INF1009.3WB: Lógica para computação
|
|
|
- Fábio Câmara de Abreu
- 8 Há anos
- Visualizações:
Transcrição
1 INF1009.3WB: Lógica para computação Aula 13: A sintaxe da lógica de primeira ordem (cont.) Cecília Englander Guilherme F. Lima Edward Hermann Lab. TecMF, Dep. Informática, PUC-Rio
2 INF1009.3WB: Lógica para computação, Guilherme F. Lima Prof.: Disc.:
3 Programa P1: Lógica proposicional Formalização Sintaxe Semântica (tabela-verdade) Tableaux P2: Lógica de primeira ordem (i) Formalização Sintaxe Tableaux P3: Lógica de primeira ordem (ii) Teoria dos conjuntos (básico) Semântica (estruturas)
4 Sumário 1. Aula passada 2. Definições de predicados 3. Formalização de argumentos 1/9
5 Sintaxe da lógica de primeira ordem Alfabeto Símbolos lógicos e não-lógicos Expressões Sequências finitas de símbolos do alfabeto Termos Expressões que denotam objetos Fórmulas Expressões que potencialmente possuem valor de verdade Sentenças Fórmulas sem variáveis livres Pergunta. Variável livre vs. ligada? Pergunta. Fórmula vs. sentença? 2/9
6 Problema Formalize em AE as seguintes sentenças x é primo Há pelo menos um número primo Há exatamente um número primo Há pelo menos dois números primos Há exatamente dois números primos 3/9
7 Definições de predicados Toda fórmula ϕ com n variáveis livres define uma relação R ϕ (n-ária) no universo tal que R ϕ (x 1,..., x n ) sse ϕ(x 1,..., x n ) Exemplos Zero(x) := x = 0 AE Div(x, y) := z(x y = z) AE Vazio(x) := y (y x) Sets Sub(x, y) := z(z x z y) Sets Pergunta. O que acontece se ligarmos todas variáveis livres que ocorrem nos exemplos anteriores? 4/9
8 Notação (:=) Vamos escrever R(x 1,..., x n ) := ϕ(x 1,..., x n ) para indicar que R(x 1,..., x n ) é uma abreviação sintática da fórmula ϕ em que as ocorrências de variáveis livres aparecem substituídas por x 1,..., x n Exemplo (AE) Se Div(x, y) := z(x z = y) então Div(0, 0) é uma abreviação para z(0 z = 0) Div(0, S(0)) é uma abreviação para z(0 z = S(0)) Div(x, x) é uma abreviação para z(x z = x) Pergunta. Qual a diferença entre =,, e :=? 5/9
9 Exercício Considere a linguagem de primeira ordem People tal que Igualdade: Sim Símbolos de predicado: Homem 1, Mulher 1 Símbolos de função: pai 1, mãe 1 Defina os predicados Irmão(x, y): x é irmão de y FilhoÚnico(x): x é filho único Tia(x, y): x é tia de y Prima(x, y): x é prima de y Ancestral i (x, y): x é ancestral de nível i de y Pergunta. É possível definir simplesmente Ancestral(x, y)? 6/9
10 Formalização de argumentos Informalmente Um argumento é um conjunto de proposições em que uma delas é a conclusão e as demais são premissas (que justificam a conclusão) Formalmente Vamos escrever {ϕ 1, ϕ 2,..., ϕ n } ψ para indicar que é possível deduzir (provar) a conclusão ψ a partir do conjunto de premissas {ϕ 1,..., ϕ n } Exemplo (AE) { x(x > 0 S(x) > 0), S(0) > 0 } S(S(0)) > 0 7/9
11 Exercícios 1. Brian estuda linguística. Brian pertence ao clube de xadrez. Portanto, Brian estuda linguística e pertence ao clube de xadrez. 2. Alguém estuda linguística. Alguém pertence ao clube de xadrez. Então, alguém estuda linguística e pertence ao clube de xadrez. 3. Todo sólido é solúvel em algum líquido. Portanto, existe um líquido em que todo sólido é solúvel. 4. Apenas os secretários e administradores são elegíveis para o prêmio Desk Clean. Ian é elegível para o prêmio Desk Clean. Portanto, Ian é um secretário e um administrador. 5. Tudo que existe é material. Portanto, exatamente uma das seguintes afirmações é verdadeira: (i) nada é material ou (ii) algumas coisas materiais são mentais, e todas as coisas mentais são materiais. 8/9
12 Exercícios 6. Há um homem na cidade que faz a barba de todos os homens da cidade que não barbeiam a si mesmos. Portanto, existe um homem na cidade que se barbeia sozinho. 7. Cavalos são animais. Portanto, cabeças de cavalos são cabeças de animais. 8. A raiz quadrada de um quadrado perfeito é um número natural. Nenhum número natural é uma fração. A raiz quadrada de um número natural que não seja um quadrado perfeito não é uma fração. Por conseguinte, a raiz quadrada de um número natural não é uma fração. 9. Se ninguém contribui para a Oxfam, em seguida, há alguém que morre de fome. Portanto, há uma pessoa que morre de fome, se ele ou ela não contribui para a Oxfam. 9/9
