MATEMÁTICA ENEM 2010

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA ENEM 2010"

Transcrição

1 MATEMÁTICA ENEM 10 2 de Outubro FUNÇÕES: Para que servem mesmo? PROF. MARCELO CÓSER Essa apresentação pode ser baiada em

2 Funções Lineares: problemas com variação constante. f() a + b VARIAÇÃO CONSTANTE VALOR INICIAL a > 0 a < 0 a y

3 01) (FGV) Uma fábrica de bolsas tem um custo fio mensal de R$ 5.000,00. Cada bolsa fabricada custa R$ 25,00 e é vendida por R$ 45,00. Para que a fábrica tenha um lucro mensal de R$ 4.000,00, ela deverá fabricar bolsas. O valor de é: a) 300 b) 350 c) 400 d) X 450 e) 500 C() e R() 45. Um lucro de R$ implica R() - C() ( ) Lucro desejado + Custo fio Lucro por bolsa CUIDADO! Raciocínios que envolvam Regra de 3 só funcionam para problemas com variação constante/funções lineares. Do contrário, falham!

4 02) (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago. No plano A, paga-se uma assinatura de R$ 50,00 e cada minuto em ligações locais custa R$ 0,25. No plano B, paga-se um valor fio de R$ 40,00 para até 50 minutos em ligações locais e, a partir de 50 minutos, o custo de cada minuto em ligações locais é de R$ 1,50. Determine a partir de quantos minutos, em ligações locais, o plano B deia de ser mais vantajoso do que o plano A. A() 0, B() 40 para 50. E para > 50? (50; 40) Para > 50, a função B() tem sua lei na forma B() a + b. Do enunciado, a B 1,5. Assim, B() 1,5 + b. (50, 40) B(). Logo, 40 1,5 50 +b. Assim, b ,5-35 0, , minutos. Outra abordagem: B() ,5( 50), se > 50

5 Funções Quadráticas: geralmente associadas a problemas de Área. f() a² + b + c a > 0 a < 0 V b ou 2a y V f V ( ) v R 1 + R 2 2

6 Toda parábola possui um foco e uma diretriz: Uma propriedade particular das párabolas diz que raios perpendiculares à diretriz são refletidos e sempre passam pelo foco.

7 03) (UFRN) O Sr. José dispõe de 180 metros de tela para fazer um cercado retangular, aproveitando, como um dos lados, parte de um etenso muro reto. O cercado compõe-se de uma parte paralela ao muro e três outras perpendiculares a ele. Para cercar a maior área possível, com a tela disponível, os valores de e y são, em metros, respectivamente: a) 45 e 45 Xb) 30 e 90 c) 36 e 72 d) 40 e 60 e) e 1 A(, y) y 3 + y 180 y A() (180-3) A V MÁX A 30 ou V 2. ( 3) ( 30) 30. ( ) m 1ª) A() 180-3² a < 0: voltada para baio Raízes: 180-3² 0 0 e 60 são as raízes. 2ª) A() (180-3) a < 0: voltada para baio Raízes: 0 ou e 60 são as raízes

8 04) (CESGRANRIO) O diretor de uma orquestra percebeu que, com o ingresso a R$ 9 em média 300 pessoas assistem aos concertos e que, para cada redução de R$ 1 no preço dos ingressos, o público aumenta de 100 espectadores. Qual deve ser o preço para que a receita seja máima? RECEITA Número de Espectadores Preço do Ingresso Cada variação unitária no preço do ingresso implica uma variação de 100 no número de espectadores. Por eemplo, se reduzir o preço em R$ 5, o número de espectadores aumentará em De modo geral, uma variação de no preço do ingresso implica uma variação de 100 na platéia. Como um preço de R$ 9 traz 300 espectadores, um preço de 9 - trará espectadores. Desse modo, R() (9 - ) ( ) 3600 O gráfico de R() é uma parábola voltada para baio com raízes e V Logo, o preço que maimiza a receita é 9-3 R$

