Tópico B mtm B SISTEMAS LINEARES

Tamanho: px
Começar a partir da página:

Download "Tópico B mtm B SISTEMAS LINEARES"

Transcrição

1 Tópico B mtm B SISTEMAS LINEARES

2 Equação Linear Definição: Toda equação do tipo a 1.x 1 + a 2.x a n.x n = b onde x 1, x 2,..., x n são as incógnitas; (a 1, a 2,..., a n ) R são os coeficientes e b R é o termo independente da equação. Atenção! Equações do tipo: 2a² + 4b +c = 0 2ab + c + d = 3 a + b c = 4 Não são equações lineares. Exemplo : y. x = 3 Colocando no formato de função temos: y = 3 x Tem como gráfico uma hipérbole.

3 Sistema de Equações Lineares Exemplo 1: Classifique como Verdadeiro ou Falso. ( F ) A representação geométrica da equação 2x 3y + z = 7 é uma reta. ( V ) A representação geométrica do sistema de equações de retas x+y=9 são retas concorrentes. 2x - y = 3 Possíveis representações de sistema de equações de retas Retas Concorrentes Restas Paralelas Coincidentes Retas Paralelas Distintas

4 Sistema de Equações Lineares Definição: Um sistema de equações lineares consiste num conjunto de m equações lineares onde m 1. Solução do Sistema Par ordenado - S = {( x, y )}, S = {( a, b)},... Terno ordenado - S = {( x, y, z )}, S = {( a, b, c )},... N-upla ordenada - S = {( x, y, z,...)},... Obedecem a ordem alfabética. Exemplo 1: (UFSC) A equação x + a m = 0 obedece o terno ordenado ( 1, 2, 3 ). falso a m x x + a m = = 2

5 Sistema de Equações Lineares Classificação do Sistema Normal - nº de equações igual ao nº de variáveis. Não Normal - nº de equações diferente do nº de variáveis. Grau de Indeterminação do Sistema nº de variáveis, menos o nº de equações. { x + 2y = 5 3x-y=7 x +2y +2z =1 x +3y + z =3 G.I. = 1 S = {( - 3-4z, 2 + z, z )} x - 3y + z + 4w + t =5-2x - y +3z + w - t = 3 G.I. = 3 - x + y = - 1 3x-y =- 6-2x+y=0 G.I. = não há

6 Sistema Lineares sob Forma Matricial Todo sistema linear pode ser representado através de matrizes correspondentes aos seus coeficientes numéricos e sua parte literal. Exemplo 1: Escreva o sistema -3x + 4y = 7 5x - 2y = 0 na forma matricial. -3x + 4y = 7 5x - 2y = Matriz dos coeficientes Matriz das variáveis. x y = 7 0 Matriz dos termos independentes

7 Resolução de Sistema Lineares Resolução de Cramer x= x p x - Determinante de x, ou seja, calcula-se o determinante trocando a coluna dos coeficientes de x pela coluna dos termos independentes. p - Determinante principal. Calcula-se o determinante onde as colunas são os coeficientes das variáveis. y= y p y - Determinante de y. p - Determinante principal.

8 Resolução de Sistema Lineares Resolução de Cramer Exemplo 1: (UDESC) Resolva o sistema linear abaixo. x +2y +3z =1 2x + 4y +6z =2 3x +6y +9z = 4 x p= =0 Existem filas múltiplas Ex.: L 2 2. L 1

9 Resolução de Sistema Lineares Resolução de Cramer Exemplo 1: (UDESC) Resolva o sistema linear abaixo. x +2y +3z =1 2x + 4y +6z =2 3x +6y +9z = x= = y= = z= = L 2 2. L 1 L 2 2. L 1 L 2 2. L 1

10 Resolução de Sistema Lineares Resolução de Cramer Exemplo 1: (UDESC) Resolva o sistema linear abaixo. x= x 0 = p 0 y 0 y= = p 0 z= z 0 = p 0 x +2y +3z =1 2x + 4y +6z =2 3x +6y +9z = 4 Resolvendo por Cramer, encontramos um sistema possível indeterminado, ou seja, qualquer terno ordenado seria solução do sistema. Porém é evidente que isso é falso, pelo termo independente da última equação não ter a mesma constante de proporção que os coeficientes. Como Cramer fura em alguns casos, NÃO USE CRAMER!

11 Resolução de Sistema Lineares Resolução de Gauss Exemplo 1: (UDESC) Resolva o sistema linear abaixo. 1. Escolha uma equação. x +2y +3z =1 2x + 4y +6z =2 3x +6y +9z = 4 2. Escolha a variável que será cancelada. 3. Multiplique a equação escolhida por uma constante conveniente para eliminar a variável e some com a equação seguinte. 4. Repita o processo com todas as equações.

12 Resolução de Sistema Lineares Resolução de Gauss Exemplo 1: (UDESC) Resolva o sistema linear abaixo. x +2y +3z =1(-2)(-3) 2x + 4y +6z =2 3x +6y +9z = x - 4y - 6z = - 2 2x + 4y +6z =2 0x +0y +0z = 0-3x - 6y - 9z = - 3 3x +6y +9z = 4 0x +0y +0z =1 + Desta 2ª equação, concluímos que o sistema é impossível.

13 Resolução de Sistema Lineares Resolução de Gauss Exemplo 2: Na França, três turistas trocaram por francos franceses (F), no mesmo dia, as quantias que lhes restavam em dólares, libras e marcos, da seguinte forma: 1º turista: 50 dólares, 20 libras e 10 marcos por 180 F; 2º turista: 40 dólares, 30 libras e 10 marcos por 185 F; 3º turista: 30 dólares, 20 libras e 30 marcos por 200 F. Calcule o valor de 1 libra, em francos franceses, no dia em que os turistas efetuaram a transação. 50d+ 20l+10m = d+ 30l+10m = d+ 20l+ 30m = 200

14 Resolução de Sistema Lineares Resolução de Gauss Exemplo 2: 50d+ 20l+10m = d+ 2l+m = 18 (-1)(-3) 40d+ 30l+10m = 185 4d+ 3l+m = 18,5 30d+ 20l+ 30m = 200 3d+ 2l+ 3m = 20-5d- 2l- m= d+3l+m=18,5 -d+l = 0, d- 6l- 3m= d+2l+3m=20-12d - 4l= d+ l= 0,5 (-12) -12d- 4l= l= - 40 l=2,5f

15 Resolução de Sistema Lineares Sistemas Não-Normal Número de equações maior do que o de variáveis. Exemplo 1: Dê o conjunto solução do sistema abaixo: 1. Escolhe-se as equações para formar um sistema normal. 2. Resolve-se o sistema normal. x+2y=7 3x +5y =17 2x + y =2 3. Testa-se a solução encontrada nas outras equações.

16 Resolução de Sistema Lineares Sistemas Não-Normal Número de equações maior do que o de variáveis. Exemplo 1: Dê o conjunto solução do sistema abaixo: x+2y=7 (-3) + 3x +5y =17 - y = - 4 y=4 x+2y=7 x +2(4)=7 x+8=7 x=-1 x+2y=7 3x +5y =17 2x + y =2 2x + y =2 2(-1)+(4) = =2 2=2 S = {(-1, 4) }

17 Resolução de Sistema Lineares Sistemas Não-Normal Número de equações menor do que o de variáveis. Exemplo 1: Dê o conjunto solução do sistema abaixo: x+2y+2z=7 x +3y + z =3 1. Escolhe-se variáveis para transpor ao segundo membro, de tal maneira a formar um sistema normal no primeiro membro. 2. Resolve-se o sistema normal que ficou no primeiro membro. 3. A solução ficará em função das variáveis transposta para o segundo membro. Isso representa o grau de indeterminação do sistemas.

18 Resolução de Sistema Lineares Sistemas Não-Normal Número de equações menor do que o de variáveis Exemplo 1: Dê o conjunto solução do sistema abaixo: x+2y+2z=7 x +3y + z =3 x +2y =7-2z (-1) + x +3y =3 - z y=-4+z x +2y + 2z =7 x +2(- 4 + z)+ 2z =7 x z + 2z =7 S = x z =7 x =15-4z {( 15-4z, z, z) }

19 Discussão de Sistema Lineares Classificação S. P. D. - Sistema Possível Determinado Possível ou Compatível Determinado (solução única) x= R 0 Interpretação Gráfica da Solução Retas Concorrentes Verificação de um sistema pelos coeficientes x + 4y = 7 5x - 2y = S. P. D.

20 Discussão de Sistema Lineares Classificação S. P. I. - Sistema Possível Indeterminado Possível ou Compatível Indeterminado (infinitas soluções) x= =0 = 0 Interpretação Gráfica da Solução Restas Paralelas Coincidentes Verificação de um sistema pelos coeficientes. 3x +2y = 4 6x + 4y = x 2 As equações são múltiplas. = = 8 S. P. I.

21 Discussão de Sistema Lineares Classificação S. I. - Sistema Impossível Impossível ou Incompatível Não admite solução x= 0 = 0 Interpretação Gráfica da Solução Retas Paralelas Distintas Verificação de um sistema pelos coeficientes x +3y = 5 6x +9y = -8 = S. I.

22 Discussão de Sistema Lineares Exemplo 1: (UFSC ) O sistema linear possível e indeterminado. x+y+z=1 3x + 3y + 3z = 3 é 5x + 5y + 5z = 9 falso x+y+z=1 3x + 3y + 3z = 3 5x + 5y + 5z = 9 x 3 x? As equações não são múltiplas, logo o sistema não é S.P.I.

23 Discussão de Sistema Lineares Exemplo 1: (UFSC ) O sistema linear possível e indeterminado. x+y+z=1 3x + 3y + 3z = 3 é 5x + 5y + 5z = 9 falso Método de Gauss x+y+z=1 (- 5) 3x + 3y + 3z = 3 5x + 5y + 5z = x - 5y - 5z = - 5 5x + 5y + 5z = 9 0x +0y +0z = 4 S.I.

24 Discussão de Sistema Lineares Exemplo 1: (UFSC ) O sistema linear possível e indeterminado. x+y+z=1 3x + 3y + 3z = 3 é 5x + 5y + 5z = 9 falso Método dos coeficientes x+y+z=1 3x + 3y + 3z = 3 5x + 5y + 5z = = 1 S.P.I. 3 = 1 3 = = 1 5 = S.I.

25 Discussão de Sistema Lineares Exemplo 2: (IME) Faça a discussão, segundo os valores reais de m, do sistema nas incógnitas x e y. p= 2-1 m 1 p=2+m S. P. D. p 0 2+m 0 m - 2 2x - y =3 mx+y=-3 + Mostre o que acontece se m = x - y =3-2x+y=-3 0x + 0y = 0 S. P. I. S. P. D. m - 2 S. P. I. m = - 2 S. I. m R

26 Discussão de Sistema Lineares Exemplo 3: (UFRJ) Discuta, segundo os valores reais de a e b, sistema nas incógnitas x, y e z: p= a a p = 2a a - 2a p = 2a - 4a + 2 ax+y+z=1 2x + 2ay + 2z = 2 x+y+z=b S. P. D. p 0 2 2a - 4a a - 2a +1 0 a 1 Mostre o que acontece se a = 1.

27 Discussão de Sistema Lineares Exemplo 3: (UFRJ) Discuta, segundo os valores reais de a e b, sistema nas incógnitas x, y e z: ax+y+z=1 2x + 2ay + 2z = 2 x+y+z=b -x-y-z=-1 + S. P. D. x+y+z=b x+y+z=1 (-1) a 1 2x + 2y + 2z = 2 0x +0y +0z =b -1 x+y+z=b S. P. I. S. I. S. P. I. S. I. a= 1 a= 1 b-1= 0 b-1 0 b=1 b=1 b 1 b 1

28 Discussão de Sistema Lineares Exemplo 4: Discuta, segundo os valores reais de a, o sistema nas incógnitas x e y: x + 2y = 5 2x - y = - 5 3x + y = a + x + 2y = 5 2x - y = - 5(-2) x + 2y = 5 4x - 2y = x = - 5 x=-1 x + 2y = 5 (-1) + 2y =5 2y = 6 y=3 S. P. D. 3x + y = a 3(- 1) + 3= a a = 0 S. I. a 0 S. P. I. a R

29 Discussão de Sistema Lineares Exemplo 5: (IME) Faça a discussão do sistema abaixo nas incógnitas x, y e z em função do parâmetro real m. 2x - y + mz = 1 8x - 4y + 4z = 7 2x - y + mz = 1 (-4) 8x - 4y + 4z = x + 4y + -4mz = -4 8x - 4y + 4z = 7 0x + 0y +(-4m+ 4)z = 3 S. I. -4m+ 4 = 0 m= 1 S. P. D. / m R S. P. I. -4m+ 4 0 m 1

30 Discussão de Sistema Lineares Exemplo 6: (UFSC 2005) O par ordenado (x, y) = (5, 2) é a única x + 2y = 9 solução do sistema. 3x + 6y = 27 falso Única solução S.P.D. ΔP 0 x + 2y = 9 3x + 6y = 27 x 3 p= p = 6-6 = 0 As equações são múltiplas, logo o sistema é S.P.I.

31 Discussão de Sistema Lineares Exemplo 6: (UFSC 2005) O par ordenado (x, y) = (5, 2) é a única x + 2y = 9 solução do sistema. 3x + 6y = 27 falso Método de Gauss - 3x - 6y = x + 2y = 9 (- 3) 3x + 6y = 27 3x + 6y = 27 0x + 0y = 0 S.P.I.

32 Discussão de Sistema Lineares Exemplo 6: (UFSC 2005) O par ordenado (x, y) = (5, 2) é a única x + 2y = 9 solução do sistema. 3x + 6y = 27 falso Método dos coeficientes 1 3 = 2 6 = 9 27 x + 2y = = 1 3x + 6y = 27 S.P.I. 3 = 1 3

33 Sistemas Equivalentes Dois sistemas são equivalentes, se e somente se: 1. São possíveis e admitem as mesmas soluções. Exemplo: S 1 2x + y =2 x- y=1 1 2 S 2 3x - 4 y =3 5x - y =5 {( )} S=S =S = 1,0 2. São impossíveis (S = ) Obs: Cuidado com sistemas S. P. I. S 1 x+y=2 2x + 2y = 4 S 2 x+y=3 2x + 2y = 6 S 1 e S 2 não possuem as mesmas soluções.

34 Sistemas Homogêneos São aqueles em que os termos independentes de todas as equações são nulos. Exemplo: 2x +7y = 0 3x - y = 0 Todo sistema homogêneo é possível. Determinado (S.P.D.) - ΔP 0 Admite somente a solução trivial: S={(0, 0, 0,..., 0)} Indeterminado (S.P.I.) - ΔP = 0 Admite infinitas soluções além da trivial.

35 Sistemas Homogêneos Resolução de Sistemas Homogêneos Exemplo 1: (UFRJ) Resolva o sistema homogêneo abaixo. Monte um sistema não normal. x + 2y - z = 0 x + 3y + 2z = 0 3x + 8y + 3z = 0 x + 2y - z = 0 x + 3y + 2z = 0 3x + 8y + 3z = 0 x + 2y - z = 0 x + 3y + 2z = 0 x+2y=z (-1) x + 3y = -2z - x - 2y = - z + x + 3y = -2z y = - 3z

36 Sistemas Homogêneos Resolução de Sistemas Homogêneos Exemplo 1: (UFRJ) Resolva o sistema homogêneo abaixo. x + 2y - z = 0 x + 3y + 2z = 0 3x + 8y + 3z = 0 y = - 3z x + 2y - z = 0 x + 2( - 3z ) - z = 0 x - 6z - z = 0 x = 7z S = {( 7z, - 3z, z )}

37 Sistemas Homogêneos Discussão de Sistemas Homogêneos Exemplo 1: (UFSC 2003) O sistema 3x - 2y = 0 x + y = 0 é indeterminado. falso Infinitas soluções S.P.I. ΔP = 0 p= p = 3 - (- 2) = 5 p 0 S.P.D. 3x - 2y = 0 x + y = 0 x? As equações não são múltiplas, logo o sistema é S.P.D.

38 Sistemas Homogêneos Discussão de Sistemas Homogêneos Exemplo 1: (UFSC 2003) O sistema 3x - 2y = 0 x + y = 0 é indeterminado. falso Método dos coeficientes 3x - 2y = 0 x + y = S.P.D.

39 Tópico B mtm B FIM

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Eduardo. Matemática Sistemas Lineares

Eduardo. Matemática Sistemas Lineares Matemática Sistemas Lineares Eduardo Sistema de Equações Lineares Definição: Um sistema de equações lineares consiste num conjunto de m equações lineares onde m 1. Solução do Sistema Par ordenado - S =

Leia mais

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder

Leia mais

Sistemas de Equações lineares

Sistemas de Equações lineares LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1 3.2 SISTEMA LINEAR Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a 3,..., a n são números reais, que recebem o nome de coeficientes

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS MAT II SISTEMAS LINEARES

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS MAT II SISTEMAS LINEARES COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS Equação linear É Toda equação da forma: MAT II SISTEMAS LINEARES a a a números reais que recebem o nome de coeficientes das

Leia mais

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema.

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema. MATEMÁTICA MÓDULO 1 SISTEMA LINEAR Um sistema linear de m equações a n incógnitas é um conjunto de m (m 1) equações lineares a n incógnitas e pode ser escrito como segue: a a a b a a a b 11 1 1 1n n 1

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de

Leia mais

Hewlett-Packard SISTEMAS LINEARES. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard SISTEMAS LINEARES. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Aulas 0 a 04 SISTEMAS LINEARES Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário EQUAÇÕES LINEARES... Exemplo... Exemplo... EXERCÍCIOS FUNDAMENTAIS... SOLUÇÃO DE UMA EQUAÇÃO LINEAR...

Leia mais

Universidade Federal de Viçosa Campus de Florestal EXERCÍCIOS DE MATEMÁTICA NOME: Nº: TURMA: 2ºA DATA: / /

Universidade Federal de Viçosa Campus de Florestal EXERCÍCIOS DE MATEMÁTICA NOME: Nº: TURMA: 2ºA DATA: / / Universidade Federal de Viçosa Campus de Florestal EXERCÍCIOS DE MATEMÁTICA NOME: Nº: TURMA: ºA DATA: / / log log. ( UFV Seja a matriz A, onde é um número real positivo. Se det A, então o valor de é :

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)

APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA) APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA) 36 - TÓPICO 10.1 a 10.5 10. SISTEMAS LINEARES 10.1. EQUAÇÃO LINEAR 10.2. SISTEMA LINEAR Exemplos: É um sistema formado por equações lineares. APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo: Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A

Leia mais

2 Sistemas de Equações Lineares

2 Sistemas de Equações Lineares 2 Sistemas de Equações Lineares 2.1 Introdução Definição (Equação linear): Equação linear é uma equação da forma: a 1 x 1 +a 2 x 2 + +a n x n = b (1) na qual x 1,x 2,...,x n são as incógnitas; a 1,a 2,...,a

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

V MATRIZES E DETERMINANTES

V MATRIZES E DETERMINANTES V MATRIZES E DETERMINANTES Por que aprender Matrizes e Deter erminant minantes?... Algumas vezes, para indicar com clareza determinadas situações, é necessário formar um grupo ordenado de números dispostos

Leia mais

Álgebra Linear

Álgebra Linear Álgebra Linear - 09 Lista - Sistemas lineares ) Descreva todas as possíveis matrizes, que estão na forma escada reduzida por linha De acordo com a definição de uma matriz na forma escada reduzida por linhas

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA SISTEMAS LINEARES Aula 8 BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6). F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

x 3y +6z = 1 2x 5y +10z =0 3x 8y +17z =1

x 3y +6z = 1 2x 5y +10z =0 3x 8y +17z =1 Lista de Exercícios # - Métodos Quantitativos em Economia - FCE- UERJ Professor Pedro Hemsley - 0.. Identifique as equações lineares. R. Equações lineares: todas as variáveis devem ter expoente igual a,

Leia mais

Unesp GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR 2001

Unesp GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR 2001 Unesp GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR 001 4 Observe: 1) 3x y = 4 y = 3x 4-4 - 4 - -4 ) 3x + y z = 7 z = 3x + y 7 Equação sentença matemática Linear variáveis com expoente 1 Real coeficientes reais

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIR

INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIR INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIRO GRAU COM DUAS INCÓGNITAS 1.1 Definição: Um sistema

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 4º Bimestre/2012. Plano de Trabalho 1 SISTEMAS LINEARES

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 4º Bimestre/2012. Plano de Trabalho 1 SISTEMAS LINEARES FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 4º Bimestre/2012 Plano de Trabalho 1 SISTEMAS LINEARES Cursista: Izabel Leal Vieira Tutor: Paulo Alexandre Alves de Carvalho 1 SUMÁRIO INTRODUÇÃO........................................

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações.

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. 11º Ano Paralelismo e perpendicularidade de retas No espaço, duas

Leia mais

Uma equação de duas variáveis representa, geometricamente, uma reta no plano. Exemplo: x + y = 1

Uma equação de duas variáveis representa, geometricamente, uma reta no plano. Exemplo: x + y = 1 Uma equação de duas variáveis representa, geometricamente, uma reta no plano. Exemplo: x + y = 1 Na forma da função afim: y = x + 1 Temos uma variável livre: x. O valor de y depende do valor de x escolhido,

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande. Capítulo 3. Sistemas de Equações Lineares

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande. Capítulo 3. Sistemas de Equações Lineares Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande Capítulo Sistemas de Equações Lineares . Sistemas de Equações Lineares.. Definição Equação linear: É uma equação

Leia mais

Matemática. Resolução das atividades complementares { } {( )} ( ) ( ). M4 Sistemas lineares

Matemática. Resolução das atividades complementares { } {( )} ( ) ( ). M4 Sistemas lineares Resolução das atividades complementares Matemática M4 Sistemas lineares p. 8 Verifique se (, 4, ) é solução da equação x y z 4. x y z 4 x ; y 4; z? (4) 6 0 Não é solução. Dê duas soluções da equação linear

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Verão IME-USP Álgebra Linear - Lista 0

Verão IME-USP Álgebra Linear - Lista 0 Verão IME-USP 2019 - Álgebra Linear - Lista 0 araujofpinto janeiro 2019 1 Números reais 1. A função módulo. : R R é definida por x, se x 0 x = x, se x < 0 Mostre que: x = 0 se, e somente se, x = 0; x.y

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Sistema de Equaçõs Lineares

Sistema de Equaçõs Lineares Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by

Leia mais

7. Calcule o valore de x + y z sabendo que as

7. Calcule o valore de x + y z sabendo que as . Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Formação Continuada Nova EJA. Plano de Ação das unidades 29 e 30 (Módulo 3)

Formação Continuada Nova EJA. Plano de Ação das unidades 29 e 30 (Módulo 3) Formação Continuada Nova EJA Plano de Ação das unidades 29 e 30 (Módulo 3) Nome: Silas Carvalho Fernandes Regional: Metro III Madureira Tutora: Gisele Pereira de Oliveira Xavier Data: 2/06/2014 1. INTRODUÇÃO

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma:

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: Sistemas Lineares Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: s: 2 3 6 a) 5 2 3 7 b) 9 2 3 Resolução de sistemas lineares Metodo da adição 4 100

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Lista 1: sistemas de equações lineares; matrizes.

