9 ano E.F. Professores Cleber Assis e Tiago Miranda
|
|
|
- Amélia Santiago Canela
- 8 Há anos
- Visualizações:
Transcrição
1 Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda
2 Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x f (x) = x Exercício 1. O salário de João é 00 reais mais 0% do valor de suas vendas. Sendo S o seu salário e x o valor de suas vendas, a função que representa essa situação é: a) S(x) = 00x. b) S(x) = 00 + x. c) S(x) = 00 + x 2. d) S(x) = 00 x. Exercício 2. A função que determine o valor a ser pago por uma corrida de táxi é f (x) = 3, , 0x, sendo x a distância percorrida em km. Qual o valor a ser pago por uma corrida de 10km? a) R$2, 00. b) R$2, 40. c) R$28, 40. d) R$28, 00. Exercício 3. Seja a função afim: f : {1, 2, 3} {2, 4, 6} x f (x) = 2x. Qual é o inteiro mais próximo de x, tal que f (x) = 4? 2 Exercícios de Fixação Exercício 8. Uma função f : R + R +, satisfaz à condição f (x) = f (x), x R +. Se f (12) =, qual é o valor de f (1)? Exercício 9. Em fevereiro, o Governo da Cidade do México, (...) passou a oferecer à população bicicletas como opção de transporte. Por uma anuidade de 24 dólares, os usuários têm direito a 30 minutos de uso livre por dia. (...) e, se quiser estender a pedalada, paga 3 dólares por hora extra. Qual é a expressão que relaciona o valor f a ser pago pelo uso da bicicleta por um ano, quando se utilizam x horas extras nesse período? Exercício 10. O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto que o reservatório B ganha água a uma taxa constante de 12 litros por hora. Sabendo que inicialmente o reservatório A está com 720 litros de água e que o reservatório B está com 60 litros, em quanto tempo eles conterão o mesmo volume de água? Exercício 11. A fábula da lebre e da tartaruga foi recontada utilizando-se o gráfico para descrever os deslocamentos dos animais. Podemos afirmar que f (2) + f (3) f (1) é: a) 6. b) 7. c) 8. d) 9. e) 10. Exercício 4. Seja a função afim f : R R, definida por f (x) = x + 1. Determine seus coeficientes angular e linear. 2 Exercício. João vende jornal. Ele recebe um valor fixo de R$00, 00 mais R$1, 0 para cada unidade vendida. Determine: a) O salário de João, f, em função da quantidade x de jornais vendidos por mês. b) Quantos jornais ele deverá vender para ter um salário de R$1.400, 00. Exercício 6. João sai para viajar, sempre a velocidade constante, de sua cidade, Caicó, para Fortaleza, cuja distância é 420km. Às 9h, ele está a 140km de Caicó e chega às 13h em Fortaleza. Que horas ele saiu de Caicó? a) Determine após quanto tempo a tartaruga alcançou a lebre. b) Determine por quanto tempo a lebre ficou dormindo. Obs: A velocidade da lebre após acordar é a mesma de antes de dormir. Exercício 12. Um experimento da área de agronomia mostra que a temperatura mínima da superfície do solo t(x), 1 [email protected]
3 em o C, é determinada em função do resíduo x de planta e biomassa na superfície, em g/m 2, conforme registrado na tabela. Determine a função que relaciona as duas grandezas. g/m o C 7,24 7,30 7,36 7,42 7,48 7,4 7,60 Exercício 13. Mário tem um terreno cujo comprimento é 0m. Representando por f a medida do perímetro e por x a medida da largura desse terreno, determine: a) a função f (x) que relaciona a medida do perímetro e a medida da largura do terreno. b) a medida do perímetro se a largura for 1m. c) a largura do terreno se o perímetro medir 10m. a) b) 120. c) 100. d) e) 200. Exercício 17. Um dos grandes desafios do Brasil é o gerenciamento dos seus recursos naturais, sobretudo os recursos hídricos. Existe uma demanda crescente por água e o risco de racionamento não pode ser descartado. O nível de água de um reservatório foi monitorado por um período, sendo o resultado mostrado no gráfico. Suponha que essa tendência linear observada no monitoramento se prolongue pelos próximos meses. Exercício 14. João comprou um carro por x reais. Depois de dois anos de uso o valor do seu carro ficou 20% menor e João o vendeu. Determine o valor de venda f em função do valor de compra x. Exercício 1. Um tanque está vazio e começa a ser preenchido com água utilizando-se uma torneira cuja vazão é constante. Se depois 20min havia apenas a quinta parte da capacidade do tanque com água, determine a função f (t) que relaciona o tempo t em minutos e a quantidade f (t) de água no tanque no tempo t, sendo a capacidade do tanque de 800 litros. 