INF1009.3WB: Lógica para computação
|
|
|
- Luiz Guilherme Amado Barroso
- 8 Há anos
- Visualizações:
Transcrição
1 INF1009.3WB: Lógica para computação Aula 0: Aula inaugural Cecília Englander Guilherme F. Lima Edward Hermann Lab. TecMF, Dep. Informática, PUC-Rio
2 Sumário 1. Apresentação da disciplina 2. Lógica, computação e matemática 0/11
3 INF1009.3WB: Lógica para computação, Guilherme F. Lima Prof.: Disc.:
4 Programa P1: Lógica proposicional Formalização Sintaxe Semântica (tabela-verdade) Tableaux P2: Lógica de primeira ordem (i) Formalização Sintaxe Tableaux P3: Lógica de primeira ordem (ii) Teoria dos conjuntos (básico) Semântica (estruturas) 1/11
5 Bibliografia principal Mortari, C. A. Introdução à Lógica. Unesp, São Paulo, Souza, J. N. d. Lógica para Ciência da Computação: Fundamentos de Linguagem, Semântica e Sistemas de Dedução. Campus, Rio de Janeiro, Silva, F., Finger, M., and Melo, A. Lógica para Computação. Thomson, São Paulo, /11
6 Bibliografia complementar Enderton, H. B. A Mathematical Introduction to Logic, 2nd ed. Academic Press, Boston, MA, USA, Smullyan, R. M. First-Order Logic. Dover Publications, New York, NY, USA, van Dalen, D. Logic and Structure, 5th ed. Springer-Verlag London, London, UK, /11
7 Lógica? Estudo da (boa) argumentação / ciência da dedução Provê meios sistemáticos para determinar se argumentos são válidos ou inválidos, i.e., sob quais condições suas conclusões decorrem das premissas Todo homem é mortal Sócrates é homem Sócrates é mortal Todo A é B C é A C é B x(h(x) M(x)) H(z) M(z) 4/11
8 Distinções A ciência que produz conclusões necessárias Pierce O princípio da falseabilidade é essencial Popper Matemática vs. Ciência Engenharia 5/11
9 Argumentos em matemática Teorema? Proposição que possui prova (demonstração) Prova? Argumento que estabelece que uma proposição é conclusão de um determinado conjunto de premissas premissa 1 premissa 2 premissa n conclusão 6/11
10 Alguns teoremas 1. h 2 = c c é irracional (Pitágoras, c. 350 a.c.) (Euclides, c. 300 a.c.) 3. Não existe um programa que testa se outro sempre para (Turing, 1935) 4. O programa que controla os trens do metrô não permite colisões (?) 7/11
11 Teoremas são úteis? Teorema. Toda curva fechada separa o plano em duas regiões disjuntas. (Jordan, 1887). 8/11
12 Como saber se um argumento é válido? 1. Os cientistas não podem provar que há aquecimento global. Portanto, o aquecimento global não existe. 2. Sabendo-se que as bruxas não existem, todas as bruxas possuem vassouras azuis. 3. Se jogamos bem, ganhamos. Ganhamos. Logo, jogamos bem. 4. Todos os que avançam a linha cairão no buraco. Alguém caiu no buraco, então alguém avançou a linha. 5. Tudo que é raro é caro. Um carro bom e barato é raro. Então um carro bom e barato é caro. 6. Alguns paulistanos são brasileiros. Alguns paulistas são brasileiros. Então alguns paulistanos são paulistas. 9/11
13 Argumentos: Resolução e explicação de problemas Problema Um quadro foi roubado de um museu. O ladrão [ou ladrões] fugiu [fugiram] de carro. Três suspeitos, A, B e C, foram interrogados. Estabeleceu-se o seguinte: Nenhuma outra pessoa, salvo A, B, e C, estava implicada no roubo C nunca pratica roubo sem usar A (e talvez outros) como cúmplice B não sabe dirigir A é inocente ou culpado? 10/11
14 Um paradoxo e um teorema da computação Paradoxo do barbeiro Numa cidade há um barbeiro que barbeia todos os homens que não se barbeiam (e apenas estes) Tal barbeiro pode existir? Problema da parada Não existe programa que para somente quando é aplicado a programas que não param (quando aplicados a si mesmos) Suponha que exista tal P, o que acontece se aplicarmos P(P)? 11/11
