Whats: (84) FUNÇÕES (GRÁFICOS)

Tamanho: px
Começar a partir da página:

Download "Whats: (84) FUNÇÕES (GRÁFICOS)"

Transcrição

1 1.Uma empresa analisou mensalmente as vendas de um de seus produtos ao longo de 1 meses após seu lançamento. Concluiu que, a partir do lançamento, a venda mensal do produto teve um crescimento linear até o quinto mês. A partir daí houve uma redução nas vendas, também de forma linear, até que as vendas se estabilizaram nos dois últimos meses da análise. O gráfico que representa a relação entre o número de vendas e os meses após o lançamento do produto é e).uma pousada oferece pacotes promocionais para atrair casais a se hospedarem por até oito dias. A hospedagem seria em apartamento de luxo e, nos três primeiros dias, a diária custaria R$ 150,00, preço da diária fora da promoção. Nos três dias seguintes, seria aplicada uma redução no valor da diária, cuja taxa média de variação, a cada dia, seria de R$ 0,00. Nos dois dias restantes, seria mantido o preço do sexto dia. Nessas condições, um modelo para a promoção idealizada é apresentado no gráfico a seguir, no qual o valor da diária é função do tempo medido em número de dias. De acordo com os dados e com o modelo, comparando o preço que um casal pagaria pela hospedagem por sete dias fora da promoção, um casal que adquirir o pacote promocional por oito dias fará uma economia de

2 a) R$ 90,00. b) R$ 110,00. c) R$ 130,00. d) R$ 150,00. e) R$ 170,00. 3.Deseja-se postar cartas não comerciais, sendo duas de 100g, três de 00g e uma de 350g. O gráfico mostra o custo para enviar uma carta não comercial pelos Correios: O valor total gasto, em reais, para postar essas cartas é de a) 8,35. b) 1,50. c) 14,40. d) 15,35. e) 18, (Ibmecrj 010) Num certo país, o imposto de renda é cobrado da seguinte forma: os que têm rendimento até u.m (unidades monetárias) são isentos: aos que possuem renda acima de u.m até u.m, cobra-se um imposto de 10%; acima de u.m, o imposto é de 0%. Qual dos gráficos melhor representa a situação acima descrita? 5. Existem no mercado chuveiros elétricos de diferentes potências, que representam consumos e custos diversos. A potência (P) de um chuveiro elétrico é dada pelo produto entre sua resistência elétrica (R) e o quadrado da corrente elétrica (i) que por ele circula. O consumo de energia elétrica (E), por sua vez, é diretamente proporcional à potência do aparelho. Considerando as características apresentadas, qual dos gráficos a seguir representa a relação entre a energia consumida (E) por um chuveiro elétrico e a corrente elétrica (i) que circula por ele?

3 c) d) e) 6. Os gráficos I, II e III, a seguir, esboçados em uma mesma escala, ilustram modelos teóricos que descrevem a população de três espécies de pássaros ao longo do tempo. Sabe-se que a população da espécie A aumenta 0% ao ano, que a população da espécie B aumenta 100 pássaros ao ano e que a população da espécie C permanece estável ao longo dos anos. Assim, a evolução das populações das espécies A, B e C, ao longo do tempo, correspondem, respectivamente, aos gráficos a) I, III e II. b) II, I e III. c) II, III e I. d) III, I e II. e) III, II e I. 7.Um modelo matemático simplificado para o formato de um vaso sanguíneo é o de um tubo cilíndrico circular reto. Nesse modelo, devido ao atrito com as paredes do vaso, a velocidade v do sangue em um ponto P no tubo depende da distância r do ponto P ao eixo do tubo. O médico francês Jean-Louis-Marie Poiseuille ( ) propôs a seguinte lei que descreve a velocidade v em função de r:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx v v(r) k(r r ), Onde R é o raio do tubo cilíndrico ek é um parâmetro que depende da diferença de pressão nos extremos do tubo, do comprimento do tubo e da viscosidade do sangue. Considerando que k é constante e positivo, assinale a alternativa que contém uma representação possível para o gráfico da função v v(r).

