Tarefa 08 Professora Priscila
|
|
|
- Raphaella Aldeia Cunha
- 7 Há anos
- Visualizações:
Transcrição
1 9º ano Matemática 01. Considera a seguinte correspondência entre A e B: Tarefa 08 Professora Priscila a) Justifica que a correspondência, f, é uma função. b) Indica o domínio da função. c) Indica o conjunto de chegada da função. d) Indica o contradomínio da função. e) Qual é a imagem do objeto 12? f) Quais os objetos que têm imagem 10? g) Qual é o objeto que tem imagem 5? h) Qual das seguintes expressões corresponde à função? 02. Considera a função g definida por: g(x) = -3x + 2 a) Determina g(-1), g(0) e g(4) ; b) Determina o objeto cuja imagem é -7; c) Completa a tabela abaixo. 03. Considera a função definida por: f (x) = -x + 2, de domínio { -1,0,1, 2} a) Represente f por uma tabela; b) Represente f por diagrama de flechas c) Represente f por um gráfico. 04.,A função g está definida do seguinte modo: g :{1,2,3} {-3,-2,0,2,3,4} y = x +1 a) Indica o domínio da função g; b) Representa g por meio de um diagrama de setas; c) Determina o contradomínio de g. 05. A Ana tem uma pequena empresa que produz camisas. Por dia, os custos fixos (salários, luz, água, ) são de 200 euros. Os materiais utilizados na produção de uma camisa, custam, em média, 10 euros. a) Quais são os custos médios diários se, por dia, produzir: 1 camisa? 30 camisas? 50 camisas? X camisas? b) Qual é o custo médio diário de produção de 35 camisas?
2 Matemática Avaliação Produtiva 06. Uma pensão dá o preço de acordo com esta formula: y = 24,33.x + 54,55 y é o preço em reais, x é o numero de dias hospedados, 54,15 valor fixo da hospedagem. a) O preço é uma função de que grandeza? b) De acordo com a formula se o cliente ficar 2h é gratuita? c) Se o preço da hospedagem for R$ 198,55, quantos dias o cliente ficou na pensão? 07. Considere este retângulo: a) Calcule o perímetro 2p do retângulo. b) Mudando o valor de x, o valor de 2p muda? (Experimente com x = 2 e x = 5) c) Mudando o valor de x, o valor da área S do retângulo muda? A área S é função de x? d) Qual é a formula da função que relaciona S e x? 08. Considera a função j que a cada número qualquer faz corresponder o seu quádruplo. a) Escreve uma expressão analítica que traduza o enunciado. b) Qual é a imagem de 3 por j? c) Qual o objeto que tem como imagem 24? d) Determina e) Calcula o valor de x 09. Considera a função f definida por f(x) = x 3 de domínio D = {-1,1,0,1,2}. Represente: a) Por uma tabela; b) Por diagrama de flechas c) Por um gráfico 10. Em certa cidade, ao entrar num táxi, você já deve o valor da bandeirada: R$ 8,20. Portanto daí, você pagará 2,60 centavos por quilômetro rodado. a) sendo x o número de quilômetros rodados e p o preço da corrida, complete a tabela. x(km) 0 0,5 1 1,5 2 P(reais) 8,20 b) As variáveis x e p são diretamente proporcionais? São inversamente proporcionais? Ou a variação não é de nenhum desses tipos? c) Fiz uma corrida de táxi na qual o valor de p foi R$ 73,20. Quantos quilômetros rodei? 11. Sendo f e g definidas, respectivamente, por f(x) = - 2x +1 e g(x) = Calcule: a) f(1) + g(1) b) f(-1) + g(-1) 12. Seja f a função definida por: a) Calcula f (1) e f (3) ; b) Determina x se f ( x) = 5; c) Determina x se f(x) = ½. 2
3 Exercícios Complementares 13. Imagina uma máquina onde se introduz um número inteiro. Ela multiplica-o por 2, soma-lhe 1 e devolvenos o resultado. Completa a tabela: 14. Considera a função g definida por a) Completa a tabela: b) Determina a imagem de 10. c) Determina o objeto cuja imagem é 22. d) Determina: 15. Considera o conjunto e a função definida por. a) Indica o domínio de g; b) Completa a tabela: c Qual é o contradomínio de g? 3