13 Fim
INF1009.3WB: Lógica para computação
INF1009.3WB: Lógica para computação Aula 0: Aula inaugural Cecília Englander Guilherme F. Lima Edward Hermann Lab. TecMF, Dep. Informática, PUC-Rio 2017.2 Sumário 1. Apresentação da disciplina 2. Lógica,
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Lógica Computacional
Aula Teórica 2: da Lógica Proposicional Departamento de Informática 17 de Fevereiro de 2011 Descrição informal Lógica proposicional Objecto Ocupa-se do estudo do comportamento dos conectivos lógicos (negação,
Aula 12: Lógica de Predicados
Lógica para Computação Primeiro Semestre, 2015 Aula 12: Lógica de Predicados DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos estender a lógica proposicional para torná-la mais expressiva. Na lógica proposicional,
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
1 Lógica de primeira ordem
1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e
Lógica Computacional
Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Lógica de Predicados
Lógica de Predicados Slides da disciplina Lógica para Computação ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009
Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos
Notas de aula de Lógica para Ciência da Computação Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 27 de agosto de 2014 Sumário 1 Sintaxe
Programação em Lógica. UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010
Programação em Lógica UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010 Roteiro Introdução Conceitos Básicos Linguagens Lógicas Semântica de Modelos Semântica de Prova Programação
Lógica dos Quantificadores: sintaxe
Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
Lógica Computacional
Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
A linguagem da Lógica de Predicados (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Contextualização 2. Definições 3. Exemplos 4. Lista 3 O que não é
Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 12
Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 12 Nelma Moreira (DCC-FC) Fundamentos de Linguagens
Lógica dos Quantificadores: sintaxe e semântica intuitiva
Lógica dos Quantificadores: sintaxe e semântica intuitiva quantificação em domínios infinitos Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Quantificadores sobre domínios infinitos.
Introdução à Lógica de Predicados
Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere
Lógica Proposicional Fórmulas e Precedência de Operadores
Lógica Proposicional Fórmulas e Precedência de Operadores Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 23 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 23 de março de 2015 1 / 18 1 Introdução
Capítulo 8 Lógica de primeira Ordem
Capítulo 8 Lógica de primeira Ordem Tópicos 1. Contextualização 2. Definições 3. Exemplos 4. Questão desafio! 2 O que não é possível expressar em Lógica Proposicional? Todo tricolor é um campeão. Roberto
Método das Tabelas para Validade Petrucio Viana
GAN00166: Lógica para Ciência da Computação Texto da Aula 8 Método das Tabelas para Validade Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Simbolização de argumentos 1 1.1 Observação................................
Lógica Proposicional Sintaxe
Lógica Proposicional Sintaxe José Gustavo de Souza Paiva Lógica Proposicional Forma mais simples da lógica Fatos do mundo real representados por sentenças sem argumento proposições Proposição Sentença
Lógica de Predicados
Lógica de Predicados Rosen 47 6) Considere N(x) como o predicado x visitou Dakota do Norte, em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português. a) x
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
Alfabeto da Lógica Proposicional
Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de
A sintaxe do cálculo de predicados (II), cap. 7 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani
A sintaxe do cálculo de predicados (II), cap. 7 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani 1 1 Linguagens de primeira ordem (Onde se usa linguagem, vou preferir língua; porque o primeiro
Lógica para computação - Linguagem da Lógica de Predicados
DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem
Introdução. História. História 18/03/2012. Lógica para Ciência da Computação. O que é Lógica?
