SOMENTE COM CANETA AZUL
|
|
|
- Amélia Carreiro Sá
- 7 Há anos
- Visualizações:
Transcrição
1 Nome completo: Turma: Unidade: SIMULADO 8 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/0 - sexta-feira º A DI 07
2 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI. A prova terá duração de horas e 0 minutos.. Prova e gabarito só poderão ser devolvidos após uma hora do início do simulado.. O aluno só poderá sair para ir ao banheiro ou beber água após horas de início da prova.. Oalunonão poderá levar a prova para casa.. O preenchimento do gabarito deve ser feito com caneta AZUL. NÃO É PERMITIDO O USO DE CANETAS COM PONTAS POROSAS. 6. O preenchimento incorreto do gabarito implicará na anulação da questão ou de todo o gabarito. 7. Durante a prova, o aluno não poderá manter nada em cima da carteira ou no colo, a não ser lápis, caneta e borracha. Bolsas, mochilas e outros pertences deverão ficar no tablado, junto ao quadro. Não será permitido empréstimo de material entre alunos. 8. O aluno que portar celular deverá mantê-lo na bolsa e desligado, sob pena de ter a prova recolhida se o mesmo vier a ser usado ou tocar. Caso não tenha bolsa, o aluno deverá colocá-lo na base do quadro durante a prova. 9. O fiscal deverá conferir o preenchimento do gabarito antes de liberar a saída do aluno. PREENCHIMENTO DO CARTÃO RESPOSTA SOMENTE COM CANETA AZUL FORMA ERRADA DE PREENCHIMENTO É PROIBIDO COLOCAR QUALQUER TIPO DE INFORMAÇÃO NESTE LOCAL FORMA CORRETA DE PREENCHIMENTO
3 . Qual dos números abaixo é um número racional e também um número inteiro?, COMENTÁRIO: Além de ser um número racional, pois está na forma fracionária, 0 também é um número inteiro, pois 0 =.. É correto: 0,99 0,0 GABARITO: B COMENTÁRIO: é uma fração.. Qual dos números abaixo é irracional? 0 =,... 0,... 8, 9 0, GABARITO: B COMENTÁRIO: Todo número decimal infinito não-periódico é um número irracional.. Qual dos números abaixo é irracional? 0,6 0, ,... 0,, GABARITO: B COMENTÁRIO: Todo número decimal infinito não-periódico é um número irracional.
4 . O conjunto dos números reais é formado pela união dos conjuntos e. pela união dos conjuntos e. pela união dos conjuntos e. pela união dos conjuntos e. pela união dos conjuntos e. COMENTÁRIO: Essa é a definição do conjunto dos números reais. 6. Qual a forma fracionária irredutível de,? 99 COMENTÁRIO:, = = A fração pode ser representada por qual número decimal?,,,,, COMENTÁRIO: =, 8. Qual a fração geratriz de 0,...? GABARITO: E COMENTÁRIO: 0,... = 0, = = = 90 90
5 9. Qual a representação decimal de 7?,... 7,... 0,...,..., COMENTÁRIO: 7 =, Qual a forma fracionária de %? COMENTÁRIO: % = 00. Qual a forma fracionária irredutível de %? COMENTÁRIO: = 00. A porcentagem 7,% pode ser representada por qual número decimal? 7,,7 0,7 0,07 0,007 COMENTÁRIO: 7, 0, 7 00 =
6 . Ao comprar um produto que custava R$.00,00, obtive um desconto de %. De quanto foi esse desconto? R$ 90,00 R$ 0,0 R$ 0,00 R$ 80,00 R$ 0,00 COMENTÁRIO: 0, 00 = 80. Do meu salário de R$.00,00, tive um desconto total de R$0,00. Esse desconto equivale a qual porcentagem do meu salário? % 0% % 0% % 0 COMENTÁRIO: 0, 0% 00 = =. Em uma sala de aula em que 7% dos alunos são meninos, estudam apenas 7 meninas. Quantos alunos (somando meninos e meninas) há nessa sala? 8 alunos 9 alunos 0 alunos alunos alunos COMENTÁRIO: As meninas correspondem a % = = do total de alunos. Logo, nessa sala há 00 7 = 8 alunos. 6. Qual o valor de ( ),?,00,,0,0,00 GABARITO: B COMENTÁRIO: ( ), =,, =, 0 7. Determine o valor da expressão ( ) ( ) ( ) ( ) 0 GABARITO: B + + :
7 0 COMENTÁRIO: ( ) ( ) ( ) ( ) + + = ( ) + + = + + = 8. Qual o valor da potência ( )? COMENTÁRIO: ( ) 9. Escrevendo = = 9 ( ) 7 como uma única potência, obtemos COMENTÁRIO: = = Escrevendo ( ) como uma única potência, obtemos.. ( )... COMENTÁRIO: ( ) = =. Simplificando 0 7 escrevendo numa única potência, obtemos
8 7 = = = 6 COMENTÁRIO: ( ). Qual o valor de 96? 6 7 GABARITO: E COMENTÁRIO: Basta notar que. Qual o valor de 7? 6 7 = 96. COMENTÁRIO: Basta notar que = 7.. Qual o valor de 96? 6 7 COMENTÁRIO: Basta notar que 6 = 96. { }. Calculando o valor de ( )..... GABARITO: E { } COMENTÁRIO: ( ) + 8, obtemos + 8 = 8 + = 8 + = ( ) ( ) { 8 } 7 { 8 } = + = = 6
9 6. Qual o valor de ? 7 9 COMENTÁRIO: = 7. Com relação à figura a seguir, é a alternativa correta: N r Q r R r M s P r GABARITO: E COMENTÁRIO: O ponto P pertence à reta r. 8. É a alternativa correta com relação à figura abaixo: s α t β t α s β r α GABARITO: B COMENTÁRIO: A reta t está contida no plano β. 7
10 9. É correto dizer que a soma dos ângulos internos de um triângulo é igual a 80. em todo triângulo sempre há um ângulo reto. todos os lados de qualquer triângulo têm a mesma medida. existe triângulo com um de seus ângulos internos medindo 80º. um triângulo possui vértices. COMENTÁRIO: Observe: 0. É correto afirmar que todo quadrado é um retângulo. a soma dos ângulos internos de um quadrilátero é 80º. todo quadrilátero é um quadrado. todo retângulo é um quadrado. todo losango é um quadrado. COMENTÁRIO: Todo quadrado tem quatro ângulos retos.. Podemos afirmar que o valor do número irracional π=,6... é definido pela razão entre a medida do raio e a medida do diâmetro de uma circunferência. a medida do diâmetro e a medida do raio de uma circunferência. a medida do comprimento e a medida do diâmetro de uma circunferência. a medida do diâmetro e a medida do comprimento de uma circunferência. a medida do raio e a medida do comprimento de uma circunferência. COMENTÁRIO: O número π é uma constante definida dessa forma.. Com relação à figura a seguir, é correto afirmar que AB é diâmetro e OD é raio. BC e OD são diâmetros. AB é corda e OD é diâmetro. BC e AB são diâmetros. AB é corda e OD é raio. GABARITO: E COMENTÁRIO: Essas são as definições de corda e de diâmetro. 8
11 . Qual o sólido formado por faces poligonais, cujas laterais são retângulos e suas bases são paralelas e de mesmo formato? Cone Cilindro Esfera Prisma Pirâmide COMENTÁRIO: Basta observar um prisma.. É o sólido formado por uma única superfície não-plana: Cone Cilindro Esfera Prisma Pirâmide COMENTÁRIO: Basta observar uma esfera.. Com relação ao poliedro da figura, podemos afirmar que ele tem 8 arestas. ele tem 9 faces. ele tem 6 vértices. suas faces são quadrangulares. é uma pirâmide. COMENTÁRIO: Basta observar o sólido. 6. A soma dos cubos de dois números diferentes pode ser escrito algebricamente como ( ) a+ b. ( ) a+ b. a + b. a + b. a+ b. ( ) COMENTÁRIO: Primeiro calculamos os cubos para depois efetuarmos a soma. 7. Qual o valor de 0 0 x x quando x =? 9
