DESCRIÇÃO DAS ATIVIDADES:
|
|
|
- Norma Veiga Castro
- 9 Há anos
- Visualizações:
Transcrição
1 DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das chances de ganhos em jogos, introduzir noções probabilísticas, construir tabela de dupla entrada e representação gráfica. 1.1) Descrição do jogo: O jogo é feito em dupla. Cada um dos participantes recebe três palitos. Os participantes apostam qual a soma de palitos que serão por eles mostrados. Depois de feitas as apostas, cada um abre a mão mostrando o número de palitos. O vencedor da rodada será aquele que acertar a soma. Uma vez conferido o resultado o jogador deve baixar para mesa um palito. Em cada rodada os participantes registram suas apostas, o resultado e o nome do vencedor daquela rodada. O vencedor do jogo será aquele que baixar para a mesa todos os palitos. 1.2) Ação 1 - Deixar que os participantes joguem por algum tempo 1.3) Ação 2- Investigando o jogo 1.3.1) Simulando as possíveis colocações de palito(s) na mão, construir uma tabela de dupla entrada e complete-a com todos os resultados possíveis ) Utilizando papel quadriculado, construir um gráfico que mostre de quantas maneiras cada soma pode ser obtida. 1.4) Ação 3 - Investigando a tabela e/ou o gráfico: serão apresentadas questões que possibilitem aos participantes investigar chance e probabilidade de um evento acontecer, tais como, qual o número total de adições que podemos obter? Qual a probabilidade de acontecer a maior soma? Qual a chance de acontecer a menor soma? Qual soma tem maior chance de acontecer? Qual a probabilidade desta soma acontecer? Quais somas têm menores chance de acontecer? Qual a probabilidade de soma igual a 1, 2, 4 e 5? Qual a probabilidade da soma ser menor que 3? E maior que 3? etc ) Retomando ao jogo: Agora que você jogou, respondeu as questões acerca do jogo, você faria as mesmas opções?
2 2) O objetivo deste jogo é: - Calcular a probabilidade de par e ímpar em um jogo de dados. - Representar na forma de razão e porcentual a chance de ocorrência de um evento. 2.1) Divida os alunos em duplas, distribua os dados e proponha que joguem. Explique que, antes de iniciar, cada dupla tem de decidir quem será par e quem será ímpar. Para começar, os dados devem ser lançados juntos. Depois, basta multiplicar os pontos da face superior de cada um. Se o produto for par, ponto para o jogador par. Se for ímpar, ponto para o oponente. O jogo termina após dez lançamentos e vence quem fizer o maior número de pontos. As duplas devem registrar os resultados em uma tabela como esta: Proponha a realização do jogo por três rodadas e observe atentamente as reações dos estudantes conforme as rodadas avancem, pois a turma pode estranhar a repetição de resultados. 2.2) Discuta com a moçada qual dos resultados mais apareceu. Provavelmente os alunos dirão "par". Questione o motivo. É provável que, num primeiro momento, o grupo descreva as possibilidades utilizando os registros da tabela. Incentive todos a generalizar as possibilidades de resultados da multiplicação da face superior dos dois dados. Por exemplo: "A multiplicação de um número par por um par resulta em um par". Registre no quadro, usando um diagrama ou um esquema conhecido como a árvore das possibilidades, a combinação dos possíveis resultados, como os exemplos:
3 Explique que conhecendo todas as possibilidades de resultados, é possível pensar na chance que o resultado par ou ímpar tem de vencer, comparando o número de possibilidades favoráveis em relação ao número de possibilidades. 2.3) Questione a moçada sobre a chance que o aluno que escolher ímpar tem de vencer. Observe os registros e verifique se há duplas que fizeram a anotação na forma de razão ou porcentual. É esperado que os estudantes concluam que quem escolheu par tem 3 chances em 4 e quem escolheu ímpar só tem 1 em 4. Caso não apareçam registros de natureza diferentes, promova uma análise de questões. Por exemplo: "Como registrar, utilizando uma razão, a chance de vencer quem escolheu par e de quem escolheu ímpar? Qual a forma percentual desses registros?" Nesse caso, é esperado que os alunos reconheçam que podemos representar esses resultados pela razão (par: 3/4 e ímpar: 1/4) e que os registros porcentuais que equivalem a essas razões são, respectivamente, 75 e 25%. Ou seja, a chance de o par vencer é maior do que a do ímpar. Explique que muitas vezes nos deparamos com situações que possibilitam diferentes resultados e precisamos saber qual é a chance de um desses resultados se realizar ou não e que o campo da Matemática que se dedica a esse estudo é chamado probabilidade.
4 3) JOGANDO E GANHANDO 3.1) Material: 2 dados comuns. 3.2)Procedimento: A sala deverá ser dividida em grupos de 4 alunos. Cada grupo trabalhará com 2 dados. Os alunos deverão ler o texto a seguir, completar as tabelas e responder as questões, sob a supervisão do professor. Você tem em suas mãos dois dados que devem ser jogados simultaneamente. Cada jogador escolhe um número do conjunto {2,3,4,5,6,7,8,9,10,11,12} e faz sua aposta. Se a soma dos números mostrados nas faces de cima dos dados for o número escolhido, o jogador ganha um ponto. A sorte está lançada! Vence quem fizer o maior número de pontos. Anote com um X na tabela a seguir os resultados encontrados nos dados: Dado Dado Cada jogador deverá fazer 10 lançamentos, anotando na tabela abaixo quantas vezes cada soma saiu: Soma Número de vezes Obs.: Lembremos que a probabilidade de um evento ocorrer é o quociente do número de casos favoráveis pelo número de casos possíveis. Assim, a probabilidade da soma ser 2 é 1/36, isto é, das 36 possibilidades para a soma, somente 1 é favorável (quando os dois dados apresentarem simultaneamente 1 na face de cima). Questões: 1) Qual a probabilidade da soma ser 12?
5 2) Em qual número se deve apostar para ter a maior probabilidade de vencer? Por quê? 3) Desenhe um histograma colocando no eixo-x as somas de 2 a 12 e no eixo-y o denominador das probabilidades de ocorrência de cada soma.
Patrícia Furtado da Rosa Feital da Silva. Introdução à Probabilidade
Patrícia Furtado da Rosa Feital da Silva Introdução à Probabilidade Trabalho apresentado ao Curso de Formação Continuada da Fundação CECIERJ Consórcio CEDERJ. Orientadora: Bianca Coloneze (Tutora) Grupo
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
JOGOS E BRINCADEIRAS PARA ENSINAR E APRENDER PROBABILIDADE E ESTATÍSTICA NAS SÉRIES INICIAIS DO ENSINO FUNDAMENTAL
JOGOS E BRINCADEIRAS PARA ENSINAR E APRENDER PROBABILIDADE E ESTATÍSTICA NAS SÉRIES INICIAIS DO ENSINO FUNDAMENTAL Sandra Gonçalves Vilas Bôas Campos CEMEPE Centro Municipal de Estudos e Projetos Educacionais
MATEMÁTICA NA ESCOLA 3ª SÉRIE 1º BIMESTRE TAREFA 4 REENVIO DO PLANO DE TRABALHO 2 HORACIO DE SOUZA LIMA GRUPO 2 TUTOR: EDESON DOS ANJOS SILVA
MATEMÁTICA NA ESCOLA 3ª SÉRIE 1º BIMESTRE TAREFA 4 REENVIO DO PLANO DE TRABALHO 2 HORACIO DE SOUZA LIMA GRUPO 2 TUTOR: EDESON DOS ANJOS SILVA PROBABILIDADE 02/04/2013 PONTOS POSITIVOS O trabalho em grupo
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
Plano de Trabalho 2 Introdução a Probabilidade
Formação Continuada para professores de Matemática Fundação CECIERJ/ SEEDUC- RJ Professora: Linna Patrícia D. Mendes 3ºano do Ensino Médio Grupo 2 Tutor: Edeson dos Anjos Silva Plano de Trabalho 2 Introdução
PLANO DE TRABALHO SOBRE PROBABILIDADE.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Colégio Estadual Santos Dias PROFESSOR: André de carvalho Rapozo MATRÍCULA: 0870081-7 SÉRIE: 3 ano do Ensino Médio
Total de gols no jogo: Nesse caso o cliente tem a opção de escolher o total de gols que vão acontecer na partida, somando os gols das duas equipes.
