Métodos Quantitativos. aula 1
|
|
|
- Zilda Braga Diegues
- 9 Há anos
- Visualizações:
Transcrição
1 Métodos Quantitativos aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo
2 PROBABILIDADE CONDICIONAL - Informação Adicional Ter o privilégio do conhecimento prévio em relação ao mercado concorrente sempre faz a diferença na hora de escolher ou executar um negócio. Trabalhar com probabilidade, uma vez conhecida informação adicional, faz com que a imprevisibilidade no cálculo se torne menor.
3 Definição A probabilidade condicional de um evento A dado que se conhece um evento B, é igual a probabilidade da ocorrência conjunta de A e B, dividida pela probabilidade da ocorrência do evento B. P(A B) = P(A B) P(B)
4 Exemplo Jogou-se um dado com 6 faces. Uma vez que se verificou que o resultado é um número par, qual a probabilidade de ser? Ω = {1,,3,4,5,6} Espaço amostral A={número } = {} B={número par} = {,4,6} 1 P(A) = 6 3 P(B) = 6 1 {um numero } P(A B) = 3 {3 números pares} eventos
5 Exercício Dois dados são lançados. Sejam os eventos A = {a soma dos resultados é 10} B = { o primeiro resultado é maior que o segundo} Encontre a probabilidade P(B A).
6 Resposta O espaço amostral Resultado do segundo dado A \ B (1,1) (1,) (1,3) (1,4) (1,5) (1,6) (,1) (,) (,3) (,4) (,5) (,6) 3 (3,1) (3,) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,) (6,3) (6,4) (6,5) (6,6) Resultado do primeiro dados
7 Evento A (soma igual a 10) A \ B (1,1) (1,) (1,3) (1,4) (1,5) (1,6) (,1) (,) (,3) (,4) (,5) (,6) 3 (3,1) (3,) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,) (6,3) (6,4) (6,5) (6,6) O evento A = { (6,4), (5,5), (4,6) }. Só existe um caso onde o primeiro resultado é maior que o segundo {evento B}, que é o par (6,4). Logo P (B A) = 1 3
8 Observação Observe que a probabilidade de B ocorrer é diferente da probabilidade condicional. P(B) = ,41 A \ B (1,1) (1,) (1,3) (1,4) (1,5) (1,6) (,1) (,) (,3) (,4) (,5) (,6) 3 (3,1) (3,) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,) (6,3) (6,4) (6,5) (6,6)
9 Tipos de Decisão Decisão com Certeza Quando se escolhe a alternativa a ser tomada, já se sabe se o resultado final é bom ou não. Ex: {recebeu como prêmio um automóvel e recusou!} Decisão com Incerteza Quando se escolhe uma alternativa e não se sabe se a solução será acertada ou não. Ex: {compra de ações, aquisições de imóveis, etc.}
10 DECISÃO COM CERTEZA Decisão Boa Resultado BOM Decisão Ruim Resultado RUIM DECISÃO COM INCERTEZA Resultado Bom? Decisão Boa? Resultado Ruim? Decisão Ruim? Resultado Bom? Resultado Ruim?
11 Exemplo Você tem a oportunidade de ganhar R$100,00 se você acertar se a face de um dado é par ou ímpar. No entanto, essa oportunidade não é gratuita. Para jogar você deve pagar R$35,00. Há somente uma chance para investir. Você aceitaria? Como avaliar essa oportunidade?
12 As típicas respostas... Eu posso perder R$35,00, está barato esse jogo. Eu poderia ganhar R$100,00 e eu tenho muita sorte. Eu jogaria uma moeda para decidir. Eu preciso perguntar para a esposa. Eu não aposto em jogos. Minha taxa de retorno é...