15 Fim
16 Prova por contradição: 2 é irracional Suponha que 2 é racional. Então, existe uma fração p q minimizada tal que 2 = p q ( ) Logo, ( 2) 2 = ( p q )2 = 2 = p2 q 2 = 2(q2 ) = p 2 = p 2 é par = p é par Seja p = 2a. Então 2(q 2 ) = p 2 = 2q 2 = (2a) 2 = 2q 2 = 4a 2 = q 2 = 2(a 2 ) = q é par Mas se p e q são pares, então p q não pode estar minimizada, o que contradiz ( ). Portanto, a hipótese original é falsa: não existe tal fração, i.e., 2 é irracional. Voltar
17 Prova por contradição: Problema da parada Suponha que existe um programa P tal que { 1 se f(f) não para P(f) = se f(f) para O que acontece se fizermos P(P)? P(P) = 1 = P(P) não para = P(P) = P(P) = = P(P) para = P(P) = 1 Logo, P(P) para P(P) não para O que é absurdo. Portanto, nossa suposição inicial é falsa: não existe tal programa P Voltar
INF1009.3WB: Lógica para computação
INF1009.3WB: Lógica para computação Aula 13: A sintaxe da lógica de primeira ordem (cont.) Cecília Englander Guilherme F. Lima Edward Hermann Lab. TecMF, Dep. Informática, PUC-Rio 2017.2 INF1009.3WB: Lógica
Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução
Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três
n. 18 ALGUNS TERMOS...
n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.
Introdução à Logica Computacional. Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00
Introdução à Logica Computacional Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00 Agenda Apresentação do Curso Ementa Bibliografia Apresentação à Lógica Conceitos Básicos Quem somos
Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti
Unidade II LÓGICA Profa. Adriane Paulieli Colossetti Relações de implicação e equivalência Implicação lógica Dadas as proposições compostas p e q, diz-se que ocorre uma implicação lógica entre p e q quando
Introdução à Lógica Matemática
Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
Lógica e Computação. Uma Perspectiva Histórica
Lógica e Computação Uma Perspectiva Histórica Alfio Martini Facin - PUCRS A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento
LÓGICA PARA COMPUTAÇÃO
LÓGICA PARA COMPUTAÇÃO Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Apresentação Conteúdo Programático Referência bibliográfica Avaliações Dados pessoais Rosalvo Ferreira de Oliveira
Matemática Computacional. Introdução
Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Lógica Proposicional Fórmulas e Precedência de Operadores
Lógica Proposicional Fórmulas e Precedência de Operadores Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 23 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 23 de março de 2015 1 / 18 1 Introdução
Lógica Computacional. Métodos de Inferência. Passos de Inferência. Raciocínio por Casos. Raciocínio por Absurdo. 1 Outubro 2015 Lógica Computacional 1
Lógica Computacional Métodos de Inferência Passos de Inferência Raciocínio por Casos Raciocínio por Absurdo 1 Outubro 2015 Lógica Computacional 1 Inferência e Passos de Inferência - A partir de um conjunto
Lógica Computacional
Aula Teórica 1: Apresentação Departamento de Informática 14 de Fevereiro de 2011 O que é a lógica? Lógica: de que se trata? A lógica está na base do raciocínio É um processo inerentemente humano, tão básico
Lógica Computacional
Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade
Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22
Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Introdução ao pensamento matemático
Introdução ao pensamento matemático Lisandra Sauer Geometria Euclidiana UFPel Uma das principais características da Matemática é o uso de demonstrações (provas) para justificar a veracidade das afirmações.