4 Matemática Avaliação Produtiva 16. Determina os valores das letras a, b, c e d. a) b) c) 17. Completa o seguinte quadro: 18. Das seguintes representações gráficas quais as que representam uma função? 19. Observa o gráfico da função E Consumo Mundial de Eletricidade. a) Qual é a variável independente? E a dependente? b) Calcule E(1960). c) Calcule o ano x em que E(x) = Num laboratório, um biólogo injeta num coelho, por via intramuscular, uma certa substância inofensiva. O gráfico seguinte mostra as variações da quantidade de substância S(t), em gramas por litro, presente no sangue em cada instante t(em segundos). Responde às questões com a precisão que o gráfico te permitir. 4
5 Exercícios Complementares a) Qual é a quantidade máxima de substância contida no sangue? b) A partir de que momento começa a eliminação? c) Qual a duração da passagem de 0g a 2,3g na fase de absorção? E qual a duração da passagem de 2,3g a 1,5g na fase de eliminação? Compara os valores obtidos. O que podes concluir? d) Qual é a quantidade de substância contida no sangue ao fim de muito tempo? 21. Indica, justificando, se as seguintes correspondências representam funções 22. Para cada uma das seguintes funções indica o domínio, o contradomínio e o conjunto de chegada. 23. Qual dos seguintes diagramas não podem representar uma função. 24. Nos grafos a seguir, identifique se são ou não são representativos de função. Em caso positivo, determinar os tipos das funções. 25. Um fabricante de jarros vende por R$0,80 a unidade. O custo de produção consiste de uma fixa de R$40,00 mais o custo de produção de R$0,30 por unidade. O número mínimo de jarros fabricados e vendidos, para que o fabricante obtenha lucro, é: a) 125 b) 80 c) 79 d) 81 e) 119 5
6 Matemática Avaliação Produtiva 26. Quais das correspondências são funções? 27. Considera a função: g(x) = 2x - 5. Calcula x, tal que g(x) = 5. a) 10 b) 20 c) 15 d) Faça o diagrama de flechas da relação de A em B, definida por y = 2x. Dados e 29. Represente a relação de A em B por um diagrama de setas e no plano cartesiano: Consideremos os conjuntos A = { -1, 0, 1, 2} e B = {1, 0, 1, 4} e e a relação y = x Sejam os conjuntos A={1,2,3} e B={1,3,4,5} de números reais e a relação de A em B definida por y = 2x -1. É uma função? 6
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um
1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:
A é múltiplo de 3? Porquê?
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ficha de Matemática 7º Ano 1. Considera que: A 6 ; B ( ) ; C 4 ( 7) e D ( 8 ) ( 10) ( ) 1.1. Indica o inverso e o valor absoluto do número representado por
8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.
8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.
7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.
Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº3
Escola Secundária com 3º Ciclo D. Dinis Ano Lectivo 2008 /2009 Matemática B Ano 10º Turma D 1.Indique, justificando, se são funções as correspondências seguintes. Em caso afirmativo, indique o domínio,
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }
TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero
DRUIDAS DO SABER CENTRO DE EXPLICAÇÕES. Matemática - 9º Ano. Ficha de Trabalho - PROPORCIONALIDADE. k y = (com k constante e diferente de zero) x
DRUIDAS DO SABER CENTRO DE EXPLICAÇÕES 1) Ficha de Trabalho - PROPORCIONALIDADE Matemática - 9º Ano Proporcionalidade directa Se o quociente de duas variáveis é uma constante não nula, as duas variáveis
Matemática. 7.º Ano Ficha de Trabalho - funções Ano letivo 2016/2017. Nome: 7º Turma Data: / /2017. Parte 1
Matemática 7.º Ano Ficha de Trabalho - funções Ano letivo 2016/2017 Nome: 7º Turma Data: / /2017 Parte 1 1. Das correspondências seguintes, indica, justificando, as que não são funções. 2. Considera uma
H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:
H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo
1) Quais dos seguintes diagramas representam uma função de A em B?