9 Funções Eponenciais & Logarítmicas: problemas com taa de variação constante. ( ) b f f ( ) log b

10 05) A água de uma piscina cheia, com capacidade para litros, foi tratada com 1000g de cloro. Água pura (sem cloro) continua a ser colocada na piscina a uma vazão constante, sendo o ecesso eliminado através de um ladrão. Depois de uma hora, um teste revela que ainda restam 900g de cloro na piscina. Que quantidade de cloro restará na piscina 10 horas após sua colocação? Água pura Repare que, em uma hora, a quantidade de cloro retirada foi de 100g. No entanto, é incorreto afirmar que a cada hora o comportamento será o mesmo, já que a quantidade de cloro que sai é proporcional à quantidade de cloro eistente. Ou seja, a perda de cloro será menor durante a segunda hora; no entanto, seguirá a mesma proporção anterior. Água com cloro Uma abordagem mais adequada para o problema diz que, a cada hora, a quantidade de cloro eistente na piscina reduz em 10%, já que foram perdidas 100g das 1000g iniciais. 10 reduções de 10% Q ,9 0,9 0,9 0, , ,68 g. Q() ,9

11 06) A lei do resfriamento de Newton estabelece que, quando um corpo é colocado em um ambiente mantido à temperatura constante, sua temperatura varia de modo a ser a mesma do ambiente, a uma taa proporcional à diferença de temperatura entre o corpo e o ambiente. Desse modo, T() T AMBIENTE + a b. O corpo de uma vítima de assassinato foi descoberto às 23 horas. O médico da polícia chegou às 23h30 e imediatamente tomou a temperatura do cadáver, que era de 34,8º C. Uma hora mais tarde, ele tomou a temperatura outra vez e encontrou 34,1º C. A temperatura do quarto era mantida constante a ºC. Se a temperatura normal de uma pessoa viva é de 36,5º C, estime a hora que se deu a morte. Parâmetros desconhecidos Pontos conhecidos (0; 34,8), (1; 34,1) pertencem à função. Desse modo, ( 0; 34,8 ) T ( ) 34,8 + a. b 0 a 34,8 14,8 14,1 14,8 1 ( 1; 34,1 ) T ( ) 34,1 + 14,8. b 14,8b 34,1 14,1 b 0, 9527 T ( ) 36,5 16,5 0, ,8.0, ,8.0, ,8.0,9527 1, logba c c b a log1, log 0, , ,25 h 2h15min log0,9527 A morte ocorreu às 23h30-2h15 21h15min.

12 07) (UFG) As curvas de logística são usadas na definição de modelos de crescimento populacional quando fatores ambientais impõem restrições ao tamanho possível da população, na propagação de epidemias e boatos em comunidades. Por eemplo, estima-se que decorridas t semanas, a partir da constatação da eistência de uma forma de gripe, o número N de pessoas contaminadas (em milhares) é aproimadamente N 0,5t De acordo com essa estimativa, pode-se afirmar corretamente que: F ( ) menos de 500 pessoas haviam contraído a doença quando foi constatada a eistência da gripe. ( F ) menos de 6 mil pessoas haviam contraído a doença, decorridas duas semanas da constatação da eistência da gripe. ( ) são necessárias mais de quatro semanas para que 18 mil pessoas sejam infectadas. ( ) o número de pessoas infectadas atingirá mil. V F N t N 19.1 N 1 0,5.0 N N N t ,5.2 1 N N 6,89 N 1,9 2,9 t 4 N 0, ,5t ,5 t + 0,5 t 16, ,19 1,19 0,5 t ,5t 10 0 Um número positivo elevado a qualquer epoente real é sempre positivo.