3 Exercícios de Aprofundamento e de Exames Exercício 16. Uma cisterna de 6000 litros foi esvaziada em um período de 3h. Na primeira hora foi utilizada apenas uma bomba, mas nas duas horas seguintes, a fim de reduzir o tempo de esvaziamento, outra bomba foi ligada junto com a primeira. O gráfico, formado por dois segmentos de reta, mostra o volume de água presente na cisterna, em função do tempo. Nas condições dadas, qual o tempo mínimo, após o sexto mês, para que o reservatório atinja o nível zero de sua capacidade? a) 2 meses e meio. b) 3 meses e meio. c) 1 mês e meio. d) 4 meses. e) 1 mês. Qual é a vazão, em litro por hora, da bomba que foi ligada no início da segunda hora? Exercício 18. Para garantir a segurança de um grande evento público que terá início às 4h da tarde, um organizador precisa monitorar a quantidade de pessoas presentes em cada instante. Para cada pessoas se faz necessária a presença de um policial. Além disso, estima-se uma densidade de quatro pessoas por metro quadrado de área de terreno ocupado. Às 10h da manhã, o organizador verifica que a área de terreno já ocupada equivale a um quadrado com lados medindo 00m. Porém, nas horas seguintes, espera-se que o público aumente a uma taxa de pessoas por hora até o início do evento, quando não será mais permitida a entrada de público. Quantos policiais serão necessários no início do evento para garantir a segurança? a) [email protected]
4 b) 48. c) 60. d) 740. e) 860. Exercício 19. João, ao perceber que seu carro apresentara um defeito, optou por alugar um veículo para cumprir seus compromissos de trabalho. A locadora, então, apresentou-lhe duas propostas: i. plano A, no qual é cobrado um valor fixo de R$0, 00 e mais R$1, 60 por quilômetro rodado; ii. plano B, no qual é cobrado um valor fixo de R$64, 00 mais R$1, 20 por quilômetro rodado. João observou que, para um certo deslocamento que totalizava k quilômetros, era indiferente optar pelo plano A ou pelo plano B, pois o valor final a ser pago seria o mesmo. É correto afirmar que k é um número racional entre: a) 14, e 20. b) 20 e 2,. c) 2, e 31. d) 31 e 36,. Exercício 20. Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa pelo orçamento mais uma parte que depende da quantidade de metros de fio requerida pelo serviço. O valor total do seu serviço está descrito no seguinte gráfico: Já o Sr. José cobra, apenas, R$4, 0 por metro de fio utilizado e não cobra a parte fixa pelo orçamento. Com relação às informações acima, é correto afirmar que: a) o valor da parte fixa cobrada pelo Sr. Luiz é maior do que R$60, 00. b) o Sr. Luiz cobra mais de R$2, 0 por metro de fio instalado. c) sempre será mais vantajoso contratar o serviço do Sr. José. d) se forem gastos 20m de fio não haverá diferença de valor total cobrado entre os eletricistas. 3 [email protected]
5 1. C. Respostas e Soluções. 2. Como a distância percorrida foi 10km, o valor a ser pago foi f (10) = 3, , 0 10 = 28, 40. Resposta C. 3. f (2) + f (3) f (1) = = 8. Resposta C. 4. Coeficiente angular é 1 e linear é a) f (x) = , x. b) , x = , x = 900 x = 900 1, x = 600. Portanto ele deverá vender 600 unidades de jornais. 