Lista 1: sistemas de equações lineares; matrizes. Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas

Leia mais

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares Módulo de Matrizes e Sistemas Lineares Sistemas Lineares Matrizes e Sistemas Lineares Sistemas Lineares Eercícios Introdutórios 9 3 5 7 = 4 5 Eercício. Determine quais das equações abaio são lineares +

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição

Leia mais

Sistemas Lineares. Prof.ª: Susana P. da Cunha de Matos

Sistemas Lineares. Prof.ª: Susana P. da Cunha de Matos Prof.ª: Susana P. da Cunha de Matos Historicização Na matemática ocidental antiga são poucas as aparições de sistemas de equações lineares. No Oriente, contudo, o assunto mereceu atenção bem maior. Com

Leia mais

PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I

PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I PROJETO SEEDUC FORMAÇÃO CONTINUADA DE PROFESSORES COLÉGIO ESTADUAL MARECHAL JUAREZ TÁVORA GRUPO

Leia mais

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas Lineares. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Sistemas Lineares Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)

Leia mais

1 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de (b)

1 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de (b) a Lista de Exercícios de MAT457 Escola Politécnica o semestre de 04 Resolva os seguintes sistemas: x + x x 3 + 3x 4 = a 3x + x x 3 + x 4 = 4 3x + 3x + 3x 3 3x 4 = 5 c x + x 3 + x 5 = x + x 3 + x 5 + x

Leia mais

Matemática I. Licenciatura em Economia. 1 Álgebra Linear. 1 o semestre 2012/13. Vectores e Matrizes Sejam 3 A = Determinar as matrizes:

Matemática I. Licenciatura em Economia. 1 Álgebra Linear. 1 o semestre 2012/13. Vectores e Matrizes Sejam 3 A = Determinar as matrizes: Matemática I 1 o semestre 1/1 Licenciatura em Economia Exercícios com soluções 1 Álgebra Linear Vectores e Matrizes 1.1. Sejam 1 A = 5, B = 1 1 1 Determinar as matrizes: 1 4 5, C = a) A + B; b) A B; c)

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear 2016/I 1. Escreva os seguintes sistemas na forma matricial: 2x 1

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016 CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 8- ÁLGEBRA MATRICIAL VERSÃO: 0.1 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: [email protected]

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Teste 1 de Matemática I - Curso de Arquitectura

Teste 1 de Matemática I - Curso de Arquitectura Teste de Matemática I - Curso de Arquitectura de Outubro de 9 - Teste B Resolva por eliminação de Gauss e descreva geometricamente o conjunto de soluções dos sistemas em R < x + y + z = (a) ( val) x +

Leia mais

x 1 + b a 2 a 2 : declive da recta ;

x 1 + b a 2 a 2 : declive da recta ; - O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Gabriella Teles)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Gabriella Teles) 7 PC Sampaio Ale Amaral Rafael Jesus Gabriel Ritter Semana (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os

Leia mais

LISTA DE EXERCÍCIOS 2017

LISTA DE EXERCÍCIOS 2017 CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas

Leia mais

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Uma experiência sobre o ensino de sistemas lineares

Uma experiência sobre o ensino de sistemas lineares Uma experiência sobre o ensino de sistemas lineares Adaptado do artigo de Maria Cristina Costa Ferreira Maria Laura Magalhães Gomes O estudo dos sistemas lineares está sempre presente nos programas de

Leia mais

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras:

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: SPD Sistema possível determinado: existe apenas um conjunto solução; SPI Sistema possível indeterminado:

Leia mais

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA ÍNDICE MATRIZES Definição 1 Igualdade 2 Matrizes Especiais 2 Operações com Matrizes 3 Classificação de Matrizes Quadradas 9 Operações Elementares 11 Matriz Equivalente por Linha 11 Matriz na Forma Escalonada

Leia mais

Trabalhos e Exercícios 1 de Álgebra Linear

Trabalhos e Exercícios 1 de Álgebra Linear Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais