Foi o primeiro a usar o termo função em Euler ( )
|
|
|
- Talita Antônia Coradelli Lopes
- 7 Há anos
- Visualizações:
Transcrição
1 1) Conceito de função I) Introdução histórica O conceito de função é um dos mais importantes da Matemática. Este conceito sofreu uma grande evolução ao longo dos séculos, sendo que a introdução do método analítico na definição de função (século XVI, XVII) veio revolucionar a Matemática. Desde o tempo dos Gregos até a Idade Moderna a teoria dominante era a Geometria Euclidiana que tinha como elementos base o ponto, a reta e o plano. Foi a partir desta época que uma nova teoria, o Cálculo Infinitesimal, vai surgir e a noção de função vai ser um dos fundamentos dessa teoria. Dessa forma, a origem da noção de função confunde-se com os primórdios do Cálculo Infinitesimal. Newton ( ) Aproxima-se bastante do sentido atual de função com a utilização dos termos relatia quantias para designar variável dependente, e genita para designar uma quantidade a partir de outras por intermédio das quatro operações aritméticas fundamentais. Leibniz ( ) Foi o primeiro a usar o termo função em Johann Bernoulli ( ) Em 1718 publicou um artigo contendo a definição de função de uma certa variável como uma quantidade que é composta de qualquer forma dessa variável e constantes. Euler ( ) Antigo aluno de Bernoulli, em 1748 deu um retoque final á esta definição, substituindo o termo quantidade por expressão analítica. Foi também Euler quem introduziu a notação f (x). A noção de função era assim identificada na prática com a expressão analítica, situação que vigorou pelos séculos XVIII e XIX quando teve seu conceito final. Fonte:
2 II) Introdução teórica No estudo científico de qualquer fato sempre procuramos identificar grandezas mensuráveis ligadas a ele e, em seguida, estabelecer as relações existentes entre essas grandezas. A temperatura de ebulição da água depende da altitude (o ponto de ebulição diminui quando a altitude aumenta). Os juros pagos sobre um investimento dependem do tempo que o dinheiro permanece investido, o preço pago pelo abastecimento de um carro, seja a álcool ou gasolina, depende da quantidade de litros,... Em todos os casos, o valor de uma variável, que podemos chamar de y, depende do valor de outra, que podemos denominar de x, onde para cada valor x obtemos um único valor de y. Simbolicamente, temos: y = f (x) (lê-se y é igual a f de x) onde: x: variável independente, y: variável dependente e f representa a função. Muitas vezes, o valor de y é dado por uma regra ou fórmula que diz como calculá-lo a partir da variável x. Definição: Uma função f de um conjunto A em um conjunto B é uma regra que associa a cada elemento x A exatamente um único elemento y B. Notação: f: A B ( f é uma função de A em B) Em diagrama temos: A = Domínio da função (Dom f), ou seja, é o conjunto dos possíveis valores da variável independente B= Contradomínio da função (CD f), ou seja, é o conjunto dos possíveis valores da variável dependente Conjunto Imagem (Im f) : é o conjunto formado pelos valores encontrados para a variável independente No diagrama acima temos: Dom f: A CD f : B Im f: { a, b, d} Estudaremos as funções que têm como domínio um subconjunto X R cujos valores f(x) para todo x X, são números reais. Exemplo: 1.) Verificar se as relações abaixo representadas nos
3 diagramas de flechas são funções ou não. Justifique sua resposta. 2.) O diagrama de flechas ao lado representa uma função de A em B. Complete o que se pede: a) D f = b) CD f = c) Im f = d) x = 4 y = e) f(x) = 4 x = f) f(2) = g) f(3) = Representações de uma função Diagramas Lei algébrica: É a fórmula matemática que relaciona as variáveis. Exemplo: f (x) = 5x 2 3x + 2, y = 3x + Gráfico: representação geométrica no plano cartesiano Exemplo: O gráfico ao lado mostra a temperatura num dia de inverno em Campos do Jordão (SP). a) Em que intervalo a temperaturaa permaneceu negativa? b) Em que intervalo a temperaturaa permaneceu positiva? c) Em que momento a temperatura foi nula? Função crescente e decrescentee Definição: Dizemos que uma função f, definida num intervalo I, é crescente neste intervalo se para quaisquer x 1 e x 2 I, x 1 < x 2, temos f (x 1 ) f (x 2 ) Definição: Dizemos que uma função f, definida num intervalo I, é decrescente neste intervalo se para quaisquer x 1 e x 2 I, x1 < x 2, temos f (x 1 ) f (x 2 )
4 Se uma função é crescente ou decrescente em um intervalo, dizemos que é monótona neste intervalo. Exemplo: 1) Considere a função f (x) = 3x 1 a) Complete a tabela abaixo: x y = f (x) b) Classifique a função acima em crescente ou decrescente. 2) Considere a função cujo gráfico está abaixo: Exercícios: Classifique em (V) verdadeiro e (F) falso: a) No intervalo x [2, 7] a função é crescente. b) O valor mínimo da função ocorre para x = - 5. c) No intervalo x ]0, 7[ a função é positiva d) O gráfico da função corta o eixo y no ponto de coordenadas (-1,0) 1) Considere a função f: A B dada pelo diagrama de flechas abaixo. Complete: a) Df = b) CDf = c) Imf = d) x=5 y= e) f(5) = f) f(1) = g) f( 2) = h) y=2 x = i) f(x) = 0 x = 2) Escreva a fórmula matemática que expresse a lei de cada uma das funções abaixo: a) Uma firma que conserta televisores cobra uma taxa fixa de R$ 40,00 de visita mais R$ 20,00 por hora de mão-de- obra. Então o preço y que se deve pagar pelo conserto de um televisor é dado em função do número de x horas de trabalho (mão-de-obra). b) Um fabricante produz objetos a um custo de R$ 12,00 a unidade, vendendo-as por R$ 20,00 a unidade. Portanto, o lucro y do fabricante é dado em função do número x de unidades produzidas e vendidas. c) Um triângulo tem base fixa de 6 cm e altura variável de x cm. A área y, em cm 2, é dada em função de x.
5 3) Considere g: A B a função para qual A = { 1, 3, 4}, B = {3, 6, 9, 12, 15} e g(x) é o triplo de x para todo x A. a) Construa o diagrama de flechas da função. b) Determine D(g), CD(g) e Im(g) (imagem de g). c) Determine g(3). d) Determine x para o qual f(x) = 12. 7) Seja a função f: R R é dada por f (x) = x 3. Calcule: a) o valor de f ( 3 ); b) o número real x, para que f (x) = 6. Exercícios de fixação: 1) Dado o gráfico de uma função f: a. Obtenha o valor de f(-1) b. Estime o valor de f(2) c. f(x) = 2 para quais valores de x? d. Estime os valores de x para os quais f(x) =0 e. Obtenha o domínio e o conjunto imagem de f f. Em qual intervalo f é crescente? 2) Dados os gráficos de das funções f e g: a. Obtenha os valores de f(-4) e g( 3) b. f(x) = g(x) para quais valores de x? c. Estime a solução da equação f(x) = -1 d. Em qual intervalo f é decrescente? e. Dê o domínio e o conjunto imagem de f f. Dê o domínio e o conjunto imagem de g 3) O gráfico ao lado representa a função f. a. Identifique o domínio e a imagem Identifique: f(-4); f(-2); f(0); f(1); f(3) Dê o intervalo em que a função é crescente Dê o sinal de f(-3); f(-2);f(1); f(2) Dê o intervalo em que f é positiva Dê o intervalo em que f é negativa
6 b. Identifique o domínio e a imagem Identifique: f(1); f(5); f(7) Identifique x f(x) = 4 Estime f(6) Dê o intervalo em que a função é crescente Dê o sinal de f(2); f(4,5);f( 2 3 ) c. Identifique o domínio e a imagem Identifique: f(-1); f( 5 7 ); f(3); f(2 7 ) Identifique x f(x) = 6 Estime f(4) Dê o intervalo em que f é negativa 4) O gráfico ao lado representa uma função f: A B. Determine: a. Domínio e imagem de f b. f(-4) c. f(-2) d. f(0) e. f(2) f. f(4) g. f(6) h. Dê o intervalo em que a função é crescente i. Dê os intervalos em que a função é positiva 5) Determine o domínio das seguintes funções: a. f(x) =3x-4 b. f(x) = x 2 -x +1 c. f(x) = 4 x 3 d. f(x) = x 4 e. f(x) = 2x 6 x x 6 f. f(x) = x 3
2º semestre de Engenharia Civil/Mecânica Cálculo 1
º semestre de Engenharia Civil/Mecânica Cálculo Conteúdo: Função do º grau (Função Afim) Introdução No estudo científico de qualquer fato sempre procuramos identificar grandezas mensuráveis ligadas a ele
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
A noção intuitiva de função
Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
A noção intuitiva de função
Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B. Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNDAMENTAL 8-º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 8 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 1 BIMESTRE - GRUPO 1 PLANO DE TRABALHO
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 1 BIMESTRE - GRUPO 1 PLANO DE TRABALHO ESTUDO DE FUNÇÕES CURSISTA: ROBSON DOS SANTOS PRAXEDE TUTOR: RODOLFO GREGORIO
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES
FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,
Matemática I Capítulo 06 Propriedades das Funções
Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
MATEMÁTICA Prof.: Alexsandro de Sousa
E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães
1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3].
Lista de Exercícios - Função Afim 1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3]. 2. As frutas que antes se compravam
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
INTRODUÇÃO AO ESTUDO DE FUNÇÃO. Prof. Ade1000son
INTRODUÇÃO AO ESTUDO DE FUNÇÃO Prof. Ade1000son CONCEITO DE FUNÇÃO 2 Sistema Cartesiano de Coordenadas Foi o matemático e filósofo francês René Descartes o criador da parte da Matemática que relaciona
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
FUNÇÕES PROFESSOR: JARBAS
FUNÇÕES PROFESSOR: JARBAS Aplicação do conceito O conceito de função é um dos mais importantes da Matemática e ocupa lugar em destaque em vários de seus ramos, bem como em outras áreas do conhecimento.
1) Calcule a distância entre os pontos A e B em cada caso a seguir:
ESTUDO DIRIGIDO PROVA MENSAL 9ºA - MATEMÁTICA 1) Calcule a distância entre os pontos A e B em cada caso a seguir: a) A(1, 8) e B(4, 12) b) A(-1, 3) e B(-9, 18) c) A(4, -7) e B(-16, -22) d) A(2, -3) e B(7,
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
COLÉGIOMARQUES RODRIGUES- SIMULADO
COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,
Fundamentos de Matemática I FUNÇÕES2. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
FUNÇÕES Gil da Costa Marques.1 O conceito de função. Gráficos de funções.3 Construindo gráficos.4 Algumas funções simples.5 Funções compostas.6 Função inversa.7 Outras definições.8 Exemplos simples Licenciatura
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:
p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Explorando a ideia de função
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Explorando
Gráficos e Funções. Alex Oliveira Allysson Lacerda
Gráficos e Funções Alex Oliveira Allysson Lacerda Noção de Função O conceito de função é um dos mais importantes da matemática. Vejamos alguns exemplos: o Número de litros de gasolina e preço a pagar.
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1)
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para
Tarefa 08 Professora Priscila
9º ano Matemática 01. Considera a seguinte correspondência entre A e B: Tarefa 08 Professora Priscila a) Justifica que a correspondência, f, é uma função. b) Indica o domínio da função. c) Indica o conjunto
Letras a b c d e f g h i j l m n o p q r s t u v x z
UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES MATEMÁTICAS. PROF. ILYDIO PEREIRA DE SÁ I) CRIPTOGRAFIA E FUNÇÕES MATEMÁTICAS Um dos problemas encarados como um passatempo até poucos anos atrás, e que se tornou de
Cálculo Diferencial e Integral I
Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico
Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B
Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.
M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F.
Módulo de Funções - Noções Básicas Funções - Noções Básicas. 9 o ano E.F. Funções - Noções Básicas 1 Exercícios Introdutórios Exercício 1. Em um certo dia, três mães deram à luz em uma maternidade. Uma
(Nova) Matemática, Licenciatura / Engenharia de Produção
Portaria MEC 7, de 5.. - D.O.U.... (Nova) Matemática, Licenciatura / Engenharia de Produção Módulo de Pesquisa: Práticas de ensino em matemática, contextos e metodologias Disciplina: Fundamentos de Matemática
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }
TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero
Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática
Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par
Professor (a): Oscar Joaquim da Silva Neto Aluno (a): Ano: 9º Data: / / LISTA DE MATEMÁTICA II
Professor (a): Oscar Joaquim da Silva Neto Aluno (a): Ano: 9º Data: / / 2018. LISTA DE MATEMÁTICA II Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
TEORIA DOS CONJUNTOS
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Subtemas: Função Composta, Função Inversa, Qualidades
PLANO DE AULA 1)Escola de Educação Básica Bulcão Viana Município: Praia Grande/SC Disciplina: Matemática Série: 1º ano Nível: Ensino Médio Turma: Única Professora: Mariani Constante de Jesus Tempo previsto:
Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES E. E. E. M. NOME COMPLETO: Nº TURMA: TURNO: ANO:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 Função Função é uma relação entre duas grandezas
MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega
MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,
Formação Continuada Nova EJA PA14 PLANO DE AÇÃO 14
Nome: Karina Campos de Souza Regional: Baixadas Litorâneas II Tutora: Kathrin Rodríguez Ilanes A matemática do tempo é simples. Você tem menos do que pensa e precisa mais do que acha. Kevin Ashton 1 PLANO
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 2013 Disciplina: Matemática 1ª Série Ensino Médio Página 1 de 26-28/6/2013-6:13 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Seja a função
5 - Determine a soma e o produto das raízes de cada uma das equações abaixo.
COLÉGIO SHALOM Ensino Fundamental II 9 Ano Prof.º: Wesley Disciplina Matemática Aluno (a):. No. Trabalho de Recuperação Data: Valor: Temas: - Potência e propriedades - Equações; - Equações do 2º grau -
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
1) Quais dos seguintes diagramas representam uma função de A em B?
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS SÉRIE/ANO:
ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO
APÊNDICE 106 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando:
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
CÁLCULO I Aula 01: Funções.
Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois
1º. TRIMESTRE. Distribuição Gratuita. Autor: Dirceu Luiz Fedalto
MATEMÁTICA MATEMÁTICA 1º. TRIMESTRE Distribuição Gratuita Autor: Dirceu Luiz Fedalto Aluno: Turma: N : Professor: º. a Caderno de Matemática 1 série Caro aluno: Este caderno contém ao todo 09 tarefas que
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF. ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES
CAp/UERJ Álgebra 1ª Série do Ensino Médio Prof Ilydio P de Sá 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES 1) Primeiras idéias
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
CANDIDATO: DATA: 20 / 01 / 2010
UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0
Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais
Concurso Público 2016 Caderno 2 Conteúdo - Funções de Primeiro e Segundo Grau - Noções de Probabilidade e Estatística Descritiva - Matemática Financeira - Aplicações e Operações com Inequações - Sequências
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos:
Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos: A = ( 0, 4 ); B = ( -4, 5 ); C = ( 3, - 4 ); D = ( 2, 2 ); E = ( 0, 0 ) 2. No plano cartesiano abaixo, dê
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
FORMAÇÃO CONTINUADA EM MATEMÁTICA
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 9º Ano 3º Bimestre/2013 PLANO DE TRABALHO Função Tarefa 1 Nome: Cintia de Oliveira Santos Grupo: 1 Tutor: Lígia Vitoria de
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Página 1 de 12. 1º Trimestre/ Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito. a) B = {0, 1, 2,...
Página 1 de 1 1º Trimestre/015 ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT Rua Bento Gonçalves, 1171 Telefone: 359.1795 - CEP: 93010-0 São Leopoldo RS DISCIPLINA: Matemática PROFESSOR: César Lima
Leitura gráfica: domínio e image
LEITURA GRÁFICA O que queremos com a LEITURA DE UM GRÁFICO? O nosso objetivo, quando temos o gráfico de uma função, é ver se é possível encontrar: domínio, imagem, pontos do domínio onde f (x) > a ou f
Cursista: Luciana Medeiros Paschoal Tutora: Sirlene Martins da Silva
2 Cursista: Luciana Medeiros Paschoal Tutora: Sirlene Martins da Silva Sumário Introdução...5 Desenvolvimento...6 - Atividade 1...6 - Atividade 2...9 3 - Atividade 3...11 - Atividade 4...17 Avaliação...20
Produto Cartesiano de dois conjuntos, Relações e Funções
o Semestre de 9/ Miscelânea Produto Cartesiano de dois conjuntos, elações e Funções Sejam e dois conjuntos e sejam a e b O conjunto a,a,b chama-se par ordenado e designa-se por (a,b) Os elementos a e b
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.
Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.
1.Considera a função g na qual cada objeto é multiplicado por 3 e somado com Escreve a expressão analítica de g. 1.2.
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 7º ano FT5 Data / / 0 Assunto: Funções IV Lições nº,.considera a função g na qual cada objeto é multiplicado por 3 e somado com... Escreve
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES
Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 5 pts,75 pts 8 º ANO A B CONTEÚDOS POR ETAPA ª ETAPA ª ETAPA ª ETAPA Função Afim Função Quadrática
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
