. Conceitos como equilíbrio e entropia são entroduzidos na forma de postulados, verificáveis pelo
Relações de Euler e Gibbs-Duhem
UFABC - BC0205 Princípios de Termodinâmica Curso 2015.2 Prof. Germán Lugones CAPÍTULO 3 Relações de Euler e Gibbs-Duhem Paul Klee,Mark Highways anduntitled Byways 1952 (1929) Rothko Equação de Euler Consideremos,
Termodinâmica. Entalpia. Prof. Nelson Luiz Reyes Marques TERMODINÂMICA REVISÃO
Termodinâmica Entalpia Prof. Nelson Luiz Reyes Marques Entalpia (H) Na solução de problemas envolvendo sistemas, certos produtos ou somas de propriedades ocorrem com regularidade. Uma combinação de propriedades
CAPÍTULO 8 Estabilidade de sistemas termodinâmicos
UFABC - BC0205 Princípios de Termodinâmica - Curso 2015.2 Prof. Germán Lugones CAPÍTULO 8 Estabilidade de sistemas termodinâmicos Supernova, Victor Vasarely, 1961. Azul 3, Joan Miró (1960) Estabilidade
Física estatística. Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST
Física estatística Termodinâmica: potenciais termodinâmicos e a 3 a lei MEFT, IST Fourth Law of Thermodynamics: If the probability of success is not almost one, then it is damn near zero. David Ellis A
Notas de aula - Profa. Zélia Aulas 03, 04 e 05. Livro texto: Thermodynamics and an Introduction to Thermostatistics (2nd edition) H. B. Callen.
Notas de aula - Profa. Zélia Aulas 03, 04 e 05 Livro texto: Thermodynamics and an Introduction to Thermostatistics (2nd edition) H. B. Callen. Capítulo 2 As condições de equilíbrio 2.1 Parâmetros Intensivos
Termodinâmica 26. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 26 Alexandre Diehl Departamento de Física - UFPel Sistema termodinâmico mecanicamente isolado O sistema A está em contato térmico (parede diatérmica) com um reservatório r. Sistema A tem
Potenciais Termodinâmicos
Universidade Federal de Juiz de Fora Minas Gerais Deivid Edson Delarota Campos Lucas do Carmo Silva Mateus de Landa Couto Otávio Coutinho Arruda Raphael José Pereira Yuri Panoeiro de Abreu Potenciais Termodinâmicos
Prof. Dr. Jeverson Teodoro Arantes Junior Engenharia de Materiais
EN2815 Termodinâmica Estatística de Materiais Prof. Dr. Jeverson Teodoro Arantes Junior Engenharia de Materiais Para um N (número de partículas) fixo, uma equação de estado genérica, para vários gases,
6.5 Equilíbrio e estabilidade em sistemas termodinâmicos
6.5 Equilíbrio e estabilidade em sistemas termodinâmicos O segundo postulado estabelece que, ao se remover um vínculo interno de um sistema composto, os parâmetros extensivos assumem valores tais que maximizam
CAPITULO 1 Conceitos básicos e postulados da Termodinâmica
UFABC BC 1330 Princípios de Termodinâmica - Curso 2015.2 Prof. Germán Lugones CAPITULO 1 Conceitos básicos e postulados da Termodinâmica Jackson Pollock Full Fathom Five (1947) Introdução o As leis da
Termodinâmica dos Processos Irreversíveis. Lucas Máximo Alves
Termodinâmica dos Processos Irreversíveis Lucas Máximo Alves Introdução A Termodinâmica de Equilíbrio ou por que não dizer a Termoestática (como realmente deveria ser chamada, mas por razões históricas
POTENCIAIS TERMODINÂMICOS
Universidade Federal de Juiz de Fora POTENCIAIS TERMODINÂMICOS Grupo: Anna Beatriz Cruz Fontes Bernardo Soares Pereira Ferreira Dyhogo Garcia Fonseca Ruan Silva de Deus Thiago do Vale Cabral JUIZ DE FORA