12 COMENTÁRIO: ( ) ( ) x x = = = = = 0 8. Reduzindo os termos semelhantes de ab 6ay + 0 7ab + 8ay +, obtemos ab + ay +. ab ay +. 0ab + ay. 0ab + ay +. ab + ay +. COMENTÁRIO: ab 7ab 6ay + 8ay = ab + ay + 9. A expressão que representa o perímetro de um retângulo que possui x + de comprimento e x+ de largura é x +. x +. x x + 8. x. p = x+ + x+ = x+ + x+ 6= 6x+ 8 COMENTÁRIO: ( ) ( ) 0. Qual o resultado de 7y x ( y z)? x y z x y z 8x y z 8x y z 6 8x y z COMENTÁRIO: Basta efetuar a operação.. Qual das expressões algébricas abaixo pode representar a área de um retângulo cuja largura é xy e o comprimento é yz? xyz 6xy z 6xy 0xyz 6x yz GABARITO: B COMENTÁRIO: Basta efetuar xy yz. 0
13 a b?. Qual o resultado de ( ) a b a b 6 a b 6 a b 6 a b GABARITO: E COMENTÁRIO: Basta aplicar a propriedade da potência de potência.. Qual das expressões algébricas abaixo pode representar o volume de um cubo de aresta volume de um cubo pode ser calculado elevando ao cubo a medida de sua aresta. x 9x 6 9x 7x 7x 6 x? O GABARITO: E COMENTÁRIO: ( ). Ao dividir y z. xy. 6 x yz. x y. xyz. GABARITO: B COMENTÁRIO: x = 7x 6 0x y z por xy z, obtemos 0x y z xy z = xy. 6. Se a área de um retângulo é representada pelo monômio x y e um dos lados desse retângulo é representado por xy, o monômio que representa o outro lado desse retângulo é 7 7 x y. x y. x y. 6 x y. 6 x y. COMENTÁRIO: x y xy = x y 6
14
15
16 JARDIM DA PENHA (7) 0 90 JARDIM CAMBURI (7) 7 8 PRAIA DO CANTO (7) VILA VELHA (7) 00
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: SIMULADO ANO - ENSINO FUNDAMENTAL Matemática Dia: /04 - sexta-feira º A DI 07 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI. A prova terá duração de horas e 0 minutos..
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 7º ano - Ensino Fundamental º Trimestre Matemática Dia: /08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 0/0 - Sábado Nome completo: Turma: Unidade: 08 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI A prova terá duração de horas
SOMENTE COM CANETA AZUL
º SIMULADO - 7º ANO - 016 ENSINO FUNDAMENTAL Matemática º A DI 45 Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
SOMENTE COM CANETA AZUL
º SIMULADO - 8º ANO - 016 ENSINO FUNDAMENTAL Matemática 45 Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: º A DI CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1 O aluno
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 7º ano - Ensino Fundamental 1º Trimestre Matemática Dia: 05/05 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 1º TRI 1 A prova terá duração
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: SIMULADO 8 ANO - ENSINO FUNDAMENTAL Matemática Dia: 5/08 - sexta-feira º A DI 017 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1 A prova terá duração de horas e 0 minutos
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 3º Trimestre Matemática Dia: 07/1 - sexta-feira Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 3º TRI 1. A prova terá
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: 1 SIMULADO 7 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/04 - sexta-feira º A DI 017 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 1º TRI 1. A prova terá duração de horas e 0 minutos..