Vencedor do encontro: São apostas simples aonde o cliente escolhe se o time da casa vence, se vai dar empate entre as equipes ou o time de fora vence a partida. Total de gols no jogo: Nesse caso o cliente
Escola Adventista Thiago White
Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
Jogo do Feche a caixa
Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília Objetivos Introduzir o conceito de probabilidade. Conteúdos abordados Raciocínio combinatório; Probabilidade; Inequações. Metodologia
GABARITO DAS ATIVIDADES
Seção 1 Lançando Moedas e Dados Título da Atividade: Jankenpon 1 GABARITO DAS ATIVIDADES Para cada par de dados, denotemos por (i, j) o resultado i obtido no primeiro dado e o resultado j obtido no segundo
Introdução. Variações Sobre um Mesmo Tema: Zigue-Zague e as Expressões Numéricas. Pró Reitoria de Graduação - Núcleos de Ensino da UNESP
Resumo: Variações Sobre um Mesmo Tema: Zigue-Zague e as Expressões Numéricas Com o objetivo de permitir ao aluno o desenvolvimento de competências como disciplina, concentração, perseverança e flexibilidade,
INTRODUÇÃO ÀS PROBABILIDADES15
INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências
JOGOS MATEMÁTICOS 2º ANO
JOGOS MATEMÁTICOS 2º ANO ENCONTRE 1 Objetivos: - Realizar operações de adição e/ou subtração. - Estimular o cálculo mental. - Compor o número 1 com duas parcelas. Número de jogadores: 2 ou 4. Materiais:
Selecionando as Dezenas
Selecionando as Dezenas (1) Ao fazer um Jogo, qual é a sua estratégia (*)? (*) Estratégia: planejamento de uma ação para conseguir um resultado Bem, uns apostadores dizem: Ah, eu só faço Jogos Fechados,
Probabilidade Condicional
18 Probabilidade Condicional Sumário 18.1 Introdução....................... 2 18.2 Probabilidade Condicional............... 2 1 Unidade 18 Introdução 18.1 Introdução Nessa unidade, é apresentada mais uma
TÓPICO. Fundamentos da Matemática II INTRODUÇÃO ÀS PROBABILIDADES14. Licenciatura em Ciências USP/ Univesp. Vanderlei S. Bagnato
INTRODUÇÃO ÀS PROBABILIDADES14 TÓPICO Vanderlei S. Bagnato Fundamentos da Matemática II 14.1 Introdução 14.2 Definição de Probabilidade 14.3 Adição de probabilidade 14.4 Multiplicação de Probabilidades
ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)
1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos
Professor APRESENTAÇÃO
1 Compartilhar Ideias Macaquinhos no Zoo. 15 a 0 min Em 4 ou 8 grupos, conforme o número total de alunos. Individual Um novo olhar... Vamos ao Zoo! 0 a 30 min Nos mesmos grupos, com discussão coletiva.
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE
SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE Trabalho apresentado ao curso de Formação Continuada da Fundação CECIERJ - Consórcio CEDERJ. Orientadora: Danubia de Araujo Machado (Tutora) Grupo 2 Série:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ - 3º ANO - 1º BIMESTRE. Colégio: COLÉGIO ESTADUAL EDMUNDO BITENCOURD
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ - 3º ANO - 1º BIMESTRE Colégio: COLÉGIO ESTADUAL EDMUNDO BITENCOURD Professor: VALTER FERNANDES COSTA Matrículas: 09149162
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Probabilidade Matemática Ensino médio 4min32seg. Habilidades: H10. Utilizar os princípios probabilísticos
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Qual é a sua chance? Dinâmica 6 3ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª do Ensino Médio Numérico Aritmético Introdução à probabilidade Primeira Etapa
PEGUE 10. Quantidade: 08 unidades
1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
O JOGO DOS DISCOS INTRODUÇÃO DISCUSSÃO PROCEDIMENTO ORIENTAÇÃO PARA O PROFESSOR
MATEMATICA 2 2 O JOGO DOS DISCOS ORIENTAÇÃO PARA O PROFESSOR INTRODUÇÃO Através desse jogo bem interessante o professor pode abordar o conceito de probabilidade geométrica, que normalmente não é visto
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
Jogo dos Totais 3º ao 5º ano
Introdução Jogo dos Totais 3º ao 5º ano Esta atividade é uma forma divertida de desenvolver a compreensão sobre quantidades e maneiras de perfazer um total de 25. Nela, os alunos terão a oportunidade de
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Básico no Brasil é o de valor esperado de
Lista 3 - Introdução à Probabilidade e Estatística
Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
À procura dos números primos
Prática Pedagógica À procura dos números primos Com eles, é possível escrever outros números. Ensine a moçada a usar essa estratégia Cauê Marques NOVA ESCOLA Beatriz Vichessi A decomposição em fatores
Experimento. O experimento. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação
Análise de dados e probabilidade O experimento Experimento Jogo da trilha 1. 2. 3. Objetivos da unidade Discutir, através de um jogo, o conceito de probabilidade condicional; Desenvolver a habilidade necessária
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 03/14 1 / 49 Conceitos Fundamentais Prof. Tarciana Liberal
NÍVEL 3 - Prova da 2ª fase - Soluções
NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x
Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução
RESOLUÇÃO DE PROBLEMAS E OPERAÇÕES
Formação Continuada - Matemática RESOLUÇÃO DE PROBLEMAS E OPERAÇÕES Professores - 5º ano 11/09/2015 Coordenadora Pedagógica: Adriana da Silva Santi Defasagens ou dificuldades em quais conteúdos você acha
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio )
QUESTÕES OBJETIVAS PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio 004-006) 09. Num determinado jogo, cada participante recebe uma ficha circular (tipo uma moeda) com um número impresso em cada uma das
Os jogos nas aulas de matemática
Os jogos nas aulas de matemática Materiais necessários para esta aula: Giz de cera Papel grande (cartolina, pardo etc.) Dados Cartas de baralho JOGO DOS PONTOS Que habilidades ou conceitos podem ser trabalhados
Conteúdo(s) - Grandezas e Medidas; - Tratamento da Informação. Ano(s) 4º e 5º. Tempo estimado Uma a duas aulas.
Objetivo(s) - Comparar e ordenar números naturais de qualquer ordem de grandeza; - Utilizar medidas de tempo em conversões simples entre meses e dias/ meses e semanas/ meses e anos; - Estabelecer relações
INTRODUÇÃO À PROBABILIDADE
Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano 1º Bimestre AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO INTRODUÇÃO À PROBABILIDADE TAREFA 4 Cursista: Thais Monteiro
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
Analista TRT 10 Região / CESPE 2013 /
Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também
RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS
CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV
O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Fundamental no Brasil é o de valor esperado
2. Se A e B são acontecimentos incompatíveis, a sua interseção é o conjunto vazio, pelo que
reparar o Exame 0 06 Matemática ágina 6. nalisemos cada opção: : e não são contrários pois a sua união não é o espaço amostral. Há, ainda, bolas pretas. : e não são contrários pois a sua união não é o
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória Tarefa nº 1 1. Verdadeiro ou Falso? 1.1. É pouco provável tirar um rei ao acaso de um baralho de 52
Roteiro de trabalho para o 1o ano
Roteiro de trabalho para o 1o ano No volume do 1º ano estão assim organizados os conteúdos e as habilidades a serem desenvolvidos no decorrer do ano. LIÇÃO CONTEÚDO OBJETOS 1. Grandezas e medidas Comparação
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
JOGOS Bruno Holanda, Fortaleza CE
JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando
8 A do total de lançamentos, ou seja, x = 5625 Resposta: C
Página 7 Preparar o Exame 0 07 Matemática A. x7x 7 Observa que sair primeiro o sabor laranja e depois o sabor morango são casos diferentes x Resposta: D. Repara que se os dois primeiros rebuçados foram
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
SUSHI GO!TM R RE E EG G GR R RA A AS S S D D DO O O J J JO O OG G GO O
SUSHI GO! TM REGRAS DO JOGO CONTEÚDO 108 CARTAS 14x Tempurá 14x Sashimi 14x Bolinho 12x 2 Maki rolls 8x 3 Maki rolls 6x 1 Maki roll PREPARAÇÃO 10x Nigiri de Salmão 5x Nigiri de Lula 5x Nigiri de Ovo 10x
Prof.: Joni Fusinato
Probabilidade Condicional Prof.: Joni Fusinato [email protected] [email protected] Probabilidade Condicional É a probabilidade de ocorrer um evento A sabendo-se que já ocorreu um evento B. Assim,
A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA
A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA JOSINALVA ESTACIO MENEZES UFRPE [email protected] TEMA: SOFTWARE E HARDWARE Aplicativos
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Métodos Quantitativos. aula 1
Métodos Quantitativos aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo PROBABILIDADE CONDICIONAL - Informação Adicional Ter o privilégio do conhecimento prévio em relação ao mercado
Formação Continuada em Matemática. Matemática - 3º Ano - 2º Bimestre/2014. Plano de Trabalho 1. Probabilidade
Formação Continuada em Matemática Fundação CECIERJ Matemática - 3º Ano - 2º Bimestre/2014 Plano de Trabalho 1 Probabilidade Tarefa 2: Cursista: Paula Leite Pinto Tutora: Bianca Coloneze Probabilidade Introdução
ADMINISTRAÇÃO GERAL. Gestão da Qualidade. Ferramentas da Qualidade Parte 6. Prof. Fábio Arruda
ADMINISTRAÇÃO GERAL Gestão da Qualidade Ferramentas da Qualidade Parte 6 Prof. Fábio Arruda 7- Diagrama de Dispersão O Diagrama de Dispersão é um gráfico onde pontos no espaço cartesiano XY são usados
INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II. 25 de agosto de 2017
Sumário REPRESENTAÇÃO DOS NÚMEROS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Sistemas de Numeração
PROPOSTA DIDÁTICA. 1) João tem R$ 84,30. Pedro tem R$ 31,50 a mais que João, e José tem R$ 54,25 a mais que Pedro. Quanto tem os três juntos?
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º anos 1.3 Tempo da aula: 2,5 horas 1.4 Conteúdo desenvolvido: Operações Fundamentais com
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
Jogo dos Totais 1º e 2º anos
Jogo dos Totais 1º e 2º anos Introdução Esta atividade é uma forma divertida de desenvolver a compreensão sobre quantidades e maneiras de perfazer um total de 10. Nela, os alunos terão a oportunidade de
CONTEÚDOS E DIDÁTICA DE MATEMÁTICA
Oper ações Ao realizar operações com números naturais, os alunos ampliam seu conhecimento sobre os números e o sistema de numeração decimal. Por isso, operar com o sistema de numeração decimal a partir
Experimento. Guia do professor. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação
Análise de dados e probabilidade Guia do professor Experimento Jogo da trilha Objetivos da unidade 1. Discutir, através de um jogo, o conceito de probabilidade condicional; 2. Desenvolver a habilidade
OPERAÇÕES BÁSICA NO CONJUNTO DOS COMPLEXOS
WILLIAM OLIVEIRA MENEZES JUNIOR OPERAÇÕES BÁSICA NO CONJUNTO DOS COMPLEXOS Trabalho apresentado ao curso de formação continuada da fundação CECIERJ Tutora: Maria Cláudia Padilha Tostes Grupo 02 Instituição:
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ MATEMÁTICA 3ª SÉRE 2º BIMESTRE/2013 1º CAMPO CONCEITUAL PLANO DE TRABALHO CURSISTA: ELIANA CRUZ WERMELINGER TUTORA: SUSI CRISTIANE BRITTO
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números
Regras do jogo equipe de evolução de software /6/2006 versão 2.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Regras do Jogo Objetivo do jogo: Os jogadores competem para terminar um projeto
EXERCÍCIOS DE SALA EXERCÍCIOS PROPOSTOS
Professor: Thiago Pacífico OSG 47/16 EXERCÍCIOS DE SALA 1 4 6 7 8 9 10 B C A B A C C A B C 11 1 1 14 1 16 17 18 19 0 C D E B A D B D B B EXERCÍCIOS PROPOSTOS 1. Calculando as probabilidades linha a linha:
Universidade Federal do Ceará Pós-Graduação em Modelagem e Métodos Quantitativos Mestrado Acadêmico na Área Interdisciplinar
Universidade Federal do Ceará Pós-Graduação em Modelagem e Métodos Quantitativos Mestrado Acadêmico na Área Interdisciplinar Prova Escrita - Estatística e Matemática Pós-Graduação em Modelagem e Métodos
As três definições de probabilidades
As três definições de probabilidades Prof. Ilydio Pereira de Sá UERJ -USS INTRODUÇÃO ÀS PROBABILIDADES Para iniciar, vamos considerar algumas hipóteses: Rita espera ansiosamente o nascimento de seu filho,
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 9 minutos 8 de outubro de Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo /4 Matemática 9.º B Nome: N.º Classificação: Fraco (% 9%) Insuficiente (% 49%) Suficiente
Probabilidade Condicional e Independência
Probabilidade Condicional e Independência Capítulo Para os eventos E e F, a probabilidade condicional de E dado que F ocorreu é representada por P(EIF) e definida como Exemplo Suponha que lancemos dois
PLANO DE AULA DOMINÓ DE FRAÇÕES. 2. Conteúdo(s): Adição e subtração de frações de mesmo denominador.
UNIVERSIDADE FEDERAL DO PARANÁ Setor de Educação Programa Institucional de Bolsas de Iniciação à Docência PIBID/UFPR Projeto Interdisciplinar Pedagogia e Matemática PLANO DE AULA DOMINÓ DE FRAÇÕES Isabella
FABIO DE ALMEIDA BENZAQUEM
FABIO DE ALMEIDA BENZAQUEM ATIVIDADES LÚDICAS COM NÙMEROS COMPLEXOS (TAREFA 1) Trabalho apresentado ao curso de Formação Continuada da Fundação CICIERJ Consórcio CEDERJ. Orientadora:Maria Cláudia Palhares(Tutora)