6. Temos que João andou = 280km em 13 9 = 4h, ou seja, sua velocidade é 280 = 70km/h. Podemos expressar 4 a distância percorrida d, nesta viagem, em função do tempo t, contado a partir de sua saída de Caicó, como d(t) = 70t. Como a distância total percorrida foi 420km, então 420 = 70t, segue que t = 6h, que foi o tempo de duração da viagem. Como João chegou às 13h em Fortaleza, ele saiu de Caicó às 13 6 = 7h. 7. x = 3 4 6x = x + 4 = 1 6x = 11 x = Assim, o inteiro mais próximo de x = 11 6 é (Extraído da Vídeo Aula) Para x = 2, temos f ( 2) = f (2), segue que f (2) = = 1. Para x =, temos 10. (Extraído da Vídeo Aula) Sejam f (t) e g(t) os volumes de água nos reservatórios A e B, respectivamente, depois de um certo tempo t, dado em horas. Dessa forma f (t) = t e g(t) = t. Como queremos saber em quanto tempo eles conterão o mesmo volume de água, temos: f (t) = g(t) t = t 10t 12t = t = t = 660 t = 30. Portanto, os reservatórios conterão o mesmo volume de água depois de 30h. 11. (Extraído da Vídeo Aula) a) A tartaruga percorreu 200m em 240min a uma velocidade constante e, com isso, podemos representar o seu deslocamento d T, em função do tempo t, em minutos, como d T (t) = t = t. Como, pelo gráfico, a lebre 6 foi alcançada pela tartaruga após 0m de deslocamento, temos: 6 t = 0 t = 300 t = 300 t = 60. Portanto, a tartaruga alcançou a lebre depois de 60 minutos do início da corrida. b) A velocidade da lebre, quando acordada, é 0 = 10m/min. Como o percurso é de 200m, ela gastou correndo 20min. Se a lebre demorou 24min para terminar a corrida, então ela dormiu durante = 22min. 12. (Extraído da Vídeo Aula) A taxa de variação da temperatura é 0, 6 10 = 0, 06o C/g/m 2. Para resíduo igual a zero, teríamos, pelo padrão dos valores da tabela, temperatura igual a 7, 24 0, 06 = 7, 18 o C. Assim, temos f (x) = 0, 06x + 7, 18, para x R a) f (x) = x. b) f (1) = = 130m. c) se f (x) = 10, então x = 10, segue que x = 2m. f ( ) = f (), segue que f () = 1. Por fim, para x = 1, temos f ( 1) = f (1), que implica em f (1) = (Extraído da Vídeo Aula) f (x) = x. 14. f (x) = 0, 8x. 1. Em vinte minutos, havia = 8l/min. Assim, f (t) = 8t. 20 = 160l. Então a vazão é 4 [email protected]
6 16. (Extraído do ENEM ) A vazão da bomba ligada primeiro era 1000 = 1000l/h, sendo, neste primeiro momento a quantidade de água na cisterna representada por 1 f (x) = t, sendo t o tempo em horas. Com as duas bombas, a vazão era 000 = 200l/h, ou seja, a vazão 2 da segunda bomba era = 100l/h. Resposta C. 17. (Extraído do ENEM ) A velocidade com a qual o nível de água do reservatório está diminuindo é 30% 10% = 4%/mês. Como ainda faltam 10%, seu esvaziamento completo ocorrerá depois de 2 meses e meio. 6 1 Resposta A. 18. (Extraído do ENEM ) As 10h, a quantidade de pessoas era = Como ainda faltavam = 6h, entraram mais = pessoas, sendo f (x) = (t 10) a quantidade de pessoas no evento, sendo t o tempo em horas contado a partir das 10h até as 16h. Como o total estimado de pessoas no início do evento é , a quantidade de policiais deve ser = 860. Resposta E (Extraído da EPCAR ) O valor pago pelo carro no plano A é representado pela função f (x) = 0 + 1, 60x, sendo x a distância percorrida em quilômetros, e o valor pago pelo carro no plano B é representado pela função g(x) = , 2x. Se para k quilômetros, teremos o mesmo valor, então: Resposta D. f (k) = g(k) 0 + 1, 60k = , 2k 1, 60k 1, 20x = , 40k = 14 k = 14 0, 4 k = (Extraído da AFA ) Pelo gráfico, o valor por metro de fio cobrado pelo Sr. Luiz é = 2 reais e como 2 1 o valor cobrado pela utilização de 2m de fios é 100 reais, então o valor do orçamento é 0 reais, sendo f (x) = 0 + 2x o valor cobrado em função da quantidade x de metros de fio. No caso do Sr. José, esse valor é g(x) = 4, 0x. Assim, para 20m de fio, temos f (20) = g(20) = 90 reais. Resposta D. Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino [email protected] [email protected]
3º EM. Prof. Fabio Henrique LISTA 03
3º EM LISTA 03 Fabio Henrique 1. (Uerj 2018) Os veículos para transporte de passageiros em determinado município têm vida útil que varia entre 4 e 6 anos, dependendo do tipo de veículo. Nos gráficos está
M odulo de Fun c ao Afim No c oes B asicas. 9o ano E.F.