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
2º SIMULADO - 9º ANO ENSINO FUNDAMENTAL 3º A. Matemática. 45 Questões 18 de agosto - quinta-feira. Nome: Turma: Unidade: EDUCANDO PARA SEMPRE
º SIMULADO - 9º ANO - 016 ENSINO FUNDAMENTAL Matemática 3º A DI 45 Questões 18 de agosto - quinta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
1º SIMULADO - 8º ANO ENSINO FUNDAMENTAL. Matemática. 45 Questões 05 de maio - quinta-feira. Nome: Turma: Unidade: EDUCANDO PARA SEMPRE
1º SIMULADO - 8º ANO - 2016 ENSINO FUNDAMENTAL Matemática 3º DIA 45 Questões 05 de maio - quinta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
2º SIMULADO - 7º ANO ENSINO FUNDAMENTAL 3º A. Matemática. 45 Questões 18 de agosto - quinta-feira. Nome: Turma: Unidade: EDUCANDO PARA SEMPRE
º SIMULADO - 7º ANO - 06 ENSINO FUNDAMENTAL Matemática º A DI 4 Questões 8 de agosto - quinta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
Nome: Turma: Unidade: 3º SIMULADO - 6º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 04 de Dezembro - sexta-feira EDUCANDO PARA SEMPRE
Nome: Turma: Unidade: 2015 3º SIMULADO - 6º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 04 de Dezembro - sexta-feira EDUCANDO PARA SEMPRE ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 3º TRI 1. O aluno só poderá
2º SIMULADO - 8º ANO ENSINO FUNDAMENTAL 3º A. Matemática. 45 Questões 18 de agosto - quinta-feira. Nome: Turma: Unidade: EDUCANDO PARA SEMPRE
º SIMULADO - 8º ANO - 016 ENSINO FUNDAMENTAL Matemática º A DI 45 Questões 18 de agosto - quinta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
Nome: Turma: Unidade: 2º SIMULADO - 8º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 27 de Agosto - quinta-feira EDUCANDO PARA SEMPRE
Nome: 015 Turma: Unidade: º SIMULADO - 8º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 7 de Agosto - quinta-feira EDUCANDO PARA SEMPRE ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1. O aluno só poderá sair
Nome: Turma: Unidade: 3º SIMULADO - 8º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 04 de Dezembro - sexta-feira EDUCANDO PARA SEMPRE
Nome: Turma: Unidade: 201 3º SIMULADO - 8º ANO LÓGICA, CONTEÚDO. 4 Questões Dia: 04 de Dezembro - sexta-feira EDUCANDO PARA SEMPRE ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 3º TRI 1. O aluno só poderá
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: 1 SIMULADO 6 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/04 - sexta-feira º A DI 017 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 1º TRI 1. A prova terá duração de horas e 0 minutos..
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 2º Trimestre Matemática Dia: 25/08 - Sábado Nome completo: Turma: Unidade: 2018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 2º TRI 1. A prova terá duração
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: 2 SIMULADO 6 ANO - ENSINO FUNDAMENTAL Matemática Dia: 25/08 - sexta-feira 3º A DI 2017 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - 2º TRI 1. A prova terá duração de 2 horas
Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental
Candidatos ao 6º ano do Ensino Fundamental Produção de Texto - Gênero Textual Conto As 4 operações Situações- problemas (Raciocínio lógico matemático) Gráficos e tabelas Fração (leitura, representação,
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b
Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b MAT2457 - Álgebra Linear para Engenharia I Prova 1-10/04/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova
1º SIMULADO - 7º ANO ENSINO FUNDAMENTAL. Matemática. 45 Questões 05 de maio - quinta-feira. Nome: Turma: Unidade: EDUCANDO PARA SEMPRE
1º SIMULADO - 7º ANO - 2016 ENSINO FUNDAMENTAL Matemática 3º DIA 45 Questões 05 de maio - quinta-feira Nome: Turma: Unidade: EDUCANDO PARA SEMPRE CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado.
1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. a) ( 3 4 )25 : ( 3 4 )15 5 10 b) 15 35 : 5 35 3 45 2. Calcule o valor das seguintes
Teste de Avaliação. Nome N. o Turma Data / / Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data / / Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno ): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno ).
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
SELEÇÃO ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER.
SELEÇÃO 2018-2ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER. 1. INSCRIÇÃO Preenchimento da ficha de interesse a vaga - ano 2018 Período: 28 de
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
TESTE DE MATEMÁTICA 9.º ano
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Do plantel de uma determinada equipa de futebol fazem parte quatro defesas centrais: o André, o Bernardo, o Custódio e o Daniel. Num treino, é necessário
MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
EDITAL 001/2019 SELEÇÃO ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER.
EDITAL 001/2019 SELEÇÃO 2019-1ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER. 1. INSCRIÇÃO Preenchimento da ficha de interesse a vaga - Ano 2019
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
... GABARITO 1 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado
CADERNO DE QUESTÕES -- PAS--UEM//01 -- ETAPA N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES I PARA A REALIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Matemática 2 LEIA COM ATENÇÃO
LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
Responder todas as questões em folha A4. Entregar na data da realização da prova.
INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo
EDITAL 001/2019 SELEÇÃO ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER.
EDITAL 001/2019 SELEÇÃO 2019-2ª CHAMADA EDITAL DO PROCESSO DE PREENCHIMENTO DE VAGAS - ALUNOS NOVATOS - NO COLÉGIO SÃO FRANCISCO XAVIER. 1. INSCRIÇÃO Preenchimento da ficha de interesse a vaga - Ano 2019
TREINANDO PARA AS AVALIAÇÕES DO 1º BIMESTRE PROF. OSMAR
TREINANDO PARA AS AVALIAÇÕES DO 1º BIMESTRE PROF. OSMAR 1º ANO ENSINO MÉDIO - QUESTÕES DA APOSTILA 01 1. Considere os dez números abaixo : - 12 ; -0,5 ; 0,111 ; 1,333... ; π ; - 64 ; 12 ; 16 1 ; 5 ; 4
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no
Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
COLÉGIO PEDRO II - CAMPUS CENTR0
COLÉGIO PEDRO II - CAMPUS CENTR0 Teste de Matemática / /2015 Coord.: Cláudio 1 o Turno Prof. : Sérgio Antoun Serrano 1 2x 3 1) Seja a função bijetora definida em IR { } IR {a} com f ( x), onde a IR. Calcule
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
FÁTIMA HELENA COSTA DIAS. institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite
FÁTIMA HELENA COSTA DIAS e-mail institucional: [email protected] MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE Tutor: Daiana da Silva Leite Grupo: 05 Tarefa 4 Duração Prevista: 290 minutos, distribuídos
LISTA 4 = PIRÂMIDES E CONES
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
singular Exercícios-Paralelepípedo
singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.
1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano
Geometria Espacial - AFA
Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual
Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental
Candidatos ao 6º ano do Ensino Fundamental Interpretação de texto Substantivos Adjetivos Encontros vocálicos Encontros consonantais Dígrafos Artigo Verbos As 4 operações Situações- problemas (Raciocínio
Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL
ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas
Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min.
Obs.: Data: 18/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade
Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá
Nome: Turma: Unidade: 2º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 27 de Agosto - quinta-feira EDUCANDO PARA SEMPRE
Nome: 015 Turma: Unidade: º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 7 de Agosto - quinta-feira EDUCANDO PARA SEMPRE ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1. O aluno só poderá sair
Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.
Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos
Cronograma - 2º Bimestre / 2016
Prof.: TIAGO LIMA Disciplina: MATEMÁTICA Série: 1º ano EM 25/04 e 28/04 02/05 e 04/05 09/05 e 12/05 23/05 e 26/05 30/05 e 02/06 06/06 e 09/06 13/06 e 16/06 20/06 e 23/06 27/06 e 30/06 04/07 e 07/07 Função
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
SOMENTE COM CANETA AZUL
º SIMULADO - º ANO - 0 ENSINO FUNDAMENTAL Matemática Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: º A DI CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI. O aluno só poderá
Projeto Jovem Nota 10
1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Universidade Federal dos Vales do Jequitinhonha e Mucuri.
INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática
9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010
Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 009/010 Ficha Trabalho Circunferência, Trigonometria, Áreas e Volumes, Equações do º grau Maio 010 Nome: 1ª PARTE N.º: Turma: 9.º Ano 1. Observa a seguinte figura:
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.
PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)
( 7) MATEMÁTICA 8º ANO 1º E 2º PERÍODOS/2012 0,09. π π. 15 do bolo ainda restou? EXERCÍCIOS E PROBLEMAS PARA ESTUDOS DE RECUPERAÇÃO PARALELA
EXERCÍCIOS E PROBLEMAS PARA ESTUDOS DE RECUPERAÇÃO PARALELA MATEMÁTICA 8º ANO 1º E º PERÍODOS/01 1. A soma de três números consecutivos é 4767. Quais são esses números? 7. Use as propriedades e escreva
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,
SISTEMA ANGLO DE ENSINO G A B A R I T O
SISTEMA ANGLO DE ENSINO Prova Anglo P-02 Tipo D9-08/2010 G A B A R I T O 01. B 07. B 13. C 19. D 02. C 08. D 14. B 20. B 03. A 09. C 15. B 21. C 04. D 10. C 16. C 22. D 05. D 11. C 17. D 00 06. B 12. A