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 2
FUNÇÕES DE ESTADO TERMODINÂMICAS: ENTALPIA E ENERGIA LIVRE Parte 2 [texto baseado nas seções 3.5, 3.6 e 3.9 de Physical Chemistry, P. Atkins e J. de Paula, Freeman 2006] As energias livres de Helmholtz
SMM0562 Termodinâmica dos Materiais. Aula 4 Equilíbrio em Sistemas Termodinâmicos
SMM0562 Termodinâmica dos Materiais Aula 4 Equilíbrio em Sistemas Termodinâmicos Prof. Eduardo Bellini Ferreira Departamento de Engenharia de Materiais EESC/USP Noção de equilíbrio Um sistema entra em
Linguagem da Termodinâmica
Linguagem da Termodinâmica Sistemas macroscópicos contêm um grande número de partículas constituintes (átomos, moléculas, iões,...) N A = 6, 022 10 23 Em Termodinâmica, Princípios e Leis são independentes
Interpretação microscópica da entropia
Interpretação microscópica da entropia (entropia, probabilidade e desordem) Ω probabilidade termodinâmica (ou estatística) de um certo estado -A probabilidade estatística de um estado é uma medida da desordem
Ensemble Grande Canônico
UFABC - NANHT3036-15SA - Mecânica Estatística Curso 017. Prof. Germán Lugones CAPÍTULO 5 Ensemble Grande Canônico 1 Sistema em contato com um reservatório Vamos procurar um ensemble que seja apropriado
Aula 9: Entropia e a Segunda Lei da Termodinâmica
UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 9: Entropia e a Segunda Lei da Termodinâmica Sadi Carnot [1796-1832] R. Clausius [1822-1888] W. Thomson (Lord Kelvin) [1824-1907] Quando um saco de pipocas
Revisão de Termodinâmica
Capítulo 2 Revisão de Termodinâmica No final de 1940, o físico teórico alemão Arnold Sommerfeld, depois de ter escrito uma série de livros de física sobre Mecânica, Eletrodinâmica, Ótica, etc., foi indagado
Física Estatística. Introdução. Vitor Oguri
Física Estatística Introdução Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 20 de
FCUP Dep. Matemática Pura. Métodos Matemáticos em. Termodinâmica Clássica
FCUP Dep. Matemática Pura Métodos Matemáticos em Termodinâmica Clássica Tese de Mestrado Mestrado em Matemática - Fundamentos e Aplicações Ano lectivo de 2000/02 Alexandra Virote Porto, Portugal 1 ÍNDICE
1 Transformada de Legendre
1 Transformada de Legendre No caso da parede porosa a pressão constante a quantidade se conserva. Além disso H = U + P V dh = du + P dv + V dp du = dq + dw = dq dh = dq + V dp P dv escrevendo H = H (P;
Revisão de Termodinâmica 1
Revisão de Termodinâmica 1 Departamento de Física UFPel As representações alternativas da termodinâmica Nas representações de entropia e energia, S SU, V, N) U US, V, N) as variáveis extensivas são independentes,
Notas de aula - Profa. Zélia Aulas 07,08,09 e 10. Capítulo 3 Relações formais e sistemas amostrais (exemplares)
Notas de aula - Profa. Zélia Aulas 07,08,09 e 10 Livro texto: Thermodynamics and an Introduction to Thermostatistics (2nd edition) H. B. Callen. Capítulo 3 Relações formais e sistemas amostrais (exemplares)
Problemas - Segunda parte
Capítulo 18 Problemas - Segunda parte 18.1 Capacidade calorífica pela eqüipartição 1. Considere um sólido monoatômico, em que a força intramolecular é do tipo harmônica. Mostre que a capacidade calorífica
UFABC - Fenômenos Térmicos - Prof. Germán Lugones. AULA 5 Calor, Trabalho e Primeira lei da termodinâmica
UFABC - Fenômenos Térmicos - Prof. Germán Lugones AULA 5 Calor, Trabalho e Primeira lei da termodinâmica Experimento de Joule (1845): Equivalente mecânico do Calor o Num calorímetro (recipiente de paredes
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO. Exercício Escolar 1 - Solução
FIS 715 Mecânica Estatística - 016.1 - Lista de Exercícios 1 1 CENRO DE CIÊNCIAS EXAAS E DA NAUREZA DEPARAMENO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO Exercício Escolar 1 - Solução Questão 1: Pistão em uma
Os Ensembles Caps. 4, 5, 7 do Salinas
Os Ensembles Caps. 4, 5, 7 do Salinas ensemble = conjunto, coleção de sistemas em condições idênticas ao sistema que queremos estudar FFI319 - Física Estatística 20 27 de Setembro p. 1 Microcanônico Micro-estados
UFABC - BC Prof. Germán Lugones. AULA 9 Teoria Cinética dos Gases III
UFABC - BC0205 - Prof. Germán Lugones AULA 9 Teoria Cinética dos Gases III Graus de liberdade e Calores Específicos Molares A previsão de que c v = 3/2 R concorda com o experimento para gases monoatômicos,
Potenciais termodinâmicos, critérios de espontaneidade e condições de equilíbrio
Potenciais termodinâmicos, critérios de espontaneidade e condições de equilíbrio O Princípio da Entropia Máxima, válido para um sistema isolado, estabelece um critério para determinarmos o sentido em que
QUÍMICA GERAL Termodinâmica: 2a e 3a Leis
QUÍMICA GERAL Termodinâmica: 2a e 3a Leis Prof. Dr. Anselmo E. de Oliveira Instituto de Química, UFG anselmo.quimica.ufg.br [email protected] 14 de Setembro de 2018 Agronomia Entropia 1 Entropia
Seminário Termodinâmica-Princípio de Extremo representado em Transformada de Legendre
Seminário Termodinâmica-Princípio de Extremo representado em Transformada de Legendre Introdução: As transformações de Legendre são de extrema importância termodinâmica uma vez que permitem algumas simplificações
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2
Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os
Prof. Dr. Jeverson Teodoro Arantes Junior Engenharia de Materiais
EN2815 Termodinâmica Estatística de Materiais Prof. Dr. Jeverson Teodoro Arantes Junior Engenharia de Materiais APRESENTAÇÃO Características gerais EN2815 Termodinâmica Estatística de Materiais TPI: 4-0-4
Termoestatística. Entropia e Segunda Lei da Termodinâmica
4300259 ermoestatística Entropia e Segunda Lei da ermodinâmica Entropia A variação de entropia (ds) de um sistema à temperatura que troca calor dq quase estaticamente (reversivelmente) é definida como:
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da
Calor, Trabalho e a Primeira Lei da Termodinâmica
Calor, Trabalho e a Primeira Lei da Termodinâmica Bibliografia e figuras: Halliday, Resnick e Walker, vol 2, 8a. Edição Vamos estudar como a energia pode ser transferida em forma de calor e trabalho de
Aplicações das Relações de Maxwell
Aplicações das Relações de Maxwell Nome: Rafael Gomes, Jessica Barbosa, Cássio Bastos, Camila Monteiro, Álvaro Chaves, Henrique Chalub, Marla Leal Compressão Adiabática Considere um sistema de componente
Segunda Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Segunda Lei da Termodinâmica Espontaneidade das reações químicas Entropia Terceira Lei da Termodinâmica Primeira Lei da Termodinâmica Estabelece que as transformações
18/Mar/2016 Aula 9. 16/Mar/ Aula 8
16/Mar/2016 - Aula 8 Gases reais (não-ideais) Equação de van der Waals Outras equações de estado Isotérmicas, diagramas e transições de fase Constantes críticas. Diagramas PT e PT 18/Mar/2016 Aula 9 Processos
Teoria Cinética dos Gases
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II Teoria Cinética dos Gases Prof. Bruno Farias Introdução Termodinâmica é o estudo das transformações
2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0,
ermodinâmica Ano Lectivo 00/0 ª LEI, ENROIA E FORMALISMO ERMODINÂMIO ) Um gás perfeito de capacidades térmicas constantes p =, ocupando inicialmente o volume 0, expande-se adiabaticamente até atingir o
2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3
6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho
IDENTIFICAÇÃO: Atenção: Esteja atento à numeração das páginas Questão 1
Atenção: Esteja atento à numeração das páginas Questão 1 Determine o volume molar (em unidades de L mol 1 ) e o fator de compressibilidade Z do vapor saturado de água à pressão de 1,00 bar e temperatura
AULA 8 Teoria Cinética dos Gases II
UFABC - BC0205 Prof. Germán Lugones AULA 8 Teoria Cinética dos Gases II James Clerk Maxwell 1831-1879 A Distribuição de Velocidades Moleculares A velocidade média quadrática V rms nos fornece uma ideia
Física de Altas Pressões (P > 1 GPa = atm)
Física de Altas Pressões (P > 1 GPa = 10.000 atm) Naira Maria Balzaretti Márcia Russman Gallas As 4 aulas estarão disponíveis em pdf na página da Profa. Márcia R. Gallas http://www.if.ufrgs.br/~marcia/mrg_ensino_2007_2.html
TERMODINÂMICA. Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio
TERMODINÂMICA Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio INTRODUÇÃO Ampla área de aplicação: organismos microscópicos aparelhos domésticos até veículos sistemas de geração de
UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 7: Capacidades caloríficas de gases ideais, processos adiabáticos, equipartição da energia.
UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 7: Capacidades caloríficas de gases ideais, processos adiabáticos, equipartição da energia. Energia interna de um gás ideal Energia interna: Do ponto
Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos
Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume
SISTEMAS DE COMPOSIÇÃO VARIÁVEL EQUILÍBRIO QUÍMICO
ESCOLA DE ENGENHARIA DE LORENA EEL/USP TERMODINÂMICA QUÍMICA PROF. ANTONIO CARLOS DA SILVA SISTEMAS DE COMPOSIÇÃO VARIÁVEL EQUILÍBRIO QUÍMICO 1. EQUAÇÃO FUNDAMENTAL DA ENERGIA DE GIBBS Para uma substância
20/Mar/2015 Aula 9. 18/Mar/ Aula 8
18/Mar/2015 - Aula 8 Diagramas TS Entropia e a Segunda Lei da Termodinâmica; formulações de Clausius e de Kelvin-Planck Segunda Lei da Termodinâmica e reversibilidade Gases reais (não-ideais) Equação de
Profa. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Conceitos Fundamentais 1 Conceitos Fundamentais Termodinâmica:
Introdução - Temperatura
Introdução - Temperatura Na termodinâmica estudamos as propriedades de sistemas físicas com um grande número (N A 6, 02 10 23 ) de constituintes elementares (átomos, moléculas, etc.). Estaremos também
Apresentar as aplicações conjuntas do primeiro e do segundo princípio; apresentar as equações fundamentais da termodinâmica.