13 A árvore da decisão A decisão a ser tomada é investir ou não investir R$35,00 na oportunidade de receber R$100,00 ou R$0,00. Não Investir Não Investir Ganhou +R$100,00 Investir -R$35,00 Perdeu R$0,00
14 Tipos de informações que ajudariam ao decisor O número de lados do dado. A freqüência dos resultados do dado para ver sua honestidade. Quem jogará o dado?
15 Como projetar o ramo da aleatoriedade? correto p 1-p incorreto R$100,00 R$0,00
16 Oportunidade é a soma dos possíveis resultados. Podemos escolher somente as oportunidades, não seus resultados. Oportunidade A Resultados para A Oportunidade B Resultados para B
17 Valor Monetário Esperado (VME) É a média dos resultados favoráveis e desfavoráveis ponderados pelas probabilidades.
18 Estudo de Caso Aquisição de Empresas Uma grande empresa deseja fazer uma aquisição de outras três empresas menores {A,B,C}, concorrentes do setor, em situação financeira complicada. A empresa compradora, no entanto, antes de realizar as aquisições, deseja traçar um cenário e avaliar a possibilidade de lucro nos meses após essas aquisições. As três empresas tem o seguinte comportamento:
19 EMPRESA A Deseja lançar dois produtos novos. A empresa acredita que com 80% de chances, o produto A 1 implacará e fornecerá um lucro de R$10,00 por produto e com 0% de chances um prejuízo de R$1,00 por produto. Da mesma forma para o produto A a empresa crê que com 40% de chances ele terá um lucro de R$4,00 por produto e 60% de chances de prejuízo de R$5,00 por produto. Essa empresa está em dúvida qual dos dois produtos ela lançará diante das concorrências do mercado e do setor. Existe por parte da diretoria 60% de chances de lançar o produto A 1 e 40% de chances de lançar A.
20 VME (A) ( 0, , ( 1) ) + 0,4 ( 0, ,6 ( 5) ) R$4, 1 VME (A) = 0,6 =
21 Empresa B Deseja lançar dois produtos novos. A empresa acredita que com 30% de chances, o produto B 1 implacará e fornecerá um lucro de R$3,00 por produto e com 70% de chances um prejuízo de R$3,00 por produto. Da mesma forma para o produto B a empresa crê que com 0% de chances ele terá um lucro de R$9,00 por produto e 80% de chances de prejuízo de R$5,00 por produto. Essa empresa também está em dúvida sobre qual dos dois produtos ela lançará diante das concorrências do mercado e do setor. Uma sondagem mostrou uma divisão entre os diretores sendo que 50% desejam lançar o produto B 1 e 50% desejam lançar B.
22 VME (B) VME(B) = 0,5 ( 0, ,7 ( 3) ) + 0,5 ( 0, 9 + 0,8 ( 5) ) = R$1, 7
23 EMPRESA C Também deseja lançar dois produtos novos. A empresa acredita que com 50% de chances, o produto C 1 fornecerá um lucro de R$4,00 por produto e com 50% de chances um prejuízo de R$5,00 por produto. Da mesma forma para o produto C a empresa crê que com 40% de chances ele terá um lucro de R$8,00 por produto e 60% de chances de prejuízo de R$4,00 por produto. Essa empresa também está em dúvida sobre qual dos dois produtos ela lançará diante das concorrências do mercado e do setor. Uma sondagem mostrou uma divisão entre os diretores sendo que 30% deseja lançar o produto C 1 e 70% de chances de lançar C.