13 N ,5t

14 Escalas Logarítmicas: problemas com valores muito grandes log Escala em PG Escala em PA

15 08) (FFFCMPA) A unidade de medida do som é o bel. Na prática, costuma-se utilizar o decibel, que corresponde a um décimo do bel. As sonoridades, medidas em bel, constituem uma escala de progressão aritmética, mas a intensidade do som cresce segundo uma progressão geométrica. Quando o som, na escala bel, cresce uma unidade, a intensidade do som (em watts por metro quadrado) aumenta 10 vezes. A sonoridade, medida em decibéis, de uma determinada banda de rock é de 90 decibéis, ao passo que a da conversação normal corresponde a 60 decibéis. Assim sendo, pergunta-se: quantas vezes a intensidade do som, em watts por metro quadrado, da banda de rock é maior do que a intensidade do som de uma conversação normal? a) 3 vezes b) 10 vezes c) 30 vezes Xd) vezes e) mais de vezes A diferença entre o som da banda e o da conversação é de 30 decibéis 3 béis. Como a cada variação unitária em béis a intensidade do som aumenta 10 vezes, a intensidade do som da banda corresponde a vezes a intensidade do som da conversação. Observe que na escala em decibéis constata-se que a medida da banda de rock é 50% maior que a da conversação. No entanto, tal interpretação é incorreta pois a escala em questão não é linear, mas sim logarítmica.

16

17

18 09) (UFRN) Na década de 30 do século passado, Charles F. Richter desenvolveu uma escala de magnitude de terremotos - conhecida hoje em dia por escala Richter -, para quantificar a energia, em Joules, liberada pelo movimento tectônico. Se a energia liberada nesse movimento é representada por E e a magnitude medida em grau Richter é representada por M, a equação que relaciona as duas grandezas é dada pela seguinte equação logarítmica: log E 1,44 + 1,5 M Comparando o terremoto de maior magnitude ocorrido no Chile em 1960, que atingiu 9.5 na escala Richter, com o terremoto ocorrido em San Francisco, nos EUA, em 1906, que atingiu 7.8, podemos afirmar que a energia liberada no terremoto do Chile é aproimadamente vezes maior que a energia liberada no terremoto dos EUA. a) 10 b) 15 c) 21 Xd) 31 loge loge Substituindo os valores 9,5 e 7,8 em M, obtemos: 1,44 + 1,5.9,5 1, ,25 15,69 1,44 + 1,5.7,8 1, ,7 13,14 E E SF CHILE ,14 15,69 E E CHILE CHILE ,69 E SF 10 13,14 + 0, ,

19

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER.

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER. MATEMÁTICA ENEM 09 PROF. MARCELO CÓSER DESAFIO DO NOVO ENEM: Aliar habilidades/competências a conteúdos específicos do Ensino Médio. 01) (ENEM) Nos últimos anos, ocorreu redução gradativa da taxa de crescimento

Leia mais

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER.

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER. MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER DESAFIO DO NOVO ENEM: Aliar habilidades/competências a conteúdos específicos do Ensino Médio. 01) (SIMULADO ENEM) As condições de saúde e a qualidade de vida de

Leia mais

PRÉ-PRÉ-PROVA UFRGS Prof. Marcelo Cóser MATEMÁTICA. Pré-prova disponível para download em

PRÉ-PRÉ-PROVA UFRGS Prof. Marcelo Cóser MATEMÁTICA. Pré-prova disponível para download em PRÉ-PRÉ-PROVA UFRGS 2011 Prof. Marcelo Cóser MATEMÁTICA Pré-prova disponível para download em www.marcelocoser.com.br 01) Qual o domínio da função? 9 x 2 A melhor maneira de resolver a inequação 9 x²

Leia mais

Lista de função quadrática

Lista de função quadrática COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Lista de função quadrática QUESTÃO 01 Assinale a ÚNICA proposição CORRETA.

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

A figura a seguir representa duas cartolinas retangulares, a maior medindo 30 cm por 40 cm e a menor medindo 20 cm por 40 cm.