ENERGIA LIVRE E POTENCIAL QUÍMICO Metas Apresentar as aplicações conjuntas do primeiro e do segundo princípio; apresentar as equações fundamentais da termodinâmica. Objetivos Ao final desta aula, o aluno
Entropia e Segunda Lei
Entropia e Segunda Lei BC0205 Roosevelt Droppa Jr. [email protected] Entropia e Segunda Lei Sentido de um processo Desordem no processo Conceito de entropia Entropia em proc. reversíveis e
4/Abr/2018 Aula 9. Potenciais termodinâmicos Energia interna total Entalpia Energias livres de Helmholtz e de Gibbs Relações de Maxwell
23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 4/Abr/2018
Disciplina : Termodinâmica. Aula 16 Entropia
Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,
Termodinâmica. Lucy V. C. Assali
Termodinâmica Calor Física II 2016 - IO O Equivalente Mecânico da Caloria A relação entre a caloria (unidade de quantidade de calor em termos da variação de temperatura que produz numa dada massa de água)
Termodinâmica. Lucy V. C. Assali
Termodinâmica Gases Ideais Física II 2015 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P,V,T) uma relação funcional
5. Funções de afastamento e fugacidade
QI 58 Fundamentos de rocessos em Engenharia Química II 009 5. Funções de afastamento e fugacidade Assuntos. Funções de afastamento. Fugacidade 3. Exercícios 5.. Funções de afastamento As relações estudadas
Halliday Fundamentos de Física Volume 2
Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Física Estatística. Entropia de Boltzmann. Vitor Oguri
Física Estatística Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) 23 de abril de 2018
Entropia e a Segunda Lei da Termodinâmica IV. A Desigualdade de Clausius e a Identidade Termodinâmica. Marcos Moura & Carlos Eduardo Aguiar
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Profissional em Ensino de Física Mestrado Nacional Profissional em Ensino de Física Entropia
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Introdução à Termodinâmica
Introdução à Termodinâmica Definição de Termodinâmica De maneira sucinta, Termodinâmica é definida como a ciência que trata do calor e do trabalho, e daquelas propriedades das substâncias relacionadas
Dedução da termodinâmica no conjunto microcanónico MEFT, IST. Areyoureallysurethatafloorcan talsobeaceiling? M. C. Escher
Física estatística Dedução da termodinâmica no conjunto microcanónico MEFT, IST Areyoureallysurethatafloorcan talsobeaceiling? M. C. Escher Dedução da termodinâmica Definimos a entropia no conjunto microcanónico
Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases
Universidade Federal do ampa UNIAMA Teoria inética do Gases 7.alores específicos molares de um gás ideal A quantidade de gás ideal é medida pelo número de moles n, em vez da massa m O gás é submetido
TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA
3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou
6 Transições de Fase. 6.1 Critérios de estabilidade
6 Transições de Fase 6.1 Critérios de estabilidade Vimos na seção anterior como o estado de equilíbrio de um sistema é obtido pelo requerimento de entropia máxima na presença de certos vínculos, por exemplo
tica Matemática Fractais Objetivo: e na Natureza
Origem Física e Matemática tica das Estruturas Geométricas Fractais Objetivo: Apresentar a origem dos fractais na Matemática tica na Física e na Natureza 1 Indices de Assuntos Mecânica - 1a, 2a, e 3a Leis
Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron
Capítulo 1 Vapor d água e seus efeitos termodinâmicos Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Funções Termodinâmicas e condições de equilíbrio Em estados de equilíbrio (P,T e são
Aula 4 A 2ª Lei da Termodinâmica
Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência
Segunda Prova - Questões objetivas (0,7 pontos)
Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física II-A (FIT122) 2018.2 Data: 03/10/2018 Segunda Prova - Questões objetivas (0,7 pontos) 1. Um cilindro fechado por um êmbolo
Utilizando Gráficos de Entropia
Módulo IV Variação da Entropia em Substâncias Puras, Relações Termodinâmicas (Tds), Diagramas T-s e h-s, Entropia em Substâncias Incompressíveis, Entropia em Gás Ideal. Utilizando Gráficos de Entropia
SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS INTRODUÇÃO E CONCEITOS INICIAIS ALBERTO HERNANDEZ NETO PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução
Aplicações das Relações de Maxwell
Aplicações das Relações de Maxwell Compressão Adiabática Considere um sistema de componente simples de uma quantidade definida de matéria caracterizada por um número de mols N, fechada por uma parede adiabática.