Módulo de Função Afim Noções Básicas. 9 o ano E.F. Função Afim Noções Básicas. 1 Exercícios Introdutórios Exercício 1. Em certa cidade, uma corrida de táxi custa R$ 4, 80 a bandeirada, mais R$ 0,40 por
Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM.
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM. 01. (ENEM 2011) O prefeito de uma cidade deseja construir uma rodovia para dar acesso a outro município. Para isso, foi aberta uma licitação na
Colégio Nossa Senhora de Lourdes. Matemática. Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática Professor: Leonardo Maciel Apostila 4: Função do 1º grau 1. (Enem 2016) Um dos grandes desafios do Brasil é o gerenciamento dos seus recursos naturais, sobretudo
Operações com Números na Forma Decimal. 6 ano/e.f.
Módulo Operações Básicas Operações com Números na Forma Decimal. 6 ano/e.f. Operações Básicas. Operações com Números na Forma Decimal. 1 Exercícios Introdutórios Exercício 1. Escreva os números decimais
Mais Exercícios sobre Equações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 1 Eercícios
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Quadrática Noções Básicas 9 ano E.F. Professores Cleber Assis e Tiago Miranda Função Quadrática Noções Básicas 1 Exercícios Introdutórios Exercício 1. Os coeficientes de x (a), de x (b) e
Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições
Função do 1º grau Questões Extras. e) 1 4
Função do º grau Questões Extras Prof. Hugo Gomes. Uma pesquisa do Ministério da Saúde revelou um aumento significativo no número de obesos no Brasil. Esse aumento está relacionado principalmente com o
Mat.Semana 3. Alex Amaral (Allan Pinho)
Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução
Função do 1º grau Prof. Hugo Gomes
Função do º grau Prof. Hugo Gomes Anotações Exercícios Nível. Para organizar uma competição esportiva tem-se um custo de R$ 000,00. Se a taxa de inscrição por participante para essa competição é de R$
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática
Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par
Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios
1) Quais dos seguintes diagramas representam uma função de A em B?
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS SÉRIE/ANO:
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Módulo Unidades de Medida de Volume. Exercícios. 6 ano/e.f.
Módulo Unidades de Medida de Volume Exercícios. 6 ano/e.f. Unidades de Medida de Volume. Exercícios. 1 Exercícios Introdutórios Exercício 1. Uma empresa de sucos resolve mudar sua embalagem tradicional
Matemática revisão férias segunda
1. (G1 - cftrj 016) A seguir temos o gráfico de temperatura, em graus Celsius (eixo vertical), no Rio de Janeiro para os dias 1,, 3 e 4 de setembro de 015 (onde no eixo horizontal temos a marcação do início
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento.
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal
Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios.
Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medidas de Comprimentos e Primeiros Exercícios. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Unidades de Medidas de Comprimentos e
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO 1. (Epcar (Afa) 016) Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa
Matemática. Equaçao de 1 o Grau. Qual a expressão algébrica que permite calcular o nível da água (y) em função do número de bolas (x)?
Capítulo 1 Matemática Seção 1.1 Equaçao de 1 o Grau Subseção 1.1.1 Exercícios 1. ENEM 2009 - Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas em um copo com água at certo
H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:
H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo
Função Exponencial e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Função Exponencial e Propriedades 1 ano EM Professores Cleber Assis e Tiago Miranda Função Exponencial Função Exponencial e Propriedades 1 Exercícios Introdutórios Exercício 1 a) 11
COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS
QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é
Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Equações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais d) R Q. Exercício 8. Quantas raízes reais possui a equação 1 Exercícios
Lista de exercício - 1º Trimestre
Série: 1º ano do Ensino Médio Turma: 1 A e B Data: 10/ 03 / 2016 Docente: Alexandre Lima Disciplina: Biologia Estudante: Lista de exercício - 1º Trimestre 1) As pegadas representadas na imagem abaixo ilustram
Questão 1. (Enem (Libras) 2017) Um reservatório de água com capacidade para
SE18 - Matemática LMAT2A2 - Funções: introdução e Função do 1o grau Questão 1 (Enem (Libras) 2017) Um reservatório de água com capacidade para mil litros de água num instante inicial mil litros encontra-se
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 2 CEDAE Acompanhamento Escolar Ciências da Natureza e 1) Numa certa cidade existem duas empresas de TV por assinatura prestando
Inequações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Inequações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Inequações Exponenciais 1 Exercícios Introdutórios Exercício 1. a) x > 16. b) 5 x 15. c)
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.
Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1
PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 9º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Na figura abaixo, temos um quadrado AEDF e AC=4 e AB=6. Qual é o valor do lado
BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabe-se que o custo C para produzir
Resolução _ Lista ENEM Função, Função do 1º e 2º Graus de 2010 até Gabarito: T(h) h 22h 85. (h 22h 85) [(h 11) 36] 36 (h 11).
Resolução _ Lista ENEM Função, Função do 1º e º Graus de 010 até 015 Gabarito: Resposta da questão 1: Escrevendo a lei de T na forma canônica, vem T(h) h h 85 (h h 85) [(h 11) 6] 6 (h 11). Assim, a temperatura
(07) Uma lanchonete vende cada pastel por 50 centavos e cada refresco por 80
CURSO DE NIVELAMENTO EM MATEMÁTICA Lista de exercícios 05 Sistemas de equações do primeiro grau. Equação do segundo grau. Distância e Valor absoluto. Potenciação. Q01) Resolver os seguintes sistemas de
AULA 5 Função Afim. Se a > 0 (ou seja, se o valor de a for um número positivo), a função y = ax + b é crescente. Ex1:
AULA 5 Função Afim Sejam a e b números reais e a 0. Dizemos que uma função f : R R é função do 1º grau ou função afim quando está definida pela lei (ou seja, quando tiver esse formato): em que : y f (
Quanto ela receberá de salário se ela vender um total de R$ ,00?
Uma vendedora recebe um salário mínimo R$ 788,00 mais comissão de 5% sobre o total de suas vendas durante o mês. Se X é o quanto ela vendeu no mês, qual a lei de formação que Melhor caracteriza a lei de
PLANTÕES DE JULHO MATEMÁTICA
Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada
Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:
Módulo Frações, o Primeiro Contato. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Frações, o Primeiro Contato Exercícios sobre Frações ano EF Professores Cleber Assis e Tiago Miranda Frações, o Primeiro Contato Exercícios sobre Frações Exercícios Introdutórios Exercício a) +
M odulo de Fun c ao Afim No c oes B asicas. 9o ano E.F.