4 c) d) e) 8.Um boato tem um público-alvo e alastra-se com determinada rapidez. Em geral, essa rapidez é diretamente proporcional ao número de pessoas desse público que conhecem o boato e diretamente proporcional também ao número de pessoas que não o conhecem. Em outras palavras, sendo R a rapidez de propagação, P o público-alvo e x o número de pessoas que conhecem o boato, tem-se: R(x) = k. x. (P - x), onde k é uma constante positiva característica do boato. O gráfico cartesiano que melhor representa a função R(x), para x real, é: C) d) e) 9. O quadrado ABCD, de centro O e lado cm, corresponde à trajetória de uma partícula P que partiu de M, ponto médio de AB, seguindo pelos lados do quadrado e passando por B, C, D, A até retornar ao ponto M. Seja F(x) a função que representa a distância da partícula P ao centro O do quadrado, a cada instante de sua trajetória, sendo x (em cm) o comprimento do percurso percorrido por tal partícula. Qual o gráfico que representa F(x)?

5 e) 10.O consumo mensal de água nas residências de uma pequena cidade é cobrado como se descreve a seguir. Para um consumo mensal de até 10 metros cúbicos, o preço é fixo e igual a 0 reais. Para um consumo superior, o preço é de 0 reais acrescidos de 4 reais por metro cúbico consumido acima dos 10 metros cúbicos. Considere c(x) a função que associa o gasto mensal com o consumo de x metros cúbicos de água. a) Esboce o gráfico da função c(x) no plano cartesiano para x entre 0 e 30.

6 b) Para um consumo mensal de 4 metros cúbicos de água, qual é o preço efetivamente pago por metro cúbico? e para um consumo mensal de 5 metros cúbicos? 11.Após realizar uma pesquisa de mercado, uma operadorade telefonia celular ofereceu aos clientes que utilizavam até 500 ligações ao mês o seguinte plano mensal: umvalorfixo de R$ 1,00 para os clientes que fazem até100 ligações ao mês. Caso o cliente faça mais de 100 ligações,será cobrado um valor adicional de R$ 0,10 por ligação,a partir da 101ª até a 300ª; e caso realize entre 300 e 500 ligações, será cobrado um valor fixo mensal de R$ 3,00. Com base nos elementos apresentados, o gráfico quemelhor representa a relação entre o valor mensal pago nesse plano e o número de ligações feitas é: e) 1. Sabe-se que, em certo posto de combustível, as bombas de gasolina despejam o líquido à vazão constante de 3 litros por minuto. Certo dia, Lia parou nesse posto para abastecer seu carro quando ainda havia 10 litros de gasolina no tanque e foram gastos 5 minutos para colocar em seu interior mais alguns litros da gasolina, após o que ela seguiu sua viagem. Imediatamente após ter saído do posto, sabe-se que o carro de Lia: rodou ininterruptamente por 95 minutos, quando, então, esgotou-se toda a gasolina do tanque e ele teve que parar; ao longo desses 95 minutos, o volume de combustível no tanque, em litros, pode ser descrito como uma função do tempo t, em minutos, cujo gráfico é parte do ramo de uma parábola cujo vértice é o ponto (100; 0).

7 Considerando o intervalo 0 t 100, em que t = 0 é o instante em que Lia parou no posto para colocar gasolina, então, se V(t) é o volume de gasolina no tanque, em função do tempo t, em minutos, a expressão de V(t), em litros, é 10 3t se 0 t 5 a) V(t) 1 (t 100) se 5 t t se 0 t 5 b) V(t) 1 (t 100) se 5 t t se 0 t 5 c) V(t) 1 (t 100) se 5 t t se 0 t 5 d) V(t) 1 (t 100) se 5 t t se 0 t 5 e) V(t) 1 (t 100) se 5 t O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar esse potencial é t a) q(t) at b. b) q(t) a b. c) q(t) at bt. d) q(t) a logb t. 14. A figura abaixo exibe o gráfico de uma função y f(x). Então, o gráfico de y f(x 1) é dado por

8 15..A tabela apresenta, na coluna da esquerda, a descrição de alguns tipos de funções e, na coluna da direita, representações de alguns gráficos de funções, cujas variáveis independentes, definidas no domínio dos números reais, estão representadas nos eixos das abscissas.

9 O conjunto de pares ordenados que relaciona cada função à sua respectiva representação gráfica é: a) {(I, a), (II, d), (III, e), (IV, b), (V, c)}. b) {(I, c), (II, d), (III, a), (IV, b), (V, e)}. c) {(I, d), (II, e), (III, a), (IV, b), (V, c)}. d) {(I, e), (II, d), (III, a), (IV, b), (V, c)}. e) {(I, e), (II, d), (III, b), (IV, a), (V, c)}. 16. Num modelo aplicado à Economia, em virtude de x e y representaremos preços, foram colocadas as seguintes restrições: 8 -.x + y 0, (1) x 0 () y 0 (3) Qual dos gráficos seguintes melhor representa essas restrições?

Registro CMI QUESTÃO 01 QUESTÃO 02. Pág 1

Registro CMI QUESTÃO 01 QUESTÃO 02. Pág 1 Registro CMI 42016 QUESTÃO 01 A figura abaixo mostra a precipitação pluviométrica em milímetros por dia (mm/dia) durante o último verão em Campinas. Se a precipitação ultrapassar 30 mm/dia, há um determinado

Leia mais

Maratona GoiásVest. Aula 03 - M A T E M Á T I C A. Questão 04 (UFF ª Fase): Questão 01 (enem-2011):

Maratona GoiásVest. Aula 03 - M A T E M Á T I C A. Questão 04 (UFF ª Fase): Questão 01 (enem-2011): matematica_goiasvest_ - agosto0 - Aula 0_Layout /0/0 : Page Aula 0 Questão 0 (enem-0): O medidor de energia elétrica de uma residência, conhecido por relógio de luz, é constituído de quatro pequenos relógios,

Leia mais

Unidade 7 Estudo de funções

Unidade 7 Estudo de funções Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte

Leia mais

Registro CMI Aulas 4 e 5

Registro CMI Aulas 4 e 5 Registro CMI 4317 Aulas 4 e 5 QUESTÃO 01 Seja a n uma sequência de números reais cujo termo geral é verdadeira? a) a n é uma progressão aritmética de razão 1. b) a n é uma progressão geométrica de razão

Leia mais

Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL ( ),

Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL ( ), Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL 1 (Fuvest) Considere a função ( ) ( ), a qual está definida para x 1. Então, para todo x 1 e x 1, o produto f(x) f( x) é igual

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO - -2 + - 1/2 + - 1/2 + + 1 - + + + -1 2 x -1 3 - - - x Como pode cair no enem Um menino chutou uma bola. Esta atingiu altura máxima

Leia mais

Exercícios: Funções - Gráficos Prof. André Augusto

Exercícios: Funções - Gráficos Prof. André Augusto Exercícios: Funções - Gráficos Prof. André Augusto 1. TESTES DE VESTIBULARES Exercício 1 (ENEM). O gráfico mostra a variação da extensão média de gelo marítimo, em milhões de quilômetros quadrados, comparando

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa

Leia mais

1) Calcule a distância entre os pontos A e B em cada caso a seguir:

1) Calcule a distância entre os pontos A e B em cada caso a seguir: ESTUDO DIRIGIDO PROVA MENSAL 9ºA - MATEMÁTICA 1) Calcule a distância entre os pontos A e B em cada caso a seguir: a) A(1, 8) e B(4, 12) b) A(-1, 3) e B(-9, 18) c) A(4, -7) e B(-16, -22) d) A(2, -3) e B(7,

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

CADERNO DE EXERCÍCIOS 2A

CADERNO DE EXERCÍCIOS 2A CADERNO DE EXERCÍCIOS 2A Ensino Médio Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Equação do 2º grau H22 2 Gráficos H27 3 Gráficos H62 4 Progressão aritmética H20 5 Função

