CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2

Tamanho: px
Começar a partir da página:

Download "CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2"

Transcrição

1 CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 6-04/05/018 Questão 1. Mostre que não eiste o ite abaio. Seja f(, y) = 4 y 4 +y. Tomando o caminho C 1 (t) = (t, 0),tem-se que: 4 y 4 + y. f(, y) = f(c t 4 0 1(t)) = t 0 t 0 t = 1 = 1 t 0 Tomando o caminho C (t) = (t, t ), tem-se que: f(, y) = f(c t 4 (t ) (t)) = t 0 t 0 t 4 + (t ) = 0 = 0 t 0 Logo, como: f(c 4 y 1(t)) f(c (t)) t 0 t y 1

2 Questão. Verique se a f(, y) dada é contínua. 1 y, quando + y 1 f(, y) = 0, quando + y > 1 Como f(, y) é 1 y para quando + y < 1, tem-se que f(, y) é contínua para quando + y < 1. Como f(, y) é 0 para quando + y > 1, tem-se que f(, y) é contínua para quando + y > 1. Desse modo, deve-se analisar os pontos nos quais + y = 1, pois são os possíveis pontos onde a função não é contínua, pois sua lei de recorrência se altera. Logo, fazendo = rcos(θ),y = rsen(θ), tem-se: 1 r, quando r 1 f(r) = 0, quando r > 1 Logo, f(r) = 1 r = 0 e r 1 r 1 f(r) = 0 = 0 r 1 + r 1 + Desse modo, r 1 f(r) = 0. Além disso, f(1) = 0. Assim, como r 1 = f(1) = 0, isso implica que f(r) é contínua em r = 1, ou seja, é contínua nos pontos que satisfazem a equação + y = 1. Com isso, f(, y) é contínua em todo o o R. Prof. Juaci Picanço Prof. Jerônimo Monteiro

3 Questão 3. Julgue se os itens a seguir são verdadeiros ou falso. Em ambos os casos, justique. (a) Considerar os caminhos C 1 = {(, y) : y = m}, C = {(, y) : = y } e C 3 = {(, y) : y = } é suciente para mostrar que + y = 0. Calculando os ites Para os caminhos apresentados, tem-se: Para C 1, tem-se: Para C, tem-se: + y = (,m) (0,0) + y = (m) + (m) = ( ) + ( ) = 3 m (1 + m ) = 5 (1 + ) = m (1 + m ) = = 0 Para C 3, tem-se: + y = (,) (0,0) () + () = 3 = 0 Contudo, para provar que o ite apresentado é 0, tem-se que vericar para todos os caminhos, e isso é feito utilizando a denição de ite, desse modo, para mostrar que = +y 0, tem-se: Seja ɛ > 0, precisa-se encontrar δ > 0, tal que: 0 < ( 0, y 0) < δ 0 < + y 0 < ɛ Assim, dado que y +y 1, e = + y + y = y + y + y + y + y Assim, escolhendo δ = ɛ, tem-se: + y < δ + y < ɛ + y + y < ɛ + y < ɛ Assim, escolhendo um δ = ɛ, prova-se que o ite eiste e é igual a 0. Logo, como provar que o ite eiste para os caminhos apresentados não é suciente para mostrar que o ite eiste e é igual a 0, tem-se que a armativa é falsa. (b) Utilizar o Teorema do Confronto é a única forma de mostrar que Note que: + y = + y = 0. 0 = + y + y E como + y 1 +y +y 1, tem-se que 0 +y 1, logo, é uma função itada e y tende a 0 para quando (, y) (0, 0), tem-se pelo teorema como +y do confronto que + y = 0 Prof. Juaci Picanço Prof. Jerônimo Monteiro 3