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS SÉRIE/ANO:
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04
Ficha Prática nº Parte II. Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/04 Operações com funções. Composição de funções. Função Inversa. ) O gráfico
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS
QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 2013 Disciplina: Matemática 1ª Série Ensino Médio Página 1 de 26-28/6/2013-6:13 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Seja a função
Não fujas da Matemática!
Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
Equações do 2º grau 21/08/2012
MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.
Professor: Danilo Menezes de Oliveira Machado
Professor: Danilo Menezes de Oliveira Machado O QUE PRECISA SER LEMBRADO Progressão aritmética: a n = a 1 + (n 1)r Parte fixa: a 1 Parte variável: (n 1)r Variável: n Tipo de variável: Discreta (IN) Juros
Matemática do 9º ano FT 9 Data: / / 2012 Assunto: Funções: Proporcionalidade Direta e Função Afim
Escola Secundária de Lousada Matemática do 9º ano FT 9 Data: / / 01 Assunto: Funções: Proporcionalidade Direta e Função Afim Uma função é uma correspondência entre dois conjuntos (o domínio e o conjunto
Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
Explorando a ideia de função
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Explorando
MATEMÁTICA E RACIOCÍNIO LÓGICO
FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES
PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM
Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.
PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro
Unidade 7 Estudo de funções
Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO 1. Dados os conjuntos G 0,1,3, 4 e 1,3 elemento de G ao seu dobro mais um em H, é dada
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações?
Considere a situação a seguir: Um retângulo tem metros de comprimento e y metros de largura, e um triângulo equilátero tem 5 m de lado. Supondo que o perímetro do retângulo seja maior que o perímetro do
FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65
FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA As equações no contexto das funções: uma proposta para significação das letras no estudo
Letras a b c d e f g h i j l m n o p q r s t u v x z
UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES MATEMÁTICAS. PROF. ILYDIO PEREIRA DE SÁ I) CRIPTOGRAFIA E FUNÇÕES MATEMÁTICAS Um dos problemas encarados como um passatempo até poucos anos atrás, e que se tornou de
F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.
Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano
PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo
ANEXO 8 Referente a Ação 8 UNIVERSIDADE FEDERAL DA PARAÍBA PROJETO PIBID ATIVIDADE DE REVISÃO DE CONTEÚDO COLÉGIO OLIVINA OLIVIA Geometria Analítica
ANEXO 8 Referente a Ação 8 UNIVERSIDADE FEDERAL DA PARAÍBA PROJETO PIBID ATIVIDADE DE REVISÃO DE CONTEÚDO COLÉGIO OLIVINA OLIVIA Geometria Analítica 1) O mapa de uma cidade é representado num sistema Cartesiano.
PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x
RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se
Matemática Básica. Atividade Extra
Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009
Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y
. Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:
Funções. Aula 9. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental. Vince Petaccio. Fonte:
Funções Aula 9 Ricardo Ferreira Paraizo Vince Petaccio e-tec Brasil Matemática Instrumental Fonte: www.sxc.hu Meta Apresentar as funções dos 1º e 2º graus. Objetivos Após o estudo desta aula, você deverá
Matemática 1. Conceitos Básicos 2007/2008
Matemática 1 2007/2008 Objectivos Resolver rapidamente equações dos 1 o e 2 o graus Traduzir alguns problemas em equações Interiorizar os conceitos de equação possível e equação impossível Alguns conceitos
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g
Exercício Prof. Alexandrino
Exercício Prof. Alexandrino 01. O gráfico abaixo mostra o número de pessoas comprovadamente infectadas pelo vírus H1N1 numa certa cidade do Brasil, entre os meses de maio e setembro de 2009. Na hipótese
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
PLANTÕES DE JULHO MATEMÁTICA
Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante
PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4
1.Considera a função g na qual cada objeto é multiplicado por 3 e somado com Escreve a expressão analítica de g. 1.2.