24 VME (C) ( 0, ,5 ( 5) ) + 0,7 ( 0, ,6 ( 4) ) R$0, 41 VME (C) = 0,3 =
25 A árvore completa VME(A) VME(B) VME(C)
26 Qual a ordem das decisões? 1a. Preferência - A - VME: + R$4,1 a. Preferência - C - VME: + R$0,41 3a. Preferência - B - VME: - R$1,70
27 A Volatilidade do VME dp = ± VME(x ) VME(x) Valor quadrático médio Valor Médio ao quadrado
28 No Exemplo das Empresas Valor Quadrático Médio VME(A VME(B ) ) = = 0,6 0,5 ( ) ( 0, , ( 1) + 0,4 0, ,6 ( 5) ) = R$56, 68 ( ) ( 0, ,7 ( 3) + 0,5 0, 9 + 0,8 ( 5) ) = R$, 6 VME(C ) = 0,3 ( ) ( 0, ,5 ( 5) + 0,7 0, ,6 ( 4) ) = R$30, 79
29 Intervalo de Confiança para (68%) dp(a) = ± VME(A ) VME(A) dp(b) = ± VME(B ) VME(B) dp(c) = ± VME(C ) VME(C) = ± = ± = ± 56,68 (4,1),6 (1,7) 30,79 (0,41) = ± 39,7 = ± R$6,3 = ± 19,7 = ± R$4,4 = ± 30,6 = ± R$5,5
30 Cenários Otimistas e Pessimistas
ESTATÍSTICA. aula 3. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano
ESTATÍSTICA aula 3 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo Espaço Amostral Espaço amostral é o conjunto de todos os resultados possíveis de um experimento aleatório. Experimento aleatório
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
Técnicas de
Técnicas de Decisão @lucianodoll Desafio Ø 1. Ao lançar uma moeda: Ø se o resultado for Cara, você recebe R$100,00. Ø se for Coroa, você não recebe nada. 2. R$20,00 sem jogar. Qual alternativa você escolheria?
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo
Estatística Estatística Descritiva Ivonete Melo de Carvalho Conteúdo Definições; Tabelas e Gráficos; Medidas de tendência central; Medidas de dispersão. Objetivos Diferenciar população e amostra. Elaborar
Unidade: Risco e Retorno. Unidade I:
Unidade I: 0 Unidade: Risco e Retorno A análise de investimentos está baseada nas estimativas dos fluxos de caixa de um projeto. Nem sempre essas previsões de fluxo de caixa coincidem com os resultados
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
Estatítica Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 3 de Abril de 2008 Estatística Descritiva e exploratória 1 Introdução à análise exploratória de dados 2 Análise exploratória de dados: Medidas-resumo 3
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
DESCRIÇÃO DAS ATIVIDADES:
DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das
PROBABILIDADE CONTEÚDOS
PROBABILIDADE CONTEÚDOS Experimentos aleatórios Eventos Probabilidade Probabilidade de união de dois eventos Probabilidade de eventos independentes Probabilidade condicional AMPLIANDO SEUS CONHECIMENTOS
Aula 10 28/09/ Microeconomia. Comportamento do consumidor e incerteza. - PINDYCK (2007) Capítulo 5 até pg 138.
Aula 0 8/09/009 - Microeconomia. Comportamento do consumidor e incerteza. - PINDYCK (007) Capítulo 5 até pg 38. Para medir o risco é necessário saber:. Todos os resultados possíveis.. A probabilidade de
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
Estatística. Aula : Probabilidade. Prof. Ademar
Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 03/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 03/14 1 / 20 Probabilidade Prof. Tarciana Liberal (UFPB) Aula 3 03/14 2 / 20 Probabilidade
Métodos Quantitativos. aula 3
Métodos Quantitativos aula 3 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Simulação Empresarial Auxílio na tomada de decisão. Criação de cenários otimistas e pessimistas. Poder de previsão baseada em
2 Conceitos Básicos de Probabilidade
CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas
Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão
Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Fundamental no Brasil é o de valor esperado
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix
Unidade II ESTATÍSTICA APLICADA Prof. Luiz Felix Distribuição de frequências - média Cálculo da Média x = X i. f i n Onde: x média aritmética da distribuição de frequência X i ponto médio de cada classe
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)
ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos
Prof.: Joni Fusinato
Probabilidade Condicional Prof.: Joni Fusinato [email protected] [email protected] Probabilidade Condicional É a probabilidade de ocorrer um evento A sabendo-se que já ocorreu um evento B. Assim,
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Aula 04 Fundamentos de Microeconomia Escolha sob Incerteza Cap. 5 Pindyck e Rubinfeld
Aula 04 Fundamentos de Microeconomia Escolha sob Incerteza Cap. 5 Pindyck e Rubinfeld Introdução n Fazer escolhas na ausência de incerteza não envolve grandes dificuldades. n Como devemos escolher quando
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
PARTE 2. Profª. Drª. Alessandra de Ávila Montini
PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
Decisões Sequenciais Árvores de Decisão
Teoria da Decisão Decisão Uni-Objectivo Decisões Sequenciais Árvores de Decisão Árvores de Decisão Uma Árvore de Decisão é uma forma gráfica que se utiliza para representar um conjunto de decisões sequenciais,
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
Exercícios resolvidos sobre Teoremas de Probabilidade
Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.
Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
MATEMÁTICA NA ESCOLA 3ª SÉRIE 1º BIMESTRE TAREFA 4 REENVIO DO PLANO DE TRABALHO 2 HORACIO DE SOUZA LIMA GRUPO 2 TUTOR: EDESON DOS ANJOS SILVA
MATEMÁTICA NA ESCOLA 3ª SÉRIE 1º BIMESTRE TAREFA 4 REENVIO DO PLANO DE TRABALHO 2 HORACIO DE SOUZA LIMA GRUPO 2 TUTOR: EDESON DOS ANJOS SILVA PROBABILIDADE 02/04/2013 PONTOS POSITIVOS O trabalho em grupo
SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE
SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE Trabalho apresentado ao curso de Formação Continuada da Fundação CECIERJ - Consórcio CEDERJ. Orientadora: Danubia de Araujo Machado (Tutora) Grupo 2 Série:
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Contabilometria. Análise da Decisão
Contabilometria Análise da Decisão Fonte: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Contabilidade e Administração, Editora Atlas, São Paulo, 2010 Cap. 6 Análise da Decisão Decisão
Probabilidade e Estatística
Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3
Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão
Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3
Decisão Decidir Análise / Teoria da Decisão
Decisão Decidir é o acto de seleccionar uma linha de acção preferida entre várias alternativas existentes. Existem diversos instrumentos que podem contribuir para a tomada de decisões, dependentes do ambiente
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos
Avaliação de Empresas Profa. Patricia Maria Bortolon
Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1
Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol.
Risco Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Definição: A probabilidade de um resultado (de uma lotaria) é a possibilidade
Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.
Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Básico no Brasil é o de valor esperado de
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Pesquisa Operacional
Pesquisa Operacional Teoria da Decisão Estatística Ciência da Computação Diretoria dos Cursos de Informática Profa. Dra. Gisele Castro Fontanella Pileggi Problemas de Decisão Resolver problemas pessoas
Teoria das Probabilidades
Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento
Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
Patrícia Furtado da Rosa Feital da Silva. Introdução à Probabilidade
Patrícia Furtado da Rosa Feital da Silva Introdução à Probabilidade Trabalho apresentado ao Curso de Formação Continuada da Fundação CECIERJ Consórcio CEDERJ. Orientadora: Bianca Coloneze (Tutora) Grupo
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos
Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
Probabilidade Condicional e Independência
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 17/08/2011 Probabilidade
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
GABARITO DAS ATIVIDADES
Seção 1 Lançando Moedas e Dados Título da Atividade: Jankenpon 1 GABARITO DAS ATIVIDADES Para cada par de dados, denotemos por (i, j) o resultado i obtido no primeiro dado e o resultado j obtido no segundo
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Bio Estatística Aula 4
Bio Estatística 2011 - Aula 4 Claus Aranha 19 de Agosto de 2011 Percentis, Box Plot, Histograma e similares Revisão: Independência e Prob. Condicional Se eu jogo dois dados normais, D 1 e D 2. Quais dos
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