Leia mais

PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2

PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2 PROVA DE MATEMÁTICA QUESTÃO 3 Sejam a, b e c números reais e positivos tais que. c Então, é CORRETO afirmar que A) a 2 = b 2 + c 2 B) b = a + c C) b 2 = a 2 + c 2 D) a = b + c QUESTÃO 32 Um carro, que

Leia mais

BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabe-se que o custo C para produzir

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

Exercícios complementares

Exercícios complementares Exercícios complementares Conteúdo(s) abordado(s): Os conteúdos abordados neste material fazem parte dos blocos de conteúdos das seguintes avaliações: o Razão o Proporção o Terceira Avaliação Processual

Leia mais

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Professor Diego. 01. (ENEM/2013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do

Professor Diego. 01. (ENEM/2013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do Professor Diego 01. (ENEM/013) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do t instante de seu desligamento (t = 0) e varia de acordo com a expressão Tt () 00,

Leia mais

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto

Leia mais

Matemática. Equaçao de 1 o Grau. Qual a expressão algébrica que permite calcular o nível da água (y) em função do número de bolas (x)?

Matemática. Equaçao de 1 o Grau. Qual a expressão algébrica que permite calcular o nível da água (y) em função do número de bolas (x)? Capítulo 1 Matemática Seção 1.1 Equaçao de 1 o Grau Subseção 1.1.1 Exercícios 1. ENEM 2009 - Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas em um copo com água at certo

Leia mais

ENEM 2015 (Questões 171 a 180)

ENEM 2015 (Questões 171 a 180) (Questões 171 a 180) Provas de Vestibular 1. (Questão 171) O índice pluviométrico é utilizado para mensurar a precipitação da água da chuva, em milímetros, em determinado período de tempo. Seu cálculo

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

TD DE ESPECÍFICA DE MATEMÁTICA

TD DE ESPECÍFICA DE MATEMÁTICA (PA, PG E FUNÇÃO) 1. Sob a orientação de um mestre de obras, João e Pedro trabalharam na reforma de um edifício. João efetuou reparos na parte hidráulica nos andares 1, 3, 5, 7, e assim sucessivamente,

Leia mais

1ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno

1ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma º Bimestre de 018 Data / / Escola Aluno 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 Avaliação da Aprendizagem em Processo Prova do

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias e suas Tecnologias.09.015 1. A resistência das vigas de dado comprimento é diretamente proporcional à largura (b) e ao quadrado da altura (d), conforme a figura. A constante de proporcionalidade k varia

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y)

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y) EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno Questão A tabela a seguir informa

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

Matemática em vestibulares recentes Prof. Rui

Matemática em vestibulares recentes Prof. Rui Matemática em vestibulares recentes Prof. Rui Questões por assunto 1)Trigonometria(3,8,9,1,15,1,18) )Porcentagem(1) 3)Funções (4,5,6,,13,16,19,0) 4)Lei de cossenos (,14) 5)Triângulos(10,) 6)Fatoração(11)

Leia mais

1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno

1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

Função Quadrática ou Função do 2º grau

Função Quadrática ou Função do 2º grau Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

2. Escreva em cada caso o intervalo real representado nas retas:

2. Escreva em cada caso o intervalo real representado nas retas: ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:

Leia mais

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t,

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t, Atividade extra Exercício 1 Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t + 00t, onde h(t) é a altura da bola em função do tempo (t) em segundos. Quanto

Leia mais

Funções. Parte I. Página 1

Funções. Parte I.  Página 1 Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,

Leia mais

θ, onde q é medido em radianos, sabendo que = arctg( 4 3)

θ, onde q é medido em radianos, sabendo que = arctg( 4 3) QUESTÃO 1 Uma churrascaria oferece a seus clientes uma tabela de preços diferenciada por sexo e por dia da semana. De segunda-feira a sábado, o preço do almoço para mulher é R$ 9,9 e para homem R$ 12,9.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N

Leia mais

Função Quadrática ou Função do 2º grau

Função Quadrática ou Função do 2º grau Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:

Leia mais

UFG Instituto de Informática Curso de Engenharia de Software Disciplina de Introdução à Programação

UFG Instituto de Informática Curso de Engenharia de Software Disciplina de Introdução à Programação UFG Instituto de Informática Curso de Engenharia de Software Disciplina de Introdução à Programação Lista de exercícios 2.1 Estruturas condicionais - básico 1) Desenvolver um algoritmo que determine o

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1. (Enem PPL) Para um principiante em corrida, foi estipulado o seguinte plano de treinamento diário: correr 300 metros no primeiro dia e aumentar 00 metros por dia, a partir do

Leia mais

- MATEMÁTICA - PUC-MG

- MATEMÁTICA - PUC-MG Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

MATEMÁTICA. Professor Diego Viug

MATEMÁTICA. Professor Diego Viug MATEMÁTICA Professor Diego Viug FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA FUNÇÃO AFIM Taxa de variação constante. Proporcionalidade. (usaremos semelhança) y = ax + b a coeficiente angular. b coeficiente linear.

Leia mais

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2 MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800

Leia mais

Olimpíada Brasileira de Física ª Fase

Olimpíada Brasileira de Física ª Fase Olimpíada Brasileira de Física 2001 3ª Fase 3º Ano Leia com atenção todas as instruções seguintes. Este exame é destinado exclusivamente aos alunos do 3º ano, sendo constituído por 8 questões. Todas as

Leia mais

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer

Leia mais

Medalhas de prata. Disponível em: Acesso em: 05 abr (adaptado).

Medalhas de prata. Disponível em:  Acesso em: 05 abr (adaptado). 1. (Enem 2012) A capacidade mínima, em BTU/h, de um aparelho de ar condicionado, para ambientes sem exposição ao sol, pode ser determinada da seguinte forma: 600 BTU/h por m 2, considerando se ate duas

Leia mais

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50 0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas

Leia mais

2007 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 3º. ano.

2007 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 3º. ano. 007 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 3º. ano. 0) A prova contém oito (8) questões e TODAS DEVEM SER RESOLVIDAS.

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

Universidade Federal Rural do Semi-Árido UFERSA Cursinho Pré - Universitário

Universidade Federal Rural do Semi-Árido UFERSA Cursinho Pré - Universitário ENEM 2012 - Questão 171 Prova Amarela. Um laboratório realiza exames em que é possível observar a taxa de glicose de uma pessoa. Os resultados são analisados de acordo com o quadro a seguir. ENEM 2011

Leia mais

EXERCÍCIOS FUNÇÃO AFIM

EXERCÍCIOS FUNÇÃO AFIM Primeiramente Bom dia! EXERCÍCIOS FUNÇÃO AFIM Questão 0 - (UNIRIO RJ/00) Um automóvel bicombustível (álcool/gasolin traz as seguintes informações sobre consumo (em quilômetros por litro) em seu manual:

Leia mais

2ª série do Ensino Médio

2ª série do Ensino Médio 2ª série do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com 8 questões. Verifique, portanto, se está completo, e, caso haja algum problema, solicite outro ao fiscal da sala. 2. Em

Leia mais

MATEMÁTICA. Use este espaço para rascunho.

MATEMÁTICA. Use este espaço para rascunho. MATEMÁTICA Use este espaço para rascunho 01 Cubos brancos de 1cm de aresta foram dispostos formando o paralelepípedo representado abaixo Em seguida, a superfície total desse paralelepípedo foi pintada

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

Lista de função quadrática

Lista de função quadrática COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Lista de função quadrática QUESTÃO 01 Assinale a ÚNICA proposição CORRETA.

Leia mais

U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S SÓ ABRA QUANDO AUTORIZADO.

U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S SÓ ABRA QUANDO AUTORIZADO. U N I V E R S I D A D E F E D E R A L D E M I N A S G E R A I S MATEMÁTICA B 2 a SÓ ABRA QUANDO AUTORIZADO. as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, que ocupam um total

Leia mais

FUNÇÃO POLINOMIAL DO 1º GRAU

FUNÇÃO POLINOMIAL DO 1º GRAU FUNÇÃO POLINOMIAL DO 1º GRAU MÓDULO 8 FUNÇÃO AFIM FUNÇÃO POLINOMIAL DO 1º GRAU Uma função f : R R chama-se função polinomial do 1 grau ou função afim quando existem dois números reais a e b, tal que f

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos

Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos Estudo Dirigido - Desvendando a Geometria Analítica: Distância entre dois pontos Conteúdo: Plano Cartesiano Público-alvo: Alunos de Ensino Médio Competências; Modelar e resolver problemas que envolvem

Leia mais

LISTA EXERCICIOS HIDRODINAMICA FAG PROF. ALOISIO

LISTA EXERCICIOS HIDRODINAMICA FAG PROF. ALOISIO 1. Um recipiente cilíndrico de 40 litros está cheio de água. Nessas condições, são necessários 12 segundos para se encher um copo d água através de um pequeno orifício no fundo do recipiente. Qual o tempo

Leia mais

[Pot] = = = M L 2 T 3

[Pot] = = = M L 2 T 3 1 e No Sistema Internacional, a unidade de potência é watt (W). Usando apenas unidades das grandezas fundamentais, o watt equivale a a) kg m/s b) kg m 2 /s c) kg m/s 2 d) kg m 2 /s 2 e) kg m 2 /s 3 A equação

Leia mais

MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS

MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS MATEMÁTICA ROTEIRO DE RECUPERAÇÃO ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS NOTA ALUNO(A): Nº: DATA: / /2017 I INTRODUÇÃO Este roteiro tem como

Leia mais

INTRODUÇÃO AO ESTUDO DE FUNÇÃO. Prof. Ade1000son

INTRODUÇÃO AO ESTUDO DE FUNÇÃO. Prof. Ade1000son INTRODUÇÃO AO ESTUDO DE FUNÇÃO Prof. Ade1000son CONCEITO DE FUNÇÃO 2 Sistema Cartesiano de Coordenadas Foi o matemático e filósofo francês René Descartes o criador da parte da Matemática que relaciona

Leia mais

Cinemática Gráficos Cinemáticos 1- Na figura estão representados os diagramas de velocidade de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem a

Leia mais

Física 1. 2 a prova 26/05/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 26/05/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 26/05/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

a) 6% b) 7% c) 70% d) 600% e) 700%

a) 6% b) 7% c) 70% d) 600% e) 700% - MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%

Leia mais

FUVEST 98 SEGUNDA FASE PROVA DE FÍSICA Q.01

FUVEST 98 SEGUNDA FASE PROVA DE FÍSICA Q.01 Q.01 Estamos no ano de 2095 e a "interplanetariamente" famosa FIFA (Federação Interplanetária de Futebol Amador) está organizando o Campeonato Interplanetário de Futebol, a se realizar em MARTE no ano

Leia mais

Matemática aplicada à administração LISTA 06

Matemática aplicada à administração LISTA 06 Matemática aplicada à administração LISTA 06 (1) Encontre o intervalo(s) em que f(x) é crescente, decrescente, côncava para cima e côncava para baixo. (a) f(x) = -x 2 +8x+7 Resposta: crescente no intervalo

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira 1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos

Leia mais

Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b.

Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b. Funções Variadas 1. (Unicamp 014) O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar

Leia mais

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas.

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Números e Funções Reais - PROFMAT Prof. Zeca Eidam Lista Equações e inequações. Prove que: a) x 0 b) x = 0

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par

Leia mais

Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e,

Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e, Escola Secundária de Lousada Matemática do 9º ano FT 1 Data: / / 01 Assunto: Resumo das funções Lições nº, e, 1. Considera as funções: ( ) = ; g ( ) = + 4 ; h ( ) ; i( ) = ; j ( ) = e l( ) f = 7 = 5 1.1.

Leia mais

PROFESSOR: RIVAILDO ALVES (ÁLGEBRA) ENSINO: FUNDAMENTAL II

PROFESSOR: RIVAILDO ALVES (ÁLGEBRA) ENSINO: FUNDAMENTAL II TÍTULO: EXERCÍCIOS DE VERIFICAÇÃO DA APRENDIZAGEM ETAPA III PROFESSOR: RIVAILDO ALVES (ÁLGEBRA) DATA: ANO: 9º TURMA: ENSINO: FUNDAMENTAL II TURNO: NOTA: ALUNO(A): Nº: OBSERVAÇÕES: Leia as questões com

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

Lista 4 MUV. Física Aplicada a Agronomia

Lista 4 MUV. Física Aplicada a Agronomia Sigla: Disciplina: Curso: FISAP Física Aplicada a Agronomia Agronomia Lista 4 MUV 01) A posição de um objeto movendo-se ao longo do eixo x é dada por x = 3t - 4t² + t³, onde x está em metros e t em segundos.

Leia mais

OLIMPÍADA BRASILEIRA DE FÍSICA ª FASE 19 DE AGOSTO DE 2017

OLIMPÍADA BRASILEIRA DE FÍSICA ª FASE 19 DE AGOSTO DE 2017 OLIMPÍADA BRASILEIRA DE FÍSICA 2017 2ª FASE 19 DE AGOSTO DE 2017 NÍVEL III Ensino Médio 3ª Serie Ensino Técnico 4º série LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO 1 - Esta prova destina-se exclusivamente aos

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VESTIBULAR UFPE UFRPE / 1998 2ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: FÍSICA 1 VALORES DE ALGUMAS GRANDEZAS FÍSICAS Aceleração da gravidade : 10 m/s 2 Número de Avogadro : 6,0 x 10 23 /mol Constante

Leia mais

Simulado 1 (Corrigido no Final)

Simulado 1 (Corrigido no Final) Simulado 1 (Corrigido no Final) Mottola Resolver em horas, sem interrupções e sem consulta. Após este tempo, as questões não respondidas devem ser marcadas de forma aleatória. 1) O menor ângulo formado

Leia mais

PROVA DE FÍSICA - FUVEST 1997 SEGUNDA FASE

PROVA DE FÍSICA - FUVEST 1997 SEGUNDA FASE Um automóvel com massa de 1000kg percorre, com F.01 velocidade constante V = 20m/s (ou 72km/h), uma estrada (ver figura) com dois trechos horizontais (I e III), um em subida (II) e um em descida (IV).

Leia mais

Função Quadrática ou Função do 2º grau

Função Quadrática ou Função do 2º grau Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações

Leia mais

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1 PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 9º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Na figura abaixo, temos um quadrado AEDF e AC=4 e AB=6. Qual é o valor do lado

Leia mais

Função polinomial do 1 grau ou função afim

Função polinomial do 1 grau ou função afim Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que

Leia mais

BCC701 Programação de Computadores I Lista de Exercícios 01: Variáveis, Expressões, Entrada e Saída

BCC701 Programação de Computadores I Lista de Exercícios 01: Variáveis, Expressões, Entrada e Saída BCC701 Programação de Computadores I 2018-02 Lista de Exercícios 01: Variáveis, Expressões, Entrada e Saída Questão 1. (2014-01) http://www.decom.ufop.br/bcc701/ O comportamento dos gases ideais é regido

Leia mais

VALORES DE CONSTANTES E GRANDEZAS FÍSICAS

VALORES DE CONSTANTES E GRANDEZAS FÍSICAS VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/g ºC = 4,2 x 10 3 J/kg ºC - carga do elétron e = 1,6 x 10-19 C - constante da lei

Leia mais

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a: Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado

Leia mais

Ensino Médio. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018

Ensino Médio. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 9 Força magnética Lista 1. Nos casos indicados a seguir, cada condutor está imerso em um campo

Leia mais