A figura a seguir representa duas cartolinas retangulares, a maior medindo 30 cm por 40 cm e a menor medindo 20 cm por 40 cm. QUESTÃO 01 figura a seguir representa duas cartolinas retangulares, a maior medindo 30 cm por 40 cm e a menor medindo 20 cm por 40 cm. C 30 cm E 20 cm P F 40 cm D H 40 cm G respeito dessas cartolinas,

Leia mais

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER

MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER MATEMÁTICA ENEM 09 PROF. MARCELO CÓSER Funções Lineares: problemas com variação constante. f(x) = ax + b VARIAÇÃO CONSTANTE VALOR INICIAL a > 0 a < 0 a y x 0) (UFRJ) Uma operadora de celular oferece dois

Leia mais

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados.

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. PROGRESSÕES 1) (UFPI) Numa PA, a 5 = 10 e a 15 = 40; então a é igual a (a) 3 (b) (c) 1 (d) 0 (e) -1 ) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. - triângulo

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Eército EsPCE Questão 1 Sabendo-se que Concurso 009 3 5 199 log log log... log 10000 + + + + =,

Leia mais

Matemática I Capítulo 13 Logaritmos

Matemática I Capítulo 13 Logaritmos Nome: Nº Curso: Controle Ambiental Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /2017 Matemática I Capítulo 13 Logaritmos 13.1 - Logaritmos Chamamos de logaritmo de b na base a o expoente

Leia mais

FGV 1 a Fase maio/2002

FGV 1 a Fase maio/2002 FGV 1 a Fase maio/00 Matemática Questão 01 Uma cesta básica de produtos contém kg de arroz, 1 kg de feijão e kg de farinha. No período de 1 ano, o preço do quilograma de arroz subiu 10%, o do feijão subiu

Leia mais

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros

a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros PROCESSO SELETIVO/2004 CGE GAB. 1 1 o DIA 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. A soma das raízes das equações + 1 log 5 ( 4 ) + log 5 ( 4 7) = 1 e 7 7 = 294 vale: a) 4 b) c) 2 d) 5 e) 6 02. Na matriz quadrada

Leia mais

Professor Diego. 01. (ENEM/2013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do

Professor Diego. 01. (ENEM/2013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do Professor Diego 01. (ENEM/013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do t instante de seu desligamento (t = 0) e varia de acordo com a expressão Tt () 00,

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Lista 0: Revisão Números Reais e Funções Elementares

Lista 0: Revisão Números Reais e Funções Elementares GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/ BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO DIFERENCIAL E INTEGRAL I Lista 0: Revisão

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno A B C D E 4 5 6 7 8 9 A B C

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por

Leia mais

Matemática Aplicada à Administração LISTA Calcule a derivada das funções abaixo:

Matemática Aplicada à Administração LISTA Calcule a derivada das funções abaixo: Matemática Aplicada à Administração LISTA 05. Calcule a derivada das funções abaio: 7) ( ) + f ( ) ( ) 5 ' + f 8) ( ) 4 9 4 8 f ( ) ( )( ) ( ) 5 9 4 7 8 04 ' f + 9) ( ) + e f ( ) ( ) ' + e f f( ) ln(

Leia mais

MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA

MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA PROFESSOR SANDER 01. [FGV] João colocou para carregar seu celular que estava completamente descarregado e, em seguida, anotou diversas vezes o tempo decorrido de

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

Fundamentos de matemática

Fundamentos de matemática Fundamentos de matemática para engenharias e tecnologias Eercícios complementares FUNDAMENTOS DE MATEMÁTICA PARA ENGENHARIAS E TECNOLOGIAS Eercícios complementares para o Capítulo. Sendo A = { a,b,c,d,e,f

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g

Leia mais

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof.

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof. MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Eponencial Função Logarítmica a SÉRIE ENSINO MÉDIO 009 Prof. Rogério Rodrigues =======================================================================

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada

Leia mais

2ª série do Ensino Médio Turma. Data / / Escola Aluno AVALIAÇÃO DIAGNÓSTICA

2ª série do Ensino Médio Turma. Data / / Escola Aluno AVALIAÇÃO DIAGNÓSTICA AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma AVALIAÇÃO DIAGNÓSTICA Data / / Escola Aluno 23 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo

Leia mais

MATEMÁTICA ENEM 2009

MATEMÁTICA ENEM 2009 MATEMÁTICA ENEM 2009 19 de setembro PROF. MARCELO CÓSER Essa apresentação pode ser baixada em http://www.marcelocoser.com.br. 01) (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago.

Leia mais

23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA

23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA 1 23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA 1) (F.G.V - 72) Seja x o número cujo logaritmo na base raiz cubica de 9 vale 0,75. Então x 2 1 vale: a) 4 b) 2 c) 3 d) 1 2) (PUC-SP-77) O número, cujo logaritmo na

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y)

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y) EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno Questão A tabela a seguir informa

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par

Leia mais

MATEMÁTICA. Professor Diego Viug

MATEMÁTICA. Professor Diego Viug MATEMÁTICA Professor Diego Viug FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA FUNÇÃO AFIM Taxa de variação constante. Proporcionalidade. (usaremos semelhança) y = ax + b a coeficiente angular. b coeficiente linear.

Leia mais

MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA

MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA MARATONA AFA 0 SIMULADO AFA. Duas cidades A e B, que distam entre si 6 km, estão ligadas por uma estrada de ferro de linha dupla. De cada uma das estações, partem trens de 3 em 3 minutos. Os trens trafegam

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ)

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec =, sen 0 sen sen cos tg cotg = sec =, cos 0 cos tg = sen cos, cos 0 cos sen, sen 0 sen + cos = ) a n = a + (n ) r ) A = onde b h D = ou y A = D y y a + an )

Leia mais

Lista de exercícios sobre função quadrática Prof. Márcio Prieto

Lista de exercícios sobre função quadrática Prof. Márcio Prieto 1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM2, INF2, MET2. Aldo Vieira Pinto Etapa(s) Disciplina 1ª e 2ª

ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM2, INF2, MET2. Aldo Vieira Pinto Etapa(s) Disciplina 1ª e 2ª ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM2, INF2, MET2 Aldo Vieira Pinto Etapa(s) Disciplina 1ª e 2ª Matemática I CONTEÚDOS A prova de Recuperação de Matemática versará sobre os seguintes

Leia mais

Roteiro de estudo e exercícios de revisão

Roteiro de estudo e exercícios de revisão Nome Nº Série Ensino Turma 1a Médio Disciplinas Professores Natureza Trimestre/Ano Data da entrega Valor Matemática Matheus e Ocimar Roteiro de estudo e exercícios de revisão 2º / 2017 04/08/2017 0,5 Introdução

Leia mais

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou

Leia mais

ENEM 2010 MATEMÁTICA. Prof. Marcelo Cóser. Prof. Marcelo Cóser PRÉ-ENEM

ENEM 2010 MATEMÁTICA. Prof. Marcelo Cóser. Prof. Marcelo Cóser PRÉ-ENEM ENEM 10 MATEMÁTICA FIGURAS SEMELHANTES AB AC BC k PQ PR QR COMPRIMENTO COMPRIMENTO A B 3 VOLUME VOLUME A B 01) Uma taça cônica está situada abaixo de uma torneira com seu vértice para baixo. A torneira

Leia mais

MATEMÁTICA Função do 2º grau

MATEMÁTICA Função do 2º grau MATEMÁTICA Função do º grau Resolução dos eercícios 4, 5, 7, 17, 19 a 6 Série O Pensador Professor Marcelo Gonsalez Badin 4. (UFRJ) Oscar arremessa uma bola de basquete cujo centro segue uma trajetória

Leia mais

FUNÇAO DO 2 GRAU. é igual a:

FUNÇAO DO 2 GRAU. é igual a: 1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte

Leia mais

AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018

AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]

Leia mais

3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique

3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique 3º EM LISTA 06 Fabio Henrique 1. A temperatura, 2 em graus Celsius, de um objeto armazenado em um determinado local é modelada pela função x f(x) 2x 10, 12 com x dado em horas. A temperatura máxima, em

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b

Leia mais

Exercícios de Aprofundamento Matemática Funções Quadráticas

Exercícios de Aprofundamento Matemática Funções Quadráticas 1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale

Leia mais

CPV o Cursinho que mais aprova na GV

CPV o Cursinho que mais aprova na GV CPV o Cursinho que mais aprova na GV FGV ADM 4/dezembro/16 MAteMátiCA 1. Estima-se que, em determinado país, o consumo médio por minuto de farinha de trigo seja 4,8 toneladas. Nessas condições, o consumo

Leia mais

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO =========================================================================================== 1) Seja a função f(x)

Leia mais

UFRGS MATEMÁTICA

UFRGS MATEMÁTICA UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Matemática TJ/PR Prof. Arthur Lima

Matemática TJ/PR Prof. Arthur Lima Matemática TJ/PR Edital 2017 Técnico do TJ/PR MATEMÁTICA: Operações com números inteiros fracionários e decimais. Conjuntos e funções. Progressões aritméticas e geométricas. Logaritmos. Porcentagem e juros.

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 7 3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 3.1. INTRODUÇÃO Observamos, no dia a dia, que muitos objetos ou grandezas estão relacionados. Por eemplo, trabalhando com números reais estamos sempre comparando uns com

Leia mais

Ou seja, D(f) = IR e Im(f) IR.

Ou seja, D(f) = IR e Im(f) IR. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO - -2 + - 1/2 + - 1/2 + + 1 - + + + -1 2 x -1 3 - - - x Como pode cair no enem Um menino chutou uma bola. Esta atingiu altura máxima

Leia mais

AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.

AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova

Leia mais

Matemática A Extensivo V. 4

Matemática A Extensivo V. 4 Etensivo V. 4 Eercícios 0) C f(t) = at + b (t = tempo) (I) t = 0 f(t) = 9000 (II) t = 4 f(t) = 4000 Substituindo os valores na função f(t) = at + b, temos: (I) 9000 = a. 0 + b b = 9000 (II) 4000 = 4a +

Leia mais

x + 2 com o eixo dos x, respectivamente.

x + 2 com o eixo dos x, respectivamente. PASES 1 a ETAPA TRIÊNIO 004-006 1 o DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 10 01. Sejam A e B os pontos de interseção dos gráficos das funções f ( x) = 1 x + e g ( x) = 1 x + com o eixo dos x, respectivamente.

Leia mais

1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno

1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) 10 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.

Leia mais

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores

Leia mais

DATA: VALOR: 20 PONTOS NOTA:

DATA: VALOR: 20 PONTOS NOTA: DISCIPLINA: MATEMÁTICA PROFESSORAS: ADRIANA E CLÁUDIO DATA: VALOR: 0 PONTOS NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1ª SÉRIE EM TURMAS: NOME COMPLETO: Nº: Prezado (a) aluno (a), A recuperação

Leia mais

Os fisiologistas afirmam que, para um indivíduo sadio em repouso, o número N de batimentos cardíacos por minuto varia em função da temperatura

Os fisiologistas afirmam que, para um indivíduo sadio em repouso, o número N de batimentos cardíacos por minuto varia em função da temperatura Os fisiologistas afirmam que, para um indivíduo sadio em repouso, o número N de batimentos cardíacos por minuto varia em função da temperatura ambiente t, em graus Celsius, segundo a função N 0,1 t 2 4t

Leia mais

LISTA EXERCÍCIOS MATEMÁTICA 3ª SÉRIE

LISTA EXERCÍCIOS MATEMÁTICA 3ª SÉRIE 3ª SÉRIE PROF. HELDER E HELDINHO Questão 01) Na década de 30 do século passado, Charles F. Richter desenvolveu uma escala de magnitude de terremotos - conhecida hoje em dia por escala Richter -, para quantificar

Leia mais

Exercícios Propostos

Exercícios Propostos Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

Matemática C Superintensivo

Matemática C Superintensivo Matemática C Superintensivo Eercícios Matrizes ) a) 9 reais b) 6, reais a) Após o primeiro reajuste, o par de tênis passou a custar: +,. + 9 reais b) Na liquidação, o novo preço passou a ser: 9,. 9 9,

Leia mais

Unidade 7 Estudo de funções

Unidade 7 Estudo de funções Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

(E) (C) O número π 2 pertence ao intervalo: 3 ] (D) ( 1, 1) (A) [1, 2 3, 0) 1, 1] (E) [ 2 (B) ( 2 3, 2] (D) (C) [ 2

(E) (C) O número π 2 pertence ao intervalo: 3 ] (D) ( 1, 1) (A) [1, 2 3, 0) 1, 1] (E) [ 2 (B) ( 2 3, 2] (D) (C) [ 2 1 O número π 2 pertence ao intervalo: [1, 2 ] ( 1, 1) 1 x ( 2 1, 1] [ 2, ) 1 x - [ 2, 2] 2 Os conjuntos não-vazios M, N e P estão, isoladamente, representados abaixo. 1 x Considere a seguinte figura que

Leia mais

Exercícios Recomendados

Exercícios Recomendados Sociedade Brasileira de Matemática Mestrado Prossional em Matemática em Rede Nacional MA11 Números e Funções Reais Unidade 11 Função Quadrática - Aplicações Exercícios Exercícios Recomendados 1. Um estudante

Leia mais

Whats: (84) FUNÇÕES (GRÁFICOS)

Whats: (84) FUNÇÕES (GRÁFICOS) 1.Uma empresa analisou mensalmente as vendas de um de seus produtos ao longo de 1 meses após seu lançamento. Concluiu que, a partir do lançamento, a venda mensal do produto teve um crescimento linear até

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Lista 2. Matemática aplicada à administração.

Lista 2. Matemática aplicada à administração. Lista 2. Matemática aplicada à administração. 1. Responda para as funções f e g,dos gráficos 1 e 2, os seguintes itens: (a) Identifique os domínios e imagens de f e g. (b) Identifique f( - 2) e g(3). (c)

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2013 Disciplina: Matemática Ano: 1 Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã

16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã 16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã Lista de Exercícios 1 01) (ESPCEX 2002) A solução de 2 (48/x) = 8 a) múltiplo de 16. b) múltiplo de 3. c) número primo. d) divisor de 8. e) divisor de 9.

Leia mais

COLÉGIO APROVAÇÃO LTDA. (21)

COLÉGIO APROVAÇÃO LTDA. (21) COLÉGIO APROVAÇÃO LTDA. ( 635-75 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 7 (Logaritmos (UEPB A equação x + x + log (m + 3 = 0 não

Leia mais

Logaritmo como uma Função. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Logaritmo como uma Função. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Logaritmo como uma Função 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Logaritmo como uma Função 1 Exercícios Introdutórios Exercício 1. Seja a função f : R

Leia mais

a) b) c) d) a) 18 h. b) 19 h. c) 20 h. d) 21 h. e) 22 h. Gab: B

a) b) c) d) a) 18 h. b) 19 h. c) 20 h. d) 21 h. e) 22 h. Gab: B 01 - (UFPR/017) O gráfico ao lado representa o consumo de bateria de um celular entre as 10 h e as 16 h de um determinado dia. Supondo que o consumo manteve o mesmo padrão até a bateria se esgotar, a que

Leia mais

Matemática e raciocínio lógico Prova comentada

Matemática e raciocínio lógico Prova comentada Matemática e raciocínio lógico Prova comentada Questão 11 Classifique cada sentença abaixo em verdadeira (V) ou falsa (F). ( ) O número de algarismos utilizados para numerar as primeiras 6 páginas de um

Leia mais