Prof.ª Dr.ª Donizete Ritter. MÓDULO II_PARTE 1: Lógica de Argumentação
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO II_PARTE 1: Lógica de Argumentação 1 Origem Aristóteles - filósofo grego - 342 a.c, sistematizou os conhecimentos
Gabarito da lista de Exercícios sobre Técnicas de Demonstração
Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Técnicas de Demonstração
Fundamentos de Lógica e Algoritmos. Aula 1.2 Introdução a Lógica Booleana. Prof. Dr. Bruno Moreno
Fundamentos de Lógica e Algoritmos Aula 1.2 Introdução a Lógica Booleana Prof. Dr. Bruno Moreno [email protected] Você está viajando e o pneu do seu carro fura! 2 Quais são os passos para se trocar
Turma A - Segundas e Quartas das 8h30min - 10h10min Turma B - Segundas e Quartas das 10h30min - 12h10min
UNIVERSIDADE DEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA TEÓRICA 2 Semestre 2008 04/08/2008 a 12/12/2008 DISCIPLINA: TEORIA DA COMPUTAÇÃO N CÓDIGO: INF05501. Horário:
Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação
impossível conclusão falso premissas verdadeiro
Argumento Definição: Um argumento é uma sequência de enunciados(proposições) na qual um dos enunciados é a conclusão e os demais são premissas, as quais servem para provar ou, pelo menos, fornecer alguma
Cálculo de Predicados
Cálculo de Predicados (Lógica da Primeira Ordem) Prof. Tiago Semprebom, Dr. Eng. Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José [email protected] 18 de maio de 2013
Matemática Discreta. Prof. Nilson Costa 2014
1 Matemática Discreta Prof. Nilson Costa [email protected] 2014 Definições Importantes 2 Proposição: É qualquer afirmação, verdadeira ou falsa, mas que faça sentido. Exemplos: A: Todo número maior
Fundamentos da Computação 1. Introdução a Argumentos
Fundamentos da Computação 1 Introdução a s Se você tem um senha atualizada, então você pode entrar na rede Você tem uma senha atualizada Se você tem um senha atualizada, então você pode entrar na rede
Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.
1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um
Lógica para Computação Introdução. José Gustavo de Souza Paiva
Lógica para Computação Introdução José Gustavo de Souza Paiva 1 Introdução Raciocínio: ato característico da inteligência humana Encadear premissas e extrair uma conclusão Premissa: afirmação ou negação
Lógica Computacional
Lógica Computacional 3.ano LCC e LERSI URL: http://www.ncc.up.pt/~nam/aulas/0304/lc Escolaridade: 3.5T e 1P Frequência:Semanalmente serão propostos trabalhos aos alunos, que serão entregues até hora e
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas.
n. 6 Equivalências Lógicas A equivalência lógica trata de evidenciar que é possível expressar a mesma sentença de maneiras distintas, preservando, o significado lógico original. Def.: Diz-se que uma proposição
RACIOCÍNIO LÓGICO. Lógica de Argumentação. Operadores Lógicos Parte 3. Prof. Renato Oliveira
RACIOCÍNIO LÓGICO Lógica de Argumentação. Parte 3. Prof. Renato Oliveira 1) Há três suspeitos de um crime: o cozinheiro, a governanta e o mordomo. Sabe-se que o crime foi efetivamente cometido por um ou
Lógica Matemática. Definição. Origem. Introdução
Lógica Matemática Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.
11/01/2016 LÓGICA MATEMÁTICA. O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos outros animais.
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com LÓGICA O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos
Lista 1 - Bases Matemáticas
Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade
Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade
Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 2 13 de agosto de 2010 Aula 2 Pré-Cálculo 1 Problemas de organização e erros frequentes Problemas
Lógica Proposicional Dedução Natural
Lógica Matemática Lógica Proposicional Dedução Natural Tiago Massoni "testando" argumentos dado que d c como fazer? e t d então c t 2 Assim... Testar argumentos com tabela verdade é proibitivo não escalável
Lógica Computacional Aulas 8 e 9
Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade
Lógica para Computação
Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,
UFMT. Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO
UFMT 1) IDENTIFICAÇÃO: Disciplina: Lógica Matemática e Elementos de Lógica Digital Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO Curso:
Expandindo o Vocabulário. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto. 12 de junho de 2019
Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA Expandindo o Vocabulário Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de junho de 2019
Lista 2 - Bases Matemáticas
Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE
Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Fundamentos de Lógica Lógica Proposicional
Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos
LÓGICA PARA COMPUTAÇÃO
LÓGICA PARA COMPUTAÇÃO Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Apresentação Conteúdo Programático Referência bibliográfica Avaliações Dados pessoais Rosalvo Ferreira de Oliveira
O que é a Teoria em Ciência da Computação. Introdução à Ciência da Computação Mário S. Alvim
O que é a Teoria em Ciência da Computação Introdução à Ciência da Computação Mário S. Alvim 2018-10-05 1 O que é computação? Algumas tentativas de definir o que é computação : É o ato de raciocinar seguindo
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Lógica Proposicional
Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
Demonstrações Matemáticas Parte 2
Demonstrações Matemáticas Parte 2 Nessa aula, veremos aquele que, talvez, é o mais importante método de demonstração: a prova por redução ao absurdo. Também veremos um método bastante simples para desprovar
CSE-020 Revisão de Métodos Matemáticos para Engenharia
CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
Lógica Computacional
Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores da FCUP Lógica Computacional Aula 1 http://www.dcc.fc.up.pt/~nam/web/teaching/lc2015/ index.html Cursos: LCC, MIERSI e (como Lógica
Lógica e Raciocínio. Introdução. Universidade da Madeira.
Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Introdução 1 Lógica... é a ciência que estuda os princípios e aproximações para estabelecer a validez da inferência e demonstração:
No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980)
Cálculo Infinitesimal I V01.2016 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitor: Lucas Porto de Almeida Lista A - Introdução à matemática No. Try not. Do... or do not. There is no try.
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Análise de Algoritmos
Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.
Lógica Proposicional Sintaxe
Lógica Proposicional Sintaxe José Gustavo de Souza Paiva Lógica Proposicional Forma mais simples da lógica Fatos do mundo real representados por sentenças sem argumento proposições Proposição Sentença
Lógica Proposicional Semântica e Tabelas Verdade
Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução
Lógica dos Conectivos: validade de argumentos
Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior
PENSAMENTO CRÍTICO. Aula 2. Profa. Dra. Patrícia Del Nero Velasco Universidade Federal do ABC
PENSAMENTO CRÍTICO Aula 2 Profa. Dra. Patrícia Del Nero Velasco Universidade Federal do ABC 2016-2 A fim de trabalhar o conceito de inferência, são propostos alguns enigmas lógicos extraídos da obra abaixo
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
Fundamentos da Computação 1. Aula 03
Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise
Estruturas Discretas INF 1631
Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Lógica Proposicional Propriedades Semânticas
Lógica Proposicional José Gustavo de Souza Paiva Introdução Relacionamento dos resultados das interpretações semânticas de fórmulas Teoria dos modelos estudo das relações entre propriedades sintáticas
5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas.
1 LIVRO Teorias Axiomáticas 5 AULA META: Apresentar teorias axiomáticas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Criar teorias axiomáticas; Provar a independência dos axiomas de uma
Aula 7: Dedução Natural 2
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa
Raciocínio lógico matemático
Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.1: O que é a lógica? 1 Lógica Parte da filosofia que trata das formas do pensamento em geral e das operações intelectuais que visam determinar
Para Computação. Aula de Monitoria - Miniprova
Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista
MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos
MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos Karina Girardi Roggia [email protected] Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa
Lógica Computacional DCC/FCUP 2017/18
2017/18 Funcionamento da disciplina Docentes: Teóricas: Sandra Alves Práticas: Sandra Alves e Nelma Moreira Página web http://www.dcc.fc.up.pt/~sandra/home/lc1718.html (slides de aulas e folhas de exercícios,
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2017 1 a Lista de Exercícios Tópico: Algumas questões de Lógica 1. Considere que, em
Lógica Proposicional
Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