Módulo de Função Afim Noções Básicas. 9 o ano E.F. Função Afim Noções Básicas. 1 Exercícios Introdutórios Exercício 1. Em certa cidade, uma corrida de táxi custa R$ 4, 80 a bandeirada, mais R$ 0,40 por
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
GINCANA DE FÍSICA TAREFA 1 TEMPO MÁXIMO PARA REALIZAÇÃO: 10 MINUTOS
TAREFA 1 10 MINUTOS Medir com uma trena um dos lados de uma das quadras de esporte linearmente. Usar a fita adesiva branca para marcar o início e fim da reta que está medindo. Colocar o resultado do valor
TÍTULO: LISTA DE EXERCÍCIOS DE REVISÃO AC1 (ETAPA III) PROFESSOR: RIVAILDO ALVES (ÁLGEBRA) ENSINO: FUNDAMENTAL II
TÍTULO: LISTA DE EXERCÍCIOS DE REVISÃO AC1 (ETAPA III) PROFESSOR: RIVAILDO ALVES (ÁLGEBRA) DATA: ANO: 9º TURMA: ENSINO: FUNDAMENTAL II TURNO: NOTA: ALUNO(A): Nº: 01. Função é uma relação de interdependência
MATEMÁTICA FRENTE 1 ENEM
MATEMÁTICA FRENTE 1 ENEM 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa de concreto têm contornos de um arco de parábola e mesmas dimensões. Para
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
MATEMÁTICA - 1 o ANO MÓDULO 15 FUNÇÃO DO 1 O GRAU - PARTE 1
MATEMÁTICA - 1 o ANO MÓDULO 15 FUNÇÃO DO 1 O GRAU - PARTE 1 y y y x x x a > 0 a < 0 A função é crescente A função é decrescente y f (x) b x y ponto (- b, 0) a -b a x x 2 4 y 2 6 y x x y 1-2 x 4-1 2 x Como
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) Prof. Arthur Lima
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) PROPORCIONALIDADE ENEM 2016) Num mapa com escala 1 : 250 000, a distância entre as cidades A e B é de 13 cm. Num outro mapa, com escala
Registro CMI Aulas 4 e 5
Registro CMI 4317 Aulas 4 e 5 QUESTÃO 01 Seja a n uma sequência de números reais cujo termo geral é verdadeira? a) a n é uma progressão aritmética de razão 1. b) a n é uma progressão geométrica de razão
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO 1. (Ucs 2014) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total em reais, das vendas que ele efetuar durante
PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS
ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: ª E.M. Data: / / 207 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS.
Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Matemática do Zero CONVERSÃO DE UNIDADES
Matemática do Zero CONVERSÃO DE UNIDADES Veja a tabela a seguir na qual agrupamos as principais unidades de medida, seus múltiplos e submúltiplos do Sistema Métrico Decimal, segundo o Sistema Internacional
Função Logarítmica e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Função Logarítmica e Propriedades ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Função Logarítmica e Propriedades Exercícios Introdutórios Exercício. 4. b) log
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Matemática I Função do 1 grau
Matemática I Função do 1 grau UNEB - Universidade do Estado da Bahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Função do 1 grau Prof. Dra. Rebeca Dourado Gonçalves
7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Noções Básicas de Estatística Interpretação e Análise de Gráficos 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Interpretação e Análise de Gráficos 1 Exercícios
a) 180 b) c) d) e) 2.160
Estado do Rio de Janeiro Prefeitura Municipal de Macaé Secretaria Municipal de Educação Pré-Vestibular Social A UNIVERSIDADE MAIS PERTO DE VOCÊ. Disciplina: FÍSICA Professor: RONY 01. (Cesgranrio-RJ) Um
Conceitos Essenciais da Cinemática 1
Conceitos Essenciais da Cinemática 1 Física_9 EF Profa. Kelly Pascoalino Mecânica Cinemática: Estudo das características do movimento de um corpo sem se preocupar com o (s) agente (s) que o causou. Dinâmica:
ALGUMAS RAZÕES ESPECIAIS
ALGUMAS RAZÕES ESPECIAIS VELOCIDADE MÉDIA Se uma viagem de 210 km é realizada em 3 horas por um automóvel, podemos imaginar a viagem da seguinte maneira: Daí, dizemos que a velocidade média desenvolvida
Trigonometria III. Exercícios de Funções Trigonométricas I. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Exercícios de Funções Trigonométricas I ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Exercícios de Funções Trigonométricas I 1 Exercícios Introdutórios Exercício
7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Equações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Equações 1 Eercícios Introdutórios
MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES E. E. E. M. NOME COMPLETO: Nº TURMA: TURNO: ANO:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 Função Função é uma relação entre duas grandezas
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F.
Módulo de Funções - Noções Básicas Funções - Noções Básicas. 9 o ano E.F. Funções - Noções Básicas 1 Exercícios Introdutórios Exercício 1. Em um certo dia, três mães deram à luz em uma maternidade. Uma
Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B
Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas
A quantidade de gasolina utilizada, em litro, no reabastecimento, foi 20 a)
1. (Enem 017) A mensagem digitada no celular, enquanto você dirige, tira a sua atenção e, por isso, deve ser evitada. Pesquisas mostram que um motorista que dirige um carro a uma velocidade constante percorre
Trigonometria III. Exercícios de Funções Trigonométricas II. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Exercícios de Funções Trigonométricas II ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Exercícios de Funções Trigonométricas II 1 Exercícios Introdutórios Exercício
1)(Insper 2013) No gráfico estão representadas duas funções: f(x) do primeiro grau e g(x) do segundo grau.
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Função Afim SUPERSEMI Santa Catarina 1)(Insper 2013) No gráfico estão representadas duas funções: f(x) do primeiro grau e g(x) do segundo
Módulo de Plano Cartesiano e Sistemas de Equações. Exercícios de Sistemas de Equações. Professores Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de Equações 7 ano E.F. Professores Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de
Módulo de Progressões Geométricas. Soma dos termos da P.G. finita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Geométricas Soma dos termos da P.G. finita a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Soma dos termos da P.G. finita Exercícios Introdutórios Exercício.
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 2 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02
Caminhão entala em viaduto no Centro
ENEM MAT A II 1. (Enem 2017) Uma desenhista projetista deverá desenhar uma tampa de panela em forma circular. Para realizar esse desenho, ela dispõe, no momento, de apenas um compasso, cujo comprimento
1 2 Queremos calcular o valor de t para o qual se tem T = -18 C. (Q Q 0. ) = m (R R 0 (35 30) (R 2000) ( ) 200 Q 6000 = R 2000 (Q 30) =
Resposta da questão : [A] f(x) = ax + b f(0) = 50 b = 50 55 50 5 a = = = 0 0 0 x f(x) = + 50 f() = + 50 = 5,5 9 f(9) = + 50 = 54,5 ( 5,5 + 54,5) ( 9 ) S = S = 8 Resposta da questão : [B] As taxas de desvalorização
TRABALHO DE RECUPERAÇÃO
CIÊNCIAS - FÍSICA TRABALHO DE RECUPERAÇÃO ENSINO FUNDAMENTAL ANO: 9º TURMAS: A B C D E ETAPA: 2ª ANO: 2017 PROFESSOR: FELIPPE CANUTO ALUNO(A): Nº: QUESTÃO 1 Uma tartaruga caminha, em linha reta, a 40 metros/hora,
ESCOLA SECUNDÁRIA C/3º CEB DE RIO TINTO. Nome: Nº: Classificação: O EE:
V/V ESCOLA SECUNDÁRIA C/3º CEB DE RIO TINTO QA 1: Lei de Ohm 7 1. Complete os espaços em branco. (A) Um amperímetro é um aparelho que serve para medir a da corrente eléctrica e a sua unidade no SI é o.
F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.
Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
Lista de problemas sobre funções (em geral) e função afim
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE Lista de problemas sobre funções (em geral) e função afim QUESTÃO 01 Seu José sai de casa normalmente
Matemática I Lista de exercícios 02
Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(
3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da
Atividade extra. Exercício 1. Exercício 2 (PUC-SP Adaptada) Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O banco A cobra uma tarifa para manutenção de conta da seguinte forma: uma taxa de R$ 11,00 mensais e mais uma taxa de R$ 0,14 por cheque emitido. O banco B cobra como tarifa
Cinemática Gráficos Cinemáticos 1- Na figura estão representados os diagramas de velocidade de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem a
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 017 ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 1º ano Turma: Data: 19/08/017 Nota: Professor(a): Luiz Gustavo e Flávio Valor da Prova: 40 pontos
Módulo Divisibilidade. Exercícios Diversos de Frações como Porcentagens. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Exercícios Diversos de Frações como Porcentagens 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Exercícios Diversos de Frações como Porcentagens 1 Exercícios Introdutórios
Módulo Divisibilidade. MDC e MMC. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade MDC e MMC 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade MDC e MMC 1 Exercícios Introdutórios Exercício 1. a) 12 e 15. b) 60 e 72. c) 120 e 180. Exercício 2. a)
Máximo Divisor Comum e Mínimo Múltiplo Comum. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Máximo Divisor Comum e Mínimo Múltiplo Comum 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Máximo Divisor Comum e Mínimo Múltiplo Comum 1 Exercícios