4 Contudo, essa não é a única forma de mostrar que tal ite é igual a 0. Utilizando coordenadas polares, tem-se que: = rcos(θ),y = rsen(θ) e quando (, y) (0, 0),r 0. Logo + y = r sen(θ)cos(θ) = rcos(θ)sen(θ) = 0 r 0 r r 0 Além disso, pode-se utilizar a denição de ite para mostrar que o ite apresentado é igual a 0, embora este não seja um método muito prático para a resolução (Para se calcular pela denição, faz-se um procedimento análogo ao procedimento feito na alternativa (a) desta mesma questão). Desse modo, eistem mais formas de mostrar que o ite apresentado é igual a 0, ou seja, a armativa é falsa. (c) Tomando = r cos θ e y = rsen θ, mostramos que sen ( + y ) ( ) não eiste. 1 cos + y Primeiramente, note que: + y = r cos (θ) + r sen (θ) = r. Agora, para a mudança de variável apresentada, tem-se: sen ( + y ) sen (r ( ) ) sen (r = ( ) ) = 1 cos + y (rcos(θ),rsen(θ)) (0,0) 1 cos r r 0 1 cos(r) = Como o ite resultou em uma indeterminação do tipo logo: r 0 sen (r ) 1 cos(r) = cos(r )r r 0 sen(r) [ ] 0 0 [ 0 0], pode-se aplicar o teorema de L'hospital, = r 0 cos(r ) r 0 sen(r) r Desse modo, como o ite eiste, tal mudança de variável não prova que o ite não eiste. Assim, a armativa é falsa. = Prof. Juaci Picanço Prof. Jerônimo Monteiro 4

5 Questão 4. Nos itens a seguir, faça o que se pede. (a) Dena as derivadas parciais de f(, y) em relação a e em relação a y no ponto (a, b). A derivada parcial em relação a da função f(, y), é calculada de forma análoga à uma função de uma variável, pois para tal cálculo toma-se um y constante e calcula-se a variação somente em relação a, ou seja, para calcular a derivada parcial em relação a de f(, y), no ponto (a, b), faz-se f(, y) virar uma função de uma variável, pois toma-se y = b, logo: g() = f(, b). relação a é denida como: g (a) = h 0 f(a + h, b) f(a, b) h A derivada parcial em A denição é análoga para a derivada parcial em relação a y, com j(y) = f(a, y) dessa forma: j (b) = k 0 f(a, b + k) f(a, b) k (b) Interprete geometricamente as denições do item (a). Para o caso da derivada parcial em relação a, como g() = f(, b), tem-se que g() é a curva resultante da interseção do gráco de f(, y) e o plano y = b. Logo, como g () é a inclinação da reta tangente à curva g(), tem-se que as derivadas parciais podem ser interpretadas como as inclinações das retas tangentes às curvas g() e j(y) no ponto (a, b, f(a, b)), de modo que tais curvas são resultantes da interseção do gráco de f(, y) com os planos = a (originando a curva j(y)) e y = b (originando a curva g()). Segue uma gura que representa a derivada parcial em relação a y, no ponto (1, 1, ), para quando f(, y) = + y (c) Determine uma regra para determinar as derivadas parciais de f(, y). As derivadas parciais são calculadas pelos ites apresentados anteriormente na alternativa a) desta questão. Contudo, eiste um modo mais prático, pois para se derivar em relação a a-se um determinado y (ou seja, y é constante) e aplica-se a derivada em relação a. Desse modo, uma regra prática para se determinar as derivadas parciais é: Caso queira-se determinar f(,y), deve-se tratar a variável y como uma constante e derivar em relação a. Caso queira-se determinar f(,y), deve-se tratar a variável como uma constante e derivar em relação a y. Prof. Juaci Picanço Prof. Jerônimo Monteiro 5

6 (d) Se f(, y) = y 1, determine f (4, 5) e f y (4, 5) e interprete geometricamente. Logo, f(4, 5) = + 3y = f(4, 5) f(4, 5) = 7 = 7 é a inclinação da reta tangente à curva que é a interseção do gráco de f(, y) e o plano y = 5, e f(4, 5) = 13 é a inclinação da reta tangente à curva a qual é a interseção do gráco de f(, y) com o plano = 4. Segue a imagem das retas tangentes descritas, cujas inclinações = 13 são iguais às derivadas parciais em relação a e em relação a y, respectivamente, no dado ponto. Prof. Juaci Picanço Prof. Jerônimo Monteiro 6

7 Questão 5. Considere a função: f(, y) =, se (, y) (0, 0) + y 0, se (, y) = (0, 0) Podemos dizer que f(, y) é diferenciável em (0, 0), pois suas derivadas parciais em (0, 0) eistem? Justi- que. Não necessariamente, pois a eistência das derivadas parciais em (0, 0) não implica na diferenciabilidade de f(, y) em (0, 0). Para f(, y) ser diferenciável em (0, 0), as derivadas parciais devem eistir e serem contínuas em (0, 0). Desse modo, calculando as derivadas parciais de f(, y) para o ponto (0, 0): f(0, 0) f(0, 0) f(0 + k, 0) f(0, 0) = = k 0 k k 0 f(0, 0 + h) f(0, 0) = = h 0 h h 0 k.0 0 +k k h.0 0 +h h Além disso, as derivadas parciais para quando (, y) (0, 0) são dadas por: = 0 = 0 Logo, = y( + y ) () ( + y ) = y3 y ( + y ) = ( + y ) y() ( + y ) = 3 ( + y ) = = y 3 y ( + y, se (, y) (0, 0) ) 0, se (, y) = (0, 0) 3 ( + y, se (, y) (0, 0) ) 0, se (, y) = (0, 0) Assim, deve-se vericar se as funções que representam as derivadas parciais são contínuas em (0, 0). Desse modo, considerando a função que representa a derivada parcial em relação a e o caminho C 1 (t) = (0, t), tem-se: y 3 y ( + y ) = t 3 t 0 t 4 = 1 t 0 t Agora, considerando a função que representa a derivada parcial em relação a y e o caminho C (t, 0), tem-se: 3 y ( + y ) = t 3 t 0 t 4 = 1 t 0 t Logo, as derivadas parciais não são contínuas no ponto (0, 0), assim, isso implica que a função não é diferenciável em (0, 0). Prof. Juaci Picanço Prof. Jerônimo Monteiro 7

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Capítulo Derivadas parciais

Capítulo Derivadas parciais Cálculo 2 - Capítulo 24 - Derivadas parciais 1 Capítulo 24 - Derivadas parciais 241 - Introdução 243 - Significado geométrico das derivadas parciais 242 - Derivadas parciais Veremos agora como aplicar

Leia mais

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados. 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

1 Diferenciabilidade e derivadas direcionais

1 Diferenciabilidade e derivadas direcionais UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados

Leia mais

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f.

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. CÁLCULO I Prof. André Almeida Prof. Marcos Diniz Lista Semanal 2 - Gabarito Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. (a) Utilizando um recurso computacional, plote

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Extremos e o Teste da Derivada Primeira. Extremos e o Teste da Derivada Primeira

Extremos e o Teste da Derivada Primeira. Extremos e o Teste da Derivada Primeira UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I 1. Etremos relativos

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2 LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que.

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que. FORMAS INDETERMINADAS E A REGRA DE L HÔPITAL RICARDO MAMEDE Consideremos o ite. Se tanto o numerador como o denominador tendem para valores initos quando a, digamos α e β, e β, então pela álgebra dos ites

Leia mais

MAT Poli Roteiro de Estudos sobre as Cônicas

MAT Poli Roteiro de Estudos sobre as Cônicas MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA DÉCIMA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a Regra de L Hôpital, que será utilizada para solucionar indeterminações de ites de qualquer

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes: Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Método de Newton Paulo Evandro Viana Belo Horizonte, março de 006 AOS MEUS QUERIDOS E ESTIMADOS FAMILIARES E,

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016

DERIVADAS Prof. Ricardo Luiz Araújo 28/03/2016 1 - Revisão a) Nomenclatura da derivada Sendo uma função dada da seguinte forma: y=f(x) a derivada desta função pode ser referenciada das seguintes maneiras: (deve ser lida como efe linha de f(x) ) ou

Leia mais

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas Teoria dos Grafos - BCC204 Planaridade Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 29 de maio de 2011 1 / 23 Oferta de Serviços Gás Luz Água Podemos oferecer os demais serviços para

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2 2. Em cada caso abaio calcule o ite de f ), quando a. a) f ) = 2 + 5; a = 7 b) f ) = c) f ) = 2 + 3 0 + 5 e) f ) = 3 3 + + ; a = 0 ; a = 5 d) f ) = 2 4 3 + 2 2 ; a = 2 2 + 8 3 ; a = + 3 h) f ) = 9 ; a

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais