PRATICANDO MATEMÁTICA E GEOMETRIA PLANA E ESPACIAL NO MÉTODO ONIRENEG TEXTO
|
|
|
- Edson Miranda Galvão
- 8 Há anos
- Visualizações:
Transcrição
1 PRATICANDO MATEMÁTICA E GEOMETRIA PLANA E ESPACIAL NO MÉTODO ONIRENEG Generino Santana Filho Escola Estadual Cardeal Dom Jaime Câmara [email protected] TEXTO O Método ONIRENEG que ora apresentamos, é de utilidade para o professor de matemática, que, com ele, poderá dar aulas práticas, tanto de geometria como de matemática, a partir da 5ª série do Ensino Fundamental até o Ensino Médio, inclusive Geometria Espacial, proporcionando um melhor entendimento do aluno, pois ele vai poder ver na prática o que foi explicado. Normalmente, a maioria dos alunos não gosta de estudar nem matemática, nem geometria, porque acham difíceis e os professores, não dispõe de recursos para uma aula prática, onde ele possa melhor explicar, e exemplificar o assunto dado. Hoje, o professor para dar aula de : frações, tipos de ângulos, retas, paralelismo soma dos ângulos internos de um triângulo, polígonos e suas propriedades, circunferência, semelhança de triângulos, quadriláteros, trapézios, estudo do seno, cosseno, tangente, cotangente secante cossecante, apótema, baricentro, incentro, ortocentro e geometria espacial, praticamente só dispõe de quadro, giz e boa vontade. Com esse Método o próprio aluno vai vivenciar o que está sendo dado e fixar melhor o assuntocom o objetivo de melhorar, tanto a vida do professor quanto à do aluno, foi que desenvolvemos esse Método.
2 2 Consta de uma tábua medindo 50 cm (cinqüenta centímetro) X 56 cm (cinqüenta e seis centímetro) X 01 cm (um centímetro), com o desenho de uma circunferência de 15 cm (quinze centímetro) de raio, dividida em 24 ( vinte e quatro) pontos, (letras do alfabeto), cada ponto representando graus. A distância de um ponto para outro é de 15º (quinze graus), sendo cada ponto marcado com ganchos, inclusive o centro da circunferência e ainda os pontos que representam os valores de seno, cosseno, tangente, cotangente, secante e cossecante O objetivo dessa peça é para que o professor possa praticar vários assuntos de matemática e geometria como : a) Frações; metade, um quarto, três oitavos, um terço,...,etc., inclusive podemos mostrar, porque para adicionarmos ou subtrairmos frações oe denominadores tem que estarem iguais. b) Ângulos; meia volta, um quarto de volta, nulo, raso, agudo, reto, obtuso, suplementares, complementares, congruentes, consecutivos, adjacentes, opostos pelos vértices (o. p. v.), central, inscrito, excêntrico interior, excêntrico exterior, ângulo de segmento, arco capaz, setor circular e um ângulo qualquer no interior de uma circunferência c) Retas; concorrentes, perpendiculares. d) Paralelismo: ângulos colaterais (internos e externos) alternos (internos e externos). e) Soma dos ângulos internos de um triângulo. f) Polígonos regulares de 3, 4, 6, 8 12, 24 lados. g) Circunferência; diâmetro, raio, corda, tangente, secante, os quatro quadrantes. h) Semelhança de triângulos; congruência. i) Casos; LLL, ALA, LAL, LAA 0. j) Propriedades dos triângulos isósceles e equiláteros. k) Quadriláteros (principais elementos). l) Tipos de trapézios. m) Seno cosseno e tangente de 30, 45, 60, 120º,150º, 210º, 240º, 300º e 330º.
3 3 n) Arco de referência (seno, cosseno e tangente). o) Apótema do quadrado, hexágono, do triângulo eqüilátero, octógono. p) Ângulo interno qualquer na circunferência, formados por duas cordas, q) Secante, cossecante, cotangente r) Baricentro, incentro e ortocentro e s) Geometria espacial. Os exercícios são feitos utilizando-se ligas de borracha coloridas, que é o instrumento de trabalho de quem estiver utilizando. Para estudarmos praticando Geometria Espacial, além da peça acima citada, houve necessidade de mais duas peças, sendo que, as circunferências são vazadas, com as mesmas medidas, e divididas com as mesmas distâncias, e essas marcadas também com ganchos. Para facilitar a construção das figuras espaciais, uma das circunferências vazadas, não tem o centro. Obs.: Essas circunferências não trazem as marcações de funções trigonométricas, são apenas para a Geometria Espacial. Muitas vezes o professor exemplifica com o giz, lápis ou a régua para sugerir uma reta, e a folha de caderno ou a parede para sugerir um plano. Com essa peça, o aluno, poderá não só observar como também aprender melhor, manipulando as ligas de borracha coloridas, traçando os pontos, as retas, os polígonos, os poliedros, etc. e dar uma aula mais tranqüila. Com esse material poderemos ver manipulando Pontos; que pertencem a um plano e que não pertencem a um plano Nos poliedros; a) arestas; da face e da base, b) apótemas; da base e da face,
4 4 c) vértices, d) faces, e) alturas f) raio do polígono da base, g) diagonais; da base e do poliedro, h) tronco de pirâmide, i) o princípio de Cavalieri, No cilindro; circular reto ou de revolução: a) as bases b) geratrizes c) altura d) raios das bases No cilindro eqüilátero; a) bases b) geratrizes c) altura d) raios das bases e) secção meridiana No cone; reto ou oblíquo: a) superfície lateral b) base c) raio da base d) geratrizes e) eixo f) altura
5 5 g) secção Esse material vem acompanhado de manual de instruções, que o professor ou o aluno, ou os dois juntos, utilizará (ão), de acordo com o assunto do dia a ser desenvolvido na sala de aula. Conclusão Esse Método, reúne as necessidades que tem o professor de Matemática e de Geometria, não devia haver essa separação, de poder contar com recursos que possam facilitar o aprendizado do aluno que tanto clama por algo que venha fazer com que ele se interesse e venha a gostar dessas matérias que são consideradas, por eles, o bicho papão. Esse material é tão prático que qualquer aluno, seguindo as instruções do manual, não terá nenhum problema em verificar a facilidade de entendimento. Esperamos que esse trabalho venha contribuir no campo das ciências. REFERÊNCIAS BIBLIOGRÁFICAS Setani, Vitor - MATEMÁTICA Editora Ática, São Paulo, Dante, L. R. MATEMÁTICA Contexto Aplicações Editora Ática, São Paulo, Ielson, Gelson Dolce, Osvaldo Machado, Antônio MATEMÁTICA E REALIDADE, Editora Atual, São Paulo, 1991 e Gentil, Nelson Dos Santos, C. A. Marcondes Greco, Antônio Carlos Filho, Antônio Belloto - Greco Sérgio Emílio, MATEMÁTICA para o 2º Grau Editora Ática, São Paulo, Neto, Scipione Di Piero Matemática Conceitos e Histórias Editora Scipione, São Paulo, ª Edição, 2ª Impressão.
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Geometria Plana. Exterior do ângulo Ô:
Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio
EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO
DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...
RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL
GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
EMENTA ESCOLAR III Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 1ª série do Ensino Médio
EMENTA ESCOLAR III Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 1ª série do Ensino Médio Datas 31/agosto 01/setembro 02/setembro 07/setembro 08/setembro 09/setembro
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
ATIVIDADES COM GEOPLANO CIRCULAR
ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24
Conteúdo programático por disciplina Matemática 6 o ano
60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c
1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume
Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
Agrupamento de Escolas da Benedita. CONTEÚDOS ANUAIS 2º Ciclo - 5º Ano ANO LETIVO 2017/2018 AULAS PREVISTAS
CONTEÚDOS ANUAIS 2º Ciclo - 5º Ano ANO LETIVO 2017/2018 Disciplina:Matemática AULAS CONTEÚDOS PREVISTAS 5ºA 5ºB 5ºC 5ºD 5ºE 5ºF 5ºG 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP
Agrupamento de Escolas Cego do Maio Póvoa de Varzim (Cód ) INFORMAÇÃO PROVA - PROVA EQUIVALÊNCIA À FREQUÊNCIA (PEF)
INFORMAÇÃO PROVA - PROVA EQUIVALÊNCIA À FREQUÊNCIA (PEF) Matemática (62) MAIO DE 2019 Prova de 2019 2.º Ciclo do Ensino Básico O presente documento visa divulgar informações da prova de equivalência à
PLANIFICAÇÃO ANUAL Programa e Metas de Aprendizagem, apoiado pelas novas Orientações de Gestão para o Ensino Básico S- DGE/2016/3351 DSDC
Matemática /9º ano Página 1 de 9 Documentos Orientadores: PLANIFICAÇÃO ANUAL Programa e Metas de Aprendizagem, apoiado pelas novas Orientações de Gestão para o Ensino Básico S- DGE/2016/3351 DSDC Números
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.
Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).
Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição
Triângulos DEFINIÇÃO ELEMENTOS
Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
PLANO DE ESTUDOS DE MATEMÁTICA 9.º ANO
DE MATEMÁTICA 9.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de reconhecer propriedades da relação de ordem em, definir intervalos de números reais
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação
Desenho Técnico Página 11
Exercício 16 Concordância Interna de Circunferências Dada uma circunferência de centro O 1 conhecido, determine a circunferência de centro O 2 de tal forma que sejam concordantes internamente. Marque o
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
COLÉGIO MARQUES RODRIGUES - SIMULADO
COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos
GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR
GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR Olá, Professor! Assim como você, a Geekie também quer ajudar os alunos a atingir todo seu potencial e a realizar seus sonhos. Por isso, oferecemos
Lista de Recuperação Bimestral de Matemática 2
Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI Professora: ANA PAULA LIMA Matrículas: 09463027/09720475 Série: 2º ANO ENSINO MÉDIO Tutora: KARINA
Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.
01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas Curriculares
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 017/018 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS TEMPO (45 ) 3º CICLO MATEMÁTICA
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Geometria Plana - Aula 05
Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros
Revisional 3 Bim - MARCELO
6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são
Geometria Espacial - AFA
Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas Curriculares
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares 3º CICLO MATEMÁTICA 9ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização
ANO LETIVO 2017/2018... 1º PERÍODO DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos Aulas Previstas Medidas de localização
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Matemática Régis Cortes GEOMETRIA PLANA
GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano
9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas.
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Bruno Cervelin DME IFM Universidade Federal de Pelotas 27 de Junho de 2019 B Cervelin (UFPel) Polígonos 27 de Junho de 2019 1 / 17 Polígonos
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
TRIÂNGULOS. Condição de existência de um triângulo
TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta
1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento
Axiomas e Proposições
Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos
PLANO DE ENSINO DADOS DO COMPONENTE CURRICULAR
PLANO DE ENSINO DADOS DO COMPONENTE CURRICULAR Componente Curricular: Matemática II Curso: Técnico de Nível Médio Integrado em Informática Série/Período: 2º ano Carga Horária: 4 a/s - 160 h/a - 133 h/r
1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior
Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto
RETAS E CIRCUNFERÊNCIAS
RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos
Revisional 1º Bim - MARCELO
6º Ano Revisional 1º Bim - MARCELO 1) O que você te lembra (ponto, reta e plano) quando obrserva: a) uma cabeça de alfinete; b) um poste; c) um grão de areia; d) o encontro entre duas paredes; e) a capa
COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016
COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2016/2017
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2016/2017 PLANIFICAÇÃO DE MATEMÁTICA 9ºANO 1º Período 2º Período 3º Período Apresentação,
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
ATIVIDADES COM GEOTIRAS
ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13
Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15
Aula 9 Triângulos Semelhantes
MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
