FUNÇÃO POLINOMIAL DO 1º GRAU
|
|
|
- Heitor Estrada Castilhos
- 8 Há anos
- Visualizações:
Transcrição
1 FUNÇÃO POLINOMIAL DO 1º GRAU MÓDULO 8 FUNÇÃO AFIM
2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função f : R R chama-se função polinomial do 1 grau ou função afim quando existem dois números reais a e b, tal que f (x) = ax + b, para todo x ϵ R. GRÁFICO DA FUNÇÃO O gráfico da função afim representa uma reta. Como dois pontos são necessários para determinar uma reta, escolhemos dois valores distintos para x e calculamos os correspondentes valores de y. O coeficiente b é chamado de termo independente ou coeficiente linear. Graficamente, b é a ordenada do ponto onde a reta corta o eixo y. Se cortar acima do eixo x, b é positivo, se cortar abaixo do eixo x, b é negativo. Raiz da função afim é o valor de x que anula a função. Graficamente, raiz da função é a abscissa do ponto onde a reta corta o eixo x, e pode ser calculada por. COEFICIENTES E RAIZ DA FUNÇÃO AFIM O coeficiente a é chamado de taxa de variação ou coeficiente angular. É ele o responsável pela declividade ou inclinação da reta. Se a > 0, a reta será crescente. Se a < 0, a reta será decrescente. Coeficiente angular da reta r é o número real a que expressa à tangente trigonométrica de sua inclinação α, ou seja, a = tgα
3 EXERCÍCIOS MÓDULO 8 FUNÇÃO AFIM 1. (ENEM/2009) Uma pousada oferece pacotes promocionais para atrair casais a se hospedarem por até oito dias. A hospedagem seria em apartamento de luxo e, nos três primeiros dias, a diária custaria R$ 150,00, preço da diária fora da promoção. Nos três dias seguintes, seria aplicada uma redução no valor da diária, cuja taxa média de variação, a cada dia, seria de R$ 20,00. Nos dois dias restantes, seria mantido o preço do sexto dia. Nessas condições, um modelo para a promoção idealizada é apresentado no gráfico a seguir, no qual o valor da diária é função do tempo medido em número de dias. 2. (ENEM/2010-2) As sacolas plásticas sujam florestas, rios e oceanos e quase sempre acabam matando por asfixia peixes, baleias e outros animais aquáticos. No Brasil, em 2007, foram consumidas 18 bilhões de sacolas plásticas. Os supermercados brasileiros se preparam para acabar com as sacolas plásticas até Observe o gráfico a seguir, em que considera a origem como o ano de De acordo com os dados e com o modelo, comparando o preço que um casal pagaria pela hospedagem por sete dias fora da promoção, um casal que adquirir o pacote promocional por oito dias fará uma economia de a) R$90,00. b) R$110,00. c) R$130,00. d) R$150,00. e) R$170,00. De acordo com as informações, quantos bilhões de sacolas plásticas serão consumidos em 2011? a) 4,0 b) 6,5 c) 7,0 d) 8,0 e) 10,0
4 3. (ENEM/2010-2) Em fevereiro, o governo da Cidade do México, metrópole com uma das maiores frotas de automóveis do mundo, passou a oferecer à população bicicletas como opção de transporte. Por uma anuidade de 24 dólares, os usuários têm direito a 30 minutos de uso livre por dia. O ciclista pode retirar em uma estação e devolver em qualquer outra e, se quiser estender a pedalada, paga 3 dólares por hora extra. (Revista Exame. 21 abr ) A expressão que relaciona o valor f pago pela utilização da bicicleta por um ano, quando se utilizam x horas extras nesse período é: a) f (x) = 3x b) f (x) = 24 c) f (x) = 27 d) f (x) = 3x + 24 e) f (x) = 24x (ENEM/2011) As frutas que antes se compravam por dúzias, hoje em dia, podem ser compradas por quilogramas, existindo também a variação dos preços de acordo com a época de produção. Considere que, independente da época ou variação de preço, certa fruta custa R$ 1,75 o quilograma. Dos gráfico a seguir, o que representa o preço m pago em reais pela compra de n quilogramas desse produto é. a) b) 4. (ENEM/2011) O saldo de contratações no mercado formal no setor varejista da região metropolitana de São Paulo registrou alta. Comparando as contratações deste setor no mês de fevereiro com as de janeiro deste ano houve incremento de vagas no setor, totalizando trabalhadores com carteira assinada. c) Disponível em: Acesso em: 26 abr Suponha que o incremento de trabalhadores no setor varejista seja sempre o mesmo nos seis primeiros meses do ano. Considerando-se que y e x representam, respectivamente, as quantidades de trabalhadores no setor varejista e os meses, janeiro sendo o primeiro, fevereiro, o segundo, e assim por diante, a expressão algébrica que relaciona essas quantidades nesses meses é a) y = 4 300x b) y = x c) y = x d) y = x e) y = x d) e)
5 6. (ENEM/2008) A figura abaixo representa o boleto de cobrança da mensalidade de uma escola, referente ao mês de junho de (ENEM/2012) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$ 750,00 mais uma comissão de R$ 3,00 para cada produto vendido. Caso ele venda mais de 100 produtos, sua comissão passa a ser de R$ 9,00 para cada produto vendido, a partir do 101 produto vendido. Com essas informações, o gráfico que melhor representa a relação entre o salário e o número de produtos vendidos é Se M(x) é o valor, em reais, da mensalidade a ser paga, em que x é o número de dias em atraso, então a) M(x) = ,4x. b) M(x) = x. c) M(x) = ,4x. d) M(x) = x. e) M(x) = ,4x. 7. (ENEM/2012) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do preço do produto. Em alguns casos, essas curvas podem ser representadas por retas. Suponha que as quantidades de oferta e de demanda de um produto sejam, respectivamente, representadas pelas equações: Q O = P Q D = 46 2P em que Q O é quantidade de oferta, Q D é a quantidade de demanda e P é o preço do produto. A partir dessas equações, de oferta e de demanda, os economistas encontram o preço de equilíbrio de mercado, ou seja, quando Q O e Q D se igualam. Para a situação descrita, qual o valor do preço de equilíbrio? a) 5 b) 11 c) 13 d) 23 e) 33 a) b) c) d) e)
6 9. (ENEM ) Uma torneira gotejando diariamente é responsável por grandes desperdícios de água. Observe o gráfico que indica o desperdício de uma torneira. Se y representa o desperdício de água, em litros, e x representa o tempo, em dias, a relação entre x e y é: a) y = 2x b) y = 1/2x c) y = 60x d) y = 60x + 1 e) y = 80x (ENEM-PROVA ANULADA/2009) Uma empresa produz jogos pedagógicos para computadores, com custos fixos de R$ 1.000,00 e custos variáveis de R$ 100,00 por unidade de jogo produzida. Desse modo, o custo total para x jogos produzidos é dado por C(x) = 1 + 0,1x (em R$ 1.000,00). A gerência da empresa determina que o preço de venda do produto seja de R$ 700,00. Com isso a receita bruta para x jogos produzidos é dada por R(x) = 0,7x (em R$ 1.000,00). O lucro líquido, obtido pela venda de x unidades de jogos, é calculado pela diferença entre a receita bruta e os custos totais. O gráfico que modela corretamente o lucro líquido dessa empresa, quando são produzidos x jogos, é: a) 10. (ENEM ) Lucas precisa estacionar o carro pelo período de 40 minutos, e sua irmã Clara também precisa estacionar o carro pelo período de 6 horas. O estacionamento Verde cobra R$ 5,00 por hora de permanência. O estacionamento Amarelo cobra R$ 6,00 por 4 horas de permanência e mais R$ 2,50 por hora ou fração de hora ultrapassada. O estacionamento Preto cobra R$ 7,00 por 3 horas de permanência e mais R$ 1,00 por hora ou fração de hora ultrapassada. Os estacionamentos mais econômicos para Lucas e Clara, respectivamente, são a) Verde e Preto. b) Verde e Amarelo. c) Amarelo e Amarelo. d) Preto e Preto. e) Verde e Verde. b) c) d)
7 e) 13. (ENEM/2010-2) Certo município brasileiro cobra a conta de água de seus habitantes de acordo com o gráfico. O valor a ser pago depende do consumo mensal em m³. 12. (ENEM-PROVA ANULADA/2009) Paulo emprestou R$ 5.000,00 a um amigo, a uma taxa de juros simples de 3% ao mês. Considere x o número de meses do empréstimo e M(x) o montante a ser devolvido para Paulo no final de x meses. Nessas condições, a representação gráfica correta para M(x) é a) b) Se um morador pagar uma conta de R$ 19,00, isso significa que ele consumiu: a) 16 m³ de água b) 17 m³ de água c) 18 m³ de água d) 19 m³ de água e) 20 m³ de água c) d) e) 14. (UCS INV/2014) O recente incentivo do Governo Federal através da redução do Imposto sobre Produtos Industrializados (IPI), que incidia sobre veículos, fez com que o número de automóveis de uma determinada cidade aumentasse consideravelmente, passando de , no final de abril de 2010, para em abril de Supondo que o ritmo de crescimento venha a se manter, e que possa ser modelado matematicamente por uma função afim, qual será a quantidade de automóveis registrada nessa cidade em abril de 2022? a) b) c) d) e)
8 15. (ENEM/2008) Uma pesquisa da ONU estima que, já em 2008, pela primeira vez na história das civilizações, a maioria das pessoas viverá na zona urbana. O gráfico a seguir mostra o crescimento da população urbana desde 1950, quando essa população era de 700 milhões de pessoas, e apresenta uma previsão para 2030, baseada em crescimento linear no período de 2008 a De acordo com o gráfico, a população urbana mundial em 2020 corresponderá, aproximadamente, a quantos bilhões de pessoas? a) 4,00 b) 4,10 c) 4,15 d) 4,25 e) 4, (UCPEL/2016) Dada a função f (x) = ax + b, sendo a, b constantes reais e sabendo-se que f(2)=5 e f(1)=4, é correto afirmar que a) a função f (x) é decrescente. b) o ângulo de declividade da reta correspondente à f (x) é obtuso. c) a taxa de variação de f (x) é 5. d) a taxa de variação de f (x) é 4. e) o ângulo de declividade da reta correspondente à f (x) é agudo. 17. (UFSM/2014) De acordo com dados de UNEP Programa das Nações Unidas para o Meio Ambiente, a emissão de gases do efeito estufa foi de 45 bilhões de toneladas de CO2 em 2005 e de 49 bilhões de toneladas em Se as emissões continuarem crescendo no mesmo ritmo atual, a emissão projetado para 2020 é de 58 bilhões de toneladas. Porém, para garantir que a temperatura do planeta não suba mais que 2ºC até 2020, a meta é reduzir as emissões para 44 bilhões de toneladas. Suponha que a meta estabelecida para 2020 seja atingida e considere que Q e t representam, respectivamente, a quantidade de gases do efeito estufa (em bilhões de toneladas) e o tempo (em anos), com t = 0 correspondendo a 2010, com t = 1 correspondendo a 2011 e assim por diante, sendo Q uma função afim de t. A expressão algébrica que relaciona essas quantidades é a) Q = 9/10t + 45 b) Q = 1/2t + 49 c) Q = 5t + 49 d) Q = 1/2t + 45 e) Q = 9/10t (ACAFE/2015) Uma fabrica produz e vende peças para as grandes montadoras de veículos. O custo da produção mensal dessas peças e dado através da função C(x) = x, onde x e o número de peças produzidas por mês. Cada peça é vendida por R$ 54,00. Hoje, o lucro mensal dessa fabrica e de R$ 6.000,00. Para triplicar esse lucro, a fabrica devera produzir e vender mensalmente: a) o triplo do que produz e vende. b) 200 unidades a mais do que produz e vende. c) 50% a mais do que produz e vende. d) o dobro do que produz e vende.
9 19. (UNIFRA/2013) O preço, P, do trabalho de um pintor é dado em função da superfície, S, a ser pintada, mais R$ 30,00 fixos. A tabela abaixo apresenta alguns dos orçamentos apresentados por esse pintor. 21. (UFSM EAD I/2007) Os dados da tabela indicam a temperatura média global nos últimos anos. Observando a tabela, pode-se afirmar que o preço a ser cobrado para pintar uma superfície de 780 m² e a área máxima a ser pintada com R$ 800,00 são, respectivamente, a) R$ 1.120,00 e 120m2. b) R$ 3.120,00 e 200m2. c) R$ 3.150,00 e 192,5m2. d) R$ 3.500,00 e 180m2. e) R$ 7.800,00 e 80m (ENEM PPL/2014) Em uma cidade, os impostos que incidem sobre o consumo de energia elétrica residencial são de 30% sobre o custo do consumo mensal. O valor total da conta a ser paga no mês é o valor cobrado pelo consumo acrescido dos impostos. Considerando x o valor total da conta mensal de uma residência e y o valor dos impostos, qual é a expressão que relaciona x e y? a) y = 0,3x / 1,3 b) y = 0,3x c) y = x / 1,3 d) y = 1,3x / 0,3 e) y = 0,7x Suponha que a temperatura média global (em C) seja expressa por f(x) = 0,01x + 14,6, sendo x em anos, x = 0 correspondente a 2000, x = 1 correspondente a 2001 e assim por diante. De acordo com esse modelo, a temperatura média global prevista para 2150 é igual a a) 14,7 C b) 15,6 C c) 16,1 C d) 16,6 C e) 17 C 22. (UNIFRA/2016) Uma determinada empresa concede uma bonificação aos seus funcionários no final de cada ano em função de suas vendas, convertidas em pontos que variam de 25 a 100 e que, por sua vez, são convertidos em reais, conforme mostra o gráfico. Nota-se que, entre 25 e 90 pontos, a bonificação é proporcional e, entre 90 e 100 pontos, a bonificação é constante. Se um funcionário obtiver a máxima pontuação, ele receberá um adicional, em reais, de a) 1.300,00. b) 1.210,00. c) 1.120,00. d) 1.100,00. e) 1.080,00.
10 23. (UNIFRA INV/2016) No ano de 2015, ocorreu, em Paris, a 21a Cúpula do Clima, a COP 21, com o objetivo de buscar uma solução para o grande desafio deste século: as mudanças climáticas. O Acordo de Paris determinou como 195 países deverão agir na substituição das fontes sujas (carvão e petróleo) pelas limpas (energia solar e eólica). O gráfico abaixo mostra o comportamento dessas fontes ao longo do tempo. 24. (ENEM PPL/2015) No comércio é comumente utilizado o salário mensal comissionado. Além de um valor fixo, o vendedor tem um incentivo, geralmente um percentual sobre as vendas. Considere um vendedor que tenha salário comissionado, sendo sua comissão dada pelo percentual do total de vendas que realizar no período. O gráfico expressa o valor total de seu salário, em reais, em função do total de vendas realizadas, também em reais. Supondo que, entre 2015 e 2050, o comportamento das fontes limpas e das fontes sujas sejam lineares, considerando também t = 0 o ano de 2015, t = 1 o ano de 2016, e assim sucessivamente, as fontes limpas irão igualar as fontes sujas no ano de a) b) c) d) e) Qual o valor percentual da sua comissão? a) 2,0% b) 5,0% c) 16,7% d) 27,7% e) 50,0% GABARITO: 1A; 2E; 3D; 4C; 5E; 6C; 7B; 8E; 9C; 10A; 11B; 12A; 13B; 14B; 15D; 16E; 17B; 18D; 19C; 20A; 21C; 22E; 23B; 24A.
Questão 1. (Enem (Libras) 2017) Um reservatório de água com capacidade para
SE18 - Matemática LMAT2A2 - Funções: introdução e Função do 1o grau Questão 1 (Enem (Libras) 2017) Um reservatório de água com capacidade para mil litros de água num instante inicial mil litros encontra-se
Funções de 1º Grau no ENEM
Funções de 1º Grau no ENEM (Lista com 23 Questões de Funções de 1º Grau abordadas em anos anteriores do ENEM) 01 - (ENEM/2009) Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas
Matemática. Equaçao de 1 o Grau. Qual a expressão algébrica que permite calcular o nível da água (y) em função do número de bolas (x)?
Capítulo 1 Matemática Seção 1.1 Equaçao de 1 o Grau Subseção 1.1.1 Exercícios 1. ENEM 2009 - Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas em um copo com água at certo
Colégio Nossa Senhora de Lourdes. Matemática. Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática Professor: Leonardo Maciel Apostila 4: Função do 1º grau 1. (Enem 2016) Um dos grandes desafios do Brasil é o gerenciamento dos seus recursos naturais, sobretudo
Prof. Dr. Aldo Vieira
1. Em uma determinada região do planeta, a temperatura média anual subiu de 13,35 ºC em 1995 para 13,8 ºC em 2010. Seguindo a tendência de aumento linear observada entre 1995 e 2010, a temperatura média
1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3
Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal
MATEMÁTICA - 1 o ANO MÓDULO 15 FUNÇÃO DO 1 O GRAU - PARTE 1
MATEMÁTICA - 1 o ANO MÓDULO 15 FUNÇÃO DO 1 O GRAU - PARTE 1 y y y x x x a > 0 a < 0 A função é crescente A função é decrescente y f (x) b x y ponto (- b, 0) a -b a x x 2 4 y 2 6 y x x y 1-2 x 4-1 2 x Como
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL ( ),
Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL 1 (Fuvest) Considere a função ( ) ( ), a qual está definida para x 1. Então, para todo x 1 e x 1, o produto f(x) f( x) é igual
Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
MATEMÁTICA. Professor Diego Viug
MATEMÁTICA Professor Diego Viug FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA FUNÇÃO AFIM Taxa de variação constante. Proporcionalidade. (usaremos semelhança) y = ax + b a coeficiente angular. b coeficiente linear.
COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/12
COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/1 1. (Upe 01) Na figura a seguir, estão representados o ciclo trigonométrico e um triângulo isósceles OAB. Qual das expressões abaixo corresponde
Unidade 7 Estudo de funções
Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM.
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM. 01. (ENEM 2011) O prefeito de uma cidade deseja construir uma rodovia para dar acesso a outro município. Para isso, foi aberta uma licitação na
Mat.Semana 3. Alex Amaral (Allan Pinho)
Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução
3º Ano do Ensino Médio. Aula nº08
Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis
FUNÇÃO POLINOMIAL DO 1º GRAU CONTEÚDOS
FUNÇÃO POLINOMIAL DO 1º GRAU CONTEÚDOS Função polinomial do 1º grau Gráfico de função Função do 1º grau Gráfico de função do 1º grau Zero da função Coeficientes da função Função crescente e decrescente
Exercícios: Funções - Gráficos Prof. André Augusto
Exercícios: Funções - Gráficos Prof. André Augusto 1. TESTES DE VESTIBULARES Exercício 1 (ENEM). O gráfico mostra a variação da extensão média de gelo marítimo, em milhões de quilômetros quadrados, comparando
Matemática e suas Tecnologias
e suas Tecnologias Questões mais comuns no ENEM Função do 1º grau Função do 2º grau Progressão aritmética Progressão geométrica Estatística Razão e proporção Porcentagem Triângulos Análise combinatória
Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial
Exercício de Gráficos e Funções 1º (Enem 2004) VENDEDORES JOVENS Fábrica de LONAS Vendas no Atacado 10 vagas para estudantes, 18 a 20 anos, sem experiência. Salário: R$ 300,00 fixo + comissão de R$ 0,50
Função polinomial do 1 grau ou função afim
Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO 1. Dados os conjuntos G 0,1,3, 4 e 1,3 elemento de G ao seu dobro mais um em H, é dada
Whats: (84) FUNÇÕES (GRÁFICOS)
1.Uma empresa analisou mensalmente as vendas de um de seus produtos ao longo de 1 meses após seu lançamento. Concluiu que, a partir do lançamento, a venda mensal do produto teve um crescimento linear até
Resolução _ Lista ENEM Função, Função do 1º e 2º Graus de 2010 até Gabarito: T(h) h 22h 85. (h 22h 85) [(h 11) 36] 36 (h 11).
Resolução _ Lista ENEM Função, Função do 1º e º Graus de 010 até 015 Gabarito: Resposta da questão 1: Escrevendo a lei de T na forma canônica, vem T(h) h h 85 (h h 85) [(h 11) 6] 6 (h 11). Assim, a temperatura
Lista 6. (d) y = 2x 3 2
Lista 6 6 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira. Construa o gráfico cartesiano das funções de R em R: (a) = (b) = + (c) = + (d) = (e) = 4 (f) = 4. O gráfico da função = a+b é Determine: (a) os valores
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO Nome Nº Turma 1 cn02 e cn07 Data / / Nota Disciplina Matemática Prof. Elaine Valor 30 Instruções: TRABALHO DE RECUPERAÇÃO ANUAL; Este
Questão 1. De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
SE18 - Matemática LMAT1A2 - Equações e inequações do 1o grau Questão 1 Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais. Verificou-se
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g
Revisão do Enem x² x d) y = 4 5 x + 2 e) y = x. x² + 2x c) y =
Revisão do Enem 01. (Enem 2014) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial f, de
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
Atividade extra. Exercício 1. Exercício 2 (PUC-SP Adaptada) Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O banco A cobra uma tarifa para manutenção de conta da seguinte forma: uma taxa de R$ 11,00 mensais e mais uma taxa de R$ 0,14 por cheque emitido. O banco B cobra como tarifa
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO 1. (Ucs 2014) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total em reais, das vendas que ele efetuar durante
LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO FINAL 1ª SÉRIE MATEMÁTICA. CONTEÚDO DA RECUPERAÇÃO FINAL- Álgebra
Colégio J. R. Passalacqua Colégio São Vicente de Paulo Penha Colégio Santo Antonio de Lisboa Colégio Francisco Telles Colégio São Vicente de Paulo LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO FINAL ª SÉRIE MATEMÁTICA
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU MÓDULO 9 FUNÇÃO QUADRÁTICA FUNÇÃO POLINOMIAL DO 2º GRAU Chamamos de função polinomial do segundo grau ou função quadrática, toda a função f : R R dada por uma lei de forma
Mat.Semana 4. Alex Amaral (Natália Peixoto)
Alex Amaral (Natália Peixoto) Semana 4 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03
1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3].
Lista de Exercícios - Função Afim 1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3]. 2. As frutas que antes se compravam
PARTE 1 O gráfico da função f(x) = ax + b está representado nessa figura. O valor de a + b é a) 2 b) 2 c) 7/2 d) 9/2 e) 6
1) (PUC-MG) Ua função do 1 grau é tal que f(-1) = 5 e f(3) = -3. Então, f(0) é igual a 0 c) 3 4 e) 1 PARTE 1 O gráfico da função f() = a + b está representado nessa figura. O valor de a + b é c) 7/ 9/
MATEMÁTICA - 3 o ANO MÓDULO 07 FUNÇÃO DO 1º GRAU
MATEMÁTICA - 3 o ANO MÓDULO 07 FUNÇÃO DO 1º GRAU y (0,c) x y (2,2) (0,0) (1,1) x (-2,-2) (-1,-1) y x y 3 (1,3) (0,1) 1 x y 1 (1,1) (,0) 1 x (0,1) y 3 (1,3) (0,1) 1 x y 1 (0,3) 2 (1,2) x y y - f(x) -1 2
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x
Professor Diego. Suponha que o incremento de trabalhadores no setor varejista seja sempre o mesmo nos seis primeiros meses do ano.
Professor Diego 01. (ENEM/2011) O saldo de contratações no mercado formal no setor varejista da região metropolitana de São Paulo registrou alta. Comparando as contratações deste setor no mês de fevereiro
Unidade I. Prof. Luiz Felix
Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Conjuntos Designa-se conjunto uma representação de objetos, podendo ser representado de três modos: representação ordinária A = 0, 1, 2, 3, 4 representação
Função do 1º grau Questões Extras. e) 1 4
Função do º grau Questões Extras Prof. Hugo Gomes. Uma pesquisa do Ministério da Saúde revelou um aumento significativo no número de obesos no Brasil. Esse aumento está relacionado principalmente com o
1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).
DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 01 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 1º ANO 4º ALUNO 1. (Pucrj 01) Sejam f e g funções reais dadas por f(x) = x +
COLÉGIOMARQUES RODRIGUES- SIMULADO
COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,
BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabe-se que o custo C para produzir
Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial
Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou
FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.
Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte
AULA 5 Função Afim. Se a > 0 (ou seja, se o valor de a for um número positivo), a função y = ax + b é crescente. Ex1:
AULA 5 Função Afim Sejam a e b números reais e a 0. Dizemos que uma função f : R R é função do 1º grau ou função afim quando está definida pela lei (ou seja, quando tiver esse formato): em que : y f (
EQUAÇÕES DO 1º E 2º GRAU
EQUAÇÕES DO 1º E 2º GRAU EQUAÇÕES DO 1º E 2º GRAU (ENEM 2012) AS CURVAS DE OFERTA E DE DEMANDA DE UM PRODUTO REPRESENTAM, RESPECTIVAMENTE, AS QUANTIDADES QUE VENDEDORES E CONSUMIDORES ESTÃO DISPOSTOS A
CADERNO DE EXERCÍCIOS 2A
CADERNO DE EXERCÍCIOS 2A Ensino Médio Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Equação do 2º grau H22 2 Gráficos H27 3 Gráficos H62 4 Progressão aritmética H20 5 Função
Matemática. Função do 1º Grau / Função do 1º Grau
Função do 1º Grau / Função do 1º Grau 01. (ENEM) O saldo de contratações no mercado formal no setor varejista da região metropolitana de São Paulo registrou alta. Comparando as contratações deste setor
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
Função do 1º grau Prof. Hugo Gomes
Função do º grau Prof. Hugo Gomes Anotações Exercícios Nível. Para organizar uma competição esportiva tem-se um custo de R$ 000,00. Se a taxa de inscrição por participante para essa competição é de R$
FUNÇÃO DO 2 GRAU TERÇA FEIRA
FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções
Simulado enem. Matemática e suas Tecnologias. Volume 1 DISTRIBUIÇÃO GRATUITA
Simulado 06 enem G a b a r i t o 3 ạ série Matemática e suas Tecnologias Volume DISTRIBUIÇÃO GRATUITA Simulado ENEM 06 Questão Matemática e suas Tecnologias Gabarito: Alternativa C ( A ) Analisou apenas
01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo
Aula n ọ 02 01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo 100 km Taxa fixa de R$ 50,00 300 km Taxa fixa de R$ 65,00 500 km Taxa fixa de R$ 75,00 Considerando
1. Construa o graco das func~oes abaixo: a) f(x) = 2x + 5 b) g(x) = 2x 6 c) h(x) = x + 3
Prof. Valdex Santos Aluno: 1 o ano Lista II unidade 1. Construa o graco das func~oes abaixo: a) f(x) = x + 5 b) g(x) = x 6 c) h(x) = x + 3. (FUVEST) A func~ao que representa o valor a ser pago apos um
Medalhas de prata. Disponível em: Acesso em: 05 abr (adaptado).
1. (Enem 2012) A capacidade mínima, em BTU/h, de um aparelho de ar condicionado, para ambientes sem exposição ao sol, pode ser determinada da seguinte forma: 600 BTU/h por m 2, considerando se ate duas
Matemática revisão férias segunda
1. (G1 - cftrj 016) A seguir temos o gráfico de temperatura, em graus Celsius (eixo vertical), no Rio de Janeiro para os dias 1,, 3 e 4 de setembro de 015 (onde no eixo horizontal temos a marcação do início
MATEMÁTICA. Projeto Vestibular MÓDULO I PARTE I FUNÇÃO AFIM. f(x) = ax + b. b a. f: R R. Prof. Bruno Vianna FUNÇÃO AFIM. (ii) Função Constante:
- Definição - Raíz ou zero f: R R f() = a + b f() =0 a + b = 0 - Representação Gráfica: (i) O (ii) O (0,b) b, 0, a 0 a b = a (ii) Função Constante: f: R R f() = b b > 0 b = 0 b < 0 (iii) Função Linear:
MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função
Problemas de função do 1º grau
Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas
Hewlett-Packard FUNÇÃO AFIM. Aulas 01 a 03 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard FUNÇÃO AFIM Aulas 01 a 03 + EXTRA Elson Rodrigues Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário O CONCEITO DE FUNÇÃO AFIM... 2 OS COEFICIENTES DE UMA FUNÇÃO AFIM... 2 O coeficiente
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
A função do primeiro grau. Fascículo 3. Unidade 9
A função do primeiro grau Fascículo 3 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento,
MATEMÁTICA E RACIOCÍNIO LÓGICO
FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES
Universidade Federal Rural do Semi-Árido UFERSA Cursinho Pré - Universitário
ENEM 2012 - Questão 171 Prova Amarela. Um laboratório realiza exames em que é possível observar a taxa de glicose de uma pessoa. Os resultados são analisados de acordo com o quadro a seguir. ENEM 2011
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
Exercício Prof. Alexandrino
Exercício Prof. Alexandrino 01. O gráfico abaixo mostra o número de pessoas comprovadamente infectadas pelo vírus H1N1 numa certa cidade do Brasil, entre os meses de maio e setembro de 2009. Na hipótese
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES E. E. E. M. NOME COMPLETO: Nº TURMA: TURNO: ANO:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 Função Função é uma relação entre duas grandezas
Por vezes podemos identificar, em várias situações práticas, variáveis que estão em relação de dependência.
Título : B1 FUNÇÕES Conteúdo : 1. FUNÇÕES Na matemática, uma relação é apenas um conjunto de pares requisitados. Se utilizamos {} como o símbolo para o conjunto, temos abaixo alguns exemplos de relações
PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS
ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: ª E.M. Data: / / 207 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS.
M odulo de Fun c ao Afim No c oes B asicas. 9o ano E.F.
Módulo de Função Afim Noções Básicas. 9 o ano E.F. Função Afim Noções Básicas. 1 Exercícios Introdutórios Exercício 1. Em certa cidade, uma corrida de táxi custa R$ 4, 80 a bandeirada, mais R$ 0,40 por
3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo
Matemática I - Capítulo 07 Função Polinomial do 1 Grau
Nome: Nº Curso: Controle Ambiental Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /2016 Matemática I - Capítulo 07 Função Polinomial do 1 Grau 7.1 - Função Constante Denominamos função
f a função definida por f ( x)
Matemática Questão 1 16 Se h 4, então o valor absoluto de h é: a. 1 8 b. 4 c. d. 3 e. 3 Questão i j j i Sejam A a ij uma matriz quadrada de ordem, cujas entradas são definidas por a 1 i j f a função definida
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65
FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa
H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:
H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
EXERCÍCIOS DE ESTRUTURA SEQUENCIAL
EXERCÍCIOS DE ESTRUTURA SEQUENCIAL 1 - O coração humano bate em média uma vez por segundo. Desenvolva um algoritmo para calcular e escrever quantas vezes o coração de uma pessoa baterá se viver X anos.
AULA 04 FUNÇÃO DO 1º GRAU 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0)
1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0) 1 c) f 3 1 d) f - 2 2. Dada a função afim f(x) = 2x + 3, determine os valores de x para que: a) f(x) = 1 b) f(x) = 0 c) f(x) = 3 1 3. Dada
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