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 7º ano FT5 Data / / 0 Assunto: Funções IV Lições nº,.considera a função g na qual cada objeto é multiplicado por 3 e somado com... Escreve
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
MATEMÁTICA E SUAS TECNOLÓGIAS
MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama
Matemática 9.º Ano. Tema 2 Funções, sequências e sucessões RESOLUÇÕES
Matemática 9.º Ano 1 Tema Funções, sequências e sucessões Funções. Funções afins Praticar páginas a 9 1. 1.1. As correspondências que são funções são as correspondências A e B. Nestas correspondências,
GRÁFICO, DOMÍNIO, IMAGEM E TIPOLOGIA
ALUNO(A): DATA: / / 2017 M A T E M Á T I C A Nº: PROFESSOR: MÁRIO PALHETA / CONVÊNIO GRÁFICO, DOMÍNIO, IMAGEM E TIPOLOGIA Um gráfico pode ser uma maneira útil de demonstrar uma informação, ajudando a resolver
OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 04 13/03/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 25/03/2015 (4ª feira) Aluno:
Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)
Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
UNIDADE 2 Ficha 3: Proporcionalidade direta como função
UNIDADE 2 Ficha 3: Proporcionalidade direta como função Nome: 7º ANO MATEMÁTICA Data: / / 1. Comenta cada uma das afirmações seguintes: (A) O comprimento de um lado de um triângulo equilátero é diretamente
Lista de exercícios: Funções do 1º Grau
Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:
MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega
MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e,
Escola Secundária de Lousada Matemática do 9º ano FT 1 Data: / / 01 Assunto: Resumo das funções Lições nº, e, 1. Considera as funções: ( ) = ; g ( ) = + 4 ; h ( ) ; i( ) = ; j ( ) = e l( ) f = 7 = 5 1.1.
M odulo de Fun c ao Afim No c oes B asicas. 9o ano E.F.
Módulo de Função Afim Noções Básicas. 9 o ano E.F. Função Afim Noções Básicas. 1 Exercícios Introdutórios Exercício 1. Em certa cidade, uma corrida de táxi custa R$ 4, 80 a bandeirada, mais R$ 0,40 por
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A
Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno
Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica)
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) 1ª) As três figuras sobrepostas parcialmente, representam a cobertura de um Shopping de certa cidade. Deseja-se colocar a parte
PROVA ESCRITA PARTE A e B
PROCESSO DE SELEÇÃO INGRESSO NO 1º SEMESTRE DE 2014 PROVA ESCRITA PARTE A e B INSCRIÇÃO Nº CAMPO GRANDE MS, 25 DE OUTUBRO DE 2013 UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM
Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;
Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por
- MATEMÁTICA - PUC-MG
Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
Matemática Para Negócios
PUC - ECEC - Escola de Ciências Exatas e da e Física Matemática Para Negócios 2016 GO, Março / 2016 Prof: Me Samuel Lima Picanço 1 Definição Uma função pode ser entendida como uma fórmula matemática usada
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
i. Considerando os meses citados na conta, qual é a média mensal de consumo do Sr. Luiz José Dias?
INTRODUÇÃO À FUNÇÃO Você já prestou atenção à sua conta de água? Entender as diversas contas que chegam às nossas casas é importante para nos informarmos a respeito de desperdícios e mau uso dos diversos
OFICINA DE MATEMÁTICA BÁSICA Lista 2
OFICINA DE MATEMÁTICA BÁSICA Lista 2 Data da lista: 01/06/17 Preceptora: Cursos atendidos: Coordenador: Natália Todos Francisco 1. Você vai construir uma tabela de valores muito importantes, para isso:
Matemática I Função do 1 grau
Matemática I Função do 1 grau UNEB - Universidade do Estado da Bahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Função do 1 grau Prof. Dra. Rebeca Dourado Gonçalves
Estudo de funções parte 1
Módulo 2 Unidade 12 Estudo de funções parte 1 Para início de conversa... A ideia de função é muito utilizada na Matemática e em outras áreas como Biologia, Física, Química, assim como em diferentes situações
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR
O ESTUDO DAS FUNÇÕES INTRODUÇÃO
O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
Tema: Representações Gráficas
Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2010/2011 Ficha de Trabalho Janeiro 2011 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Representações
2 3 x. 5. Resolve a seguinte equação: 8º ANO TPC PÁSCOA. EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 2014/ 15
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 014/ 15 8º ANO TPC PÁSCOA 1. Tendo em atenção os seguintes polinómios: A= x 1 B= 3x C= x x 1 Calcula BC A. Resolve as seguintes equações: 3 x 3x.1.