IFMG-Formiga Introdução Lógica para Ciência da Computação O que é Lógica? É a formalização de linguagem e raciocínio, além de meios para expressar (dar significado) a essas formalizações. Profª. Danielle
SCC Capítulo 2 Lógica de Predicados
SCC-630 - Capítulo 2 Lógica de Predicados João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis
Os Fundamentos: Lógica de Predicados
Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG - 2019/01
Lógica Computacional DCC/FCUP 2017/18
2017/18 1 Lógica de primeira ordem Linguagens da lógica de primeira ordem Termos Fórmulas Semântica de Lógica de primeira ordem Lógica de primeira ordem Na lógica proposicional não é possível representar
A Lógica de Primeira Ordem
Capítulo 10 A Lógica de Primeira Ordem A Lógica de Primeira Ordem: A necessidade de uma linguagem mais expressiva O cálculo proposicional possui limitações com respeito a codificação de sentenças declarativas.
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Teoria da Computação
Introdução Março - 2009 1 Noções e Terminologia Matemática Conjuntos Um conjunto é um grupo de objetos, chamados elementos ou membros, representado como uma unidade. O conjunto { 3, 41, 57} possui os elementos
Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.
Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.
Lógica Computacional
Lógica Computacional Lógica de Operadores Booleanos Interpretações Tautológicas, Lógicas e Analíticas Funcionalidade / Tabelas de Verdade dos Operadores Booleanos Consequências Tautológica, Lógica e Analítica
Introdução à Lógica Matemática
Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS Quantificadores Professora Dr. a Donizete Ritter 26 de julho de 2017 Ritter, D. (UNEMAT/DEAD/SI) LÓGICA 26 de julho de 2017 1 / 18 Sumário 1 INTRODUÇÃO 2 TIPOS
18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está
01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional
Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias
Faculdade de Informática e Tecnologia de Pernambuco Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Instruções 1. No início de cada seção da lista há uma sugestão
Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017
Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................
Lógica de Predicados
Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.
Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q
Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens)
Teoria das Lic. em Ciências da Computação Formais e Autómatos () Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Teoria das - LCC - 2010/2011 Dep. Matemática e Aplicações - Univ.
Lógica Computacional
Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Fundamentos de Lógica Matemática
Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução
Introdução à Logica Computacional. Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00
Introdução à Logica Computacional Aula 1 Ana Cristina Bicharra Garcia Segundas & Quartas 16:00-18:00 Agenda Apresentação do Curso Ementa Bibliografia Apresentação à Lógica Conceitos Básicos Quem somos
Lógica Computacional DCC/FCUP 2017/18
2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio
LÓGICA TEMPORAL COM RAMIFICAÇÕES (Branching time temporal logics)
LÓGICA TEMPORAL COM RAMIFICAÇÕES (Branching time temporal logics) UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA Lógica para computação Ananias Tessaro Bruno Fernandes Lucas Lopes Lógica
Aula 8: Tableaux Analíticos
Lógica para Computação Segundo Semestre, 2014 Aula 8: Tableaux Analíticos DAINF-UTFPR Prof. Ricardo Dutra da Silva O métodos de Dedução Natural não permite inferir a falsidade de um sequente, ou seja,
Introdução à Lógica Proposicional Sintaxe
Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe PASSOS PARA O ESTUDO DE LÓGICA Prof a Maria das Graças Marietto [email protected] 2 ESTUDO DE LÓGICA O estudo
Fundamentos da Computação 1. Aula 03
Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise
Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017
Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO
Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
1 TEORIA DOS CONJUNTOS
1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos Hisham Muhammad [email protected] PUC-Rio Sobre o professor Hisham H. Muhammad MSc. em Informática pela PUC-Rio Doutorando na área de Linguagens de Programação Grupo do LabLua,
MAT105 - Fundamentos de Matemática Elementar I
MAT105 - Fundamentos de Matemática Elementar I Prof. Dr. Diogo Machado ([email protected]) 1o semestre de 2016 Universidade Federal de Viçosa - UFV Departamento de Matemática Um dos mais importantes
Lógica Proposicional
Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 2 de junho de 2009 1 A linguagem da Lógica Proposicional Errata Caso você encontre algum erro nesse capítulo ou tenha algum
2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76
Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG 2019/01 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG - 2019/01 1 / 76
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na
Lógica para Computação
Aula 19 - Lógica de Predicados 1 Faculdade de Informática - PUCRS October 6, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Lógica de Predicados
Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação
Introdução à Logica Computacional Aula: Lógica Proposicional -Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Campos Sales (CE),
UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:
Lógica Computacional
Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade
