Prof. Dr. Aldo Vieira
|
|
|
- Alana Escobar Lemos
- 9 Há anos
- Visualizações:
Transcrição
1 1. Em uma determinada região do planeta, a temperatura média anual subiu de 13,35 ºC em 1995 para 13,8 ºC em Seguindo a tendência de aumento linear observada entre 1995 e 2010, a temperatura média em 2012 deverá ser de a) 13,83 ºC. b) 13,86 ºC. c) 13,92 ºC. d) 13,89 ºC. TEXTO PARA A PRÓXIMA QUESTÃO: 2. A dendrocronologia é a técnica que possibilita estimar a idade das árvores através da contagem dos anéis de crescimento. Cada anel do tronco corresponde a um ano de vida de uma árvore. Na primavera de 2011, uma árvore que foi plantada na primavera de 1991 apresenta 16 centímetros de raio na base do seu tronco. Considerando uma taxa de crescimento linear, o raio da base desse tronco, na primavera de 2026, será de: a) 22 cm b) 25 cm c) 28 cm d) 32 cm e) 44 cm 3. As frutas que antes se compravam por dúzias, hoje em dia, podem ser compradas por quilogramas, existindo também a variação dos preços de acordo com a época de produção. Considere que, independente da época ou variação de preço, certa fruta custa R$ 1,75 o quilograma. Dos gráficos a seguir, o que representa o preço m pago em reais pela compra de n quilogramas desse produto é a) Página 1 de 8
2 b) c) d) e) 4. Uma pequena empresa fabrica camisas de um único modelo e as vende por R$ 80,00 a unidade. Devido ao aluguel e a outras despesas fixas que não dependem da quantidade produzida, a empresa tem um custo fixo anual de R$ ,00. Além do custo fixo, a empresa tem que arcar com custos que dependem da quantidade produzida, chamados custos variáveis, tais como matéria-prima, por exemplo; o custo variável por camisa é R$ 40,00. Em 2009, a empresa lucrou R$ ,00. Para dobrar o lucro em 2010, em relação ao lucro de 2009, a quantidade vendida em 2010 terá de ser x% maior que a de O valor mais próximo de x é: a) 120 b) 100 c) 80 d) 60 e) O saldo de contratações no mercado formal no setor varejista da região metropolitana de São Paulo registrou alta. Comparando as contratações deste setor no mês de fevereiro com as de janeiro deste ano, houve incremento de vagas no setor, totalizando trabalhadores com carteira assinada. Disponível em: Acesso em: 26 abr (adaptado). Suponha que o incremento de trabalhadores no setor varejista seja sempre o mesmo nos seis primeiros meses do ano. Considerando-se que y e x representam, respectivamente, as Página 2 de 8
3 quantidades de trabalhadores no setor varejista e os meses, janeiro sendo o primeiro, fevereiro, o segundo, e assim por diante, a expressão algébrica que relaciona essas quantidades nesses meses é a) y = 4300x b) y = x c) y = x d) y = x e) y = x 6. O prefeito de uma cidade deseja construir uma rodovia para dar acesso a outro município. Para isso, foi aberta uma licitação na qual concorreram duas empresas. A primeira cobrou R$ ,00 por km construído (n), acrescidos de um valor fixo de R$ ,00, enquanto a segunda cobrou R$ ,00 por km construído (n), acrescidos de um valor fixo de R$ ,00. As duas empresas apresentam o mesmo padrão de qualidade dos serviços prestados, mas apenas uma delas poderá ser contratada. Do ponto de vista econômico, qual equação possibilitaria encontrar a extensão da rodovia que tornaria indiferente para a prefeitura escolher qualquer uma das propostas apresentadas? a) 100n = 120n b) 100n = 120n c) 100(n + 350) = 120(n + 150) d) 100(n ) = 120(n ) e) 350(n ) = 150(n ) 7. Luiza possui uma pequena confecção artesanal de bolsas. No gráfico abaixo, a reta c representa o custo total mensal com a confecção de x bolsas e a reta f representa o faturamento mensal de Luiza com a confecção de x bolsas. Com base nos dados acima, é correto afirmar que Luiza obtém lucro se, e somente se, vender a) no mínimo 2 bolsas. b) pelo menos 1 bolsa. c) exatamente 3 bolsas. d) no mínimo 4 bolsas. 8. O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas (x, y) dados abaixo. X y 0 5 M k Podemos concluir que o valor de k + m é: a) 15,5 b) 16,5 Página 3 de 8
4 c) 17,5 d) 18,5 e) 19,5 TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: 9. O gráfico acima mostra a evolução das notas em Matemática de dois grupos de estudantes, denominados grupo I e grupo II. Analisando o gráfico e considerando o período de 2007 a 2010, é possível afirmar: a) Os dois grupos melhoraram as notas. b) A nota do grupo I, em 2008, foi 80. c) A nota do grupo I aumentou de 2008 a 2009 e diminuiu de 2009 a d) A nota do grupo II não sofreu alteração. e) A nota do grupo I aumentou, enquanto a nota do grupo II diminuiu. 10. Em relação ao gráfico, considerando 2007 como x = 1, 2008 como x = 2 e assim, sucessivamente, a função afim y = ax + b que melhor expressa a evolução das notas em Matemática do grupo II é a) y = x b) y = x c) y = x d) y = x e) y = - 5x Acompanhando o crescimento do filho, um casal constatou que, de 0 a 10 anos, a variação da sua altura se dava de forma mais rápida do que dos 10 aos 17 anos e, a partir de 17 anos, essa variação passava a ser cada vez menor, até se tornar imperceptível. Para ilustrar essa situação, esse casal fez um gráfico relacionando as alturas do filho nas idades consideradas. Que gráfico melhor representa a altura do filho desse casal em função da idade? a) Página 4 de 8
5 b) c) d) Página 5 de 8
6 Gabarito: Resposta da questão 1: [B] Ano: Temperatura( o C): 13,35 13,80 x Temperatura anual média = 13,8 13,35 = 0,45 = 0, Em 2012, a temperatura será x = 13, ,03 = 13,86 o C. Resposta da questão 2: [C] Seja a função r(t) = at, em que r(t) é o raio do tronco, em cm, após t anos e a é a taxa de crescimento. Supondo que em 1991 (t = 0) o raio da base do tronco media 0cm, e sabendo que em (t = 20) o raio tinha 16cm, temos que a = = Portanto, na primavera de 2026 (t = 35), o raio da base desse tronco, será de 4 r(35) = 35 = 28 cm. 5 Resposta da questão 3: [E] O gráfico deverá representar a função m = f(n) = 1,75 n, onde n é o número de quilogramas comprados. O gráfico correto é: Resposta da questão 4: [E] O custo para produzir n camisas é dado por: C(n) = 40n Se o preço de venda unitário é R$ 80,00, então a receita obtida com a venda de n camisas é: R(n) = 80n. Para um lucro de R$ ,00, temos: Página 6 de 8
7 L(n) = R(n) C(n) = 80n (40n ) 40n = n = 39000, ou seja, deverão ser vendidas camisas para que a empresa lucre R$ ,00. Agora devemos calcular quantas camisas a empresa deverá vender para lucrar R$ ,00. L(n') = n' = n' = Desse modo, para dobrar o lucro a empresa deverá vender em % 38,46% a mais do que vendeu em 2009 e, portanto, o valor mais próximo de x é 40. Resposta da questão 5: [C] Admitido um crescimento constante, temos uma função de primeiro grau dada por: y = ax + b, onde a = 4300 (taxa constante) e b = = Logo, y = 4300x Resposta da questão 6: [A] Empresa A: P A = x Empresa B: P B = x Igualando os preços P A = P B, temos : x = x Resposta da questão 7: [B] c(x) = x e f(x) = 20x. Fazendo f(x) > c(x), temos: 20x > x 12x > 10 x > 10/12 Logo, deverá ser vendida pelo menos uma bolsa. Resposta da questão 8: [C] Seja f a função afim definida por f(x) = ax + b, cujo gráfico passa pelos pontos indicados na tabela. A taxa de variação da função f é dada por: k 5 a = = = m 7 0 Desse modo, Página 7 de 8
8 6 3 = 6 m 2 m = 2 k + m = 17,5. k 5 3 k = 15,5 = 7 2 Resposta da questão 9: [E] A nota do grupo I aumentou, pois a reta apresenta coeficiente angular positivo, enquanto a nota do grupo II diminuiu, pois a reta apresenta coeficiente angular negativo. Resposta da questão 10: [B] Temos então os pontos (1, 70) e (3, 65) pertencentes ao gráfico II Calculando o coeficiente angular, temos: m = = Logo a função será y = x + b. 2 Determinando agora o valor de b, temos: 70 = b b = Logo, y = x Resposta da questão 11: [A] O gráfico A é o mais adequado, pois a inclinação de 10 a 17 é maior que a inclinação para valores maiores que 17. Página 8 de 8
Colégio Nossa Senhora de Lourdes. Matemática. Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática Professor: Leonardo Maciel Apostila 4: Função do 1º grau 1. (Enem 2016) Um dos grandes desafios do Brasil é o gerenciamento dos seus recursos naturais, sobretudo
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO 1. Dados os conjuntos G 0,1,3, 4 e 1,3 elemento de G ao seu dobro mais um em H, é dada
Função polinomial do 1 grau ou função afim
Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que
Questão 1. (Enem (Libras) 2017) Um reservatório de água com capacidade para
SE18 - Matemática LMAT2A2 - Funções: introdução e Função do 1o grau Questão 1 (Enem (Libras) 2017) Um reservatório de água com capacidade para mil litros de água num instante inicial mil litros encontra-se
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO Nome Nº Turma 1 cn02 e cn07 Data / / Nota Disciplina Matemática Prof. Elaine Valor 30 Instruções: TRABALHO DE RECUPERAÇÃO ANUAL; Este
3ª série do Ensino Médio Turma 3º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 3º Bimestre de 2017 Data / / Escola Aluno 24 1 2 3 4 5 6 7 8 9 10 11 12 Avaliação da Aprendizagem em Processo Prova do Aluno
MATEMÁTICA. Professor Diego Viug
MATEMÁTICA Professor Diego Viug FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA FUNÇÃO AFIM Taxa de variação constante. Proporcionalidade. (usaremos semelhança) y = ax + b a coeficiente angular. b coeficiente linear.
TRABALHO DE RECUPERAÇÃO DE MATEMÁTICA
ENSINO MÉDIO VALOR:,0 NOTA: Data: Professor: JECY JANE Disciplina: MATEMÁTICA Nome: n o : SÉRIE: 3ª 1º Bim ORIENTAÇÕES: TRABALHO DE RECUPERAÇÃO DE MATEMÁTICA 1- O trabalho deve ser entregue em folha de
Matemática e suas Tecnologias
e suas Tecnologias Questões mais comuns no ENEM Função do 1º grau Função do 2º grau Progressão aritmética Progressão geométrica Estatística Razão e proporção Porcentagem Triângulos Análise combinatória
Mat.Semana 3. Alex Amaral (Allan Pinho)
Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução
Matemática. Equaçao de 1 o Grau. Qual a expressão algébrica que permite calcular o nível da água (y) em função do número de bolas (x)?
Capítulo 1 Matemática Seção 1.1 Equaçao de 1 o Grau Subseção 1.1.1 Exercícios 1. ENEM 2009 - Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas em um copo com água at certo
Revisão do Enem x² x d) y = 4 5 x + 2 e) y = x. x² + 2x c) y =
Revisão do Enem 01. (Enem 2014) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial f, de
Receita, Custo e Lucro
Receita, Custo e Lucro 1. (Espcex (Aman) 014) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é V(x) 3x 1x e o custo mensal da produção é dado por
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM.
QUESTÕES VESTIBULARES Prof. Jhonatas Pereira FUNÇÃO AFIM. 01. (ENEM 2011) O prefeito de uma cidade deseja construir uma rodovia para dar acesso a outro município. Para isso, foi aberta uma licitação na
FUNÇÃO POLINOMIAL DO 1º GRAU
FUNÇÃO POLINOMIAL DO 1º GRAU MÓDULO 8 FUNÇÃO AFIM FUNÇÃO POLINOMIAL DO 1º GRAU Uma função f : R R chama-se função polinomial do 1 grau ou função afim quando existem dois números reais a e b, tal que f
3º Ano do Ensino Médio. Aula nº08
Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
Lista 6. (d) y = 2x 3 2
Lista 6 6 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira. Construa o gráfico cartesiano das funções de R em R: (a) = (b) = + (c) = + (d) = (e) = 4 (f) = 4. O gráfico da função = a+b é Determine: (a) os valores
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO
LISTA 2 DE EXERCÍCIOS SOBRE FUNÇÕES DO 1º GRAU - PROBLEMATIZAÇÃO 1. (Ucs 2014) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total em reais, das vendas que ele efetuar durante
FUNÇÃO POLINOMIAL DO 1º GRAU CONTEÚDOS
FUNÇÃO POLINOMIAL DO 1º GRAU CONTEÚDOS Função polinomial do 1º grau Gráfico de função Função do 1º grau Gráfico de função do 1º grau Zero da função Coeficientes da função Função crescente e decrescente
Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial
Exercício de Gráficos e Funções 1º (Enem 2004) VENDEDORES JOVENS Fábrica de LONAS Vendas no Atacado 10 vagas para estudantes, 18 a 20 anos, sem experiência. Salário: R$ 300,00 fixo + comissão de R$ 0,50
Equação e Função do 1º Grau. Rafael Carvalho
Equação e Função do 1º Grau Rafael Carvalho Equação do 1º Grau Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com
1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3].
Lista de Exercícios - Função Afim 1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3]. 2. As frutas que antes se compravam
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV ADM Objetiva Turma A 24/outubro/2010 matemática 01. O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas (x; y) dados abaixo. Podemos
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g
1. Construa o graco das func~oes abaixo: a) f(x) = 2x + 5 b) g(x) = 2x 6 c) h(x) = x + 3
Prof. Valdex Santos Aluno: 1 o ano Lista II unidade 1. Construa o graco das func~oes abaixo: a) f(x) = x + 5 b) g(x) = x 6 c) h(x) = x + 3. (FUVEST) A func~ao que representa o valor a ser pago apos um
Unidade 7 Estudo de funções
Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte
Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL ( ),
Prof Gabriel Mendes Álgebra 1º ano do EM tarde - Lista para a prova 2ª UL 1 (Fuvest) Considere a função ( ) ( ), a qual está definida para x 1. Então, para todo x 1 e x 1, o produto f(x) f( x) é igual
COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/12
COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/1 1. (Upe 01) Na figura a seguir, estão representados o ciclo trigonométrico e um triângulo isósceles OAB. Qual das expressões abaixo corresponde
BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabe-se que o custo C para produzir
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
1 2 Queremos calcular o valor de t para o qual se tem T = -18 C. (Q Q 0. ) = m (R R 0 (35 30) (R 2000) ( ) 200 Q 6000 = R 2000 (Q 30) =
Resposta da questão : [A] f(x) = ax + b f(0) = 50 b = 50 55 50 5 a = = = 0 0 0 x f(x) = + 50 f() = + 50 = 5,5 9 f(9) = + 50 = 54,5 ( 5,5 + 54,5) ( 9 ) S = S = 8 Resposta da questão : [B] As taxas de desvalorização
EXERCÍCIOS FUNÇÃO AFIM
Primeiramente Bom dia! EXERCÍCIOS FUNÇÃO AFIM Questão 0 - (UNIRIO RJ/00) Um automóvel bicombustível (álcool/gasolin traz as seguintes informações sobre consumo (em quilômetros por litro) em seu manual:
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
Exercícios de Revisão
Exercícios de Revisão Lista de Exercícios 1. Antes de uma eleição para prefeito, certo instituto realizou uma pesquisa em que foi consultado um número significativo de eleitores, dos quais 36% responderam
1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3
Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas
Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma
1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale:
MATEMÁTICA 1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale: a) 90 b) 85 c) 80 d) 75 e) 60 2- Nas figuras seguintes,
Função do 1º grau Questões Extras. e) 1 4
Função do º grau Questões Extras Prof. Hugo Gomes. Uma pesquisa do Ministério da Saúde revelou um aumento significativo no número de obesos no Brasil. Esse aumento está relacionado principalmente com o
Funções de 1º Grau no ENEM
Funções de 1º Grau no ENEM (Lista com 23 Questões de Funções de 1º Grau abordadas em anos anteriores do ENEM) 01 - (ENEM/2009) Um experimento consiste em colocar certa quantidade de bolas de vidro idênticas
MATEMÁTICA E RACIOCÍNIO LÓGICO
FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES
A FUNÇÃO LINEAR E O UBER 1. Trabalho desenvolvido por alunos do 2º ano do Colégio Tiradentes e apresentado na II Feira Regional de Matemática 2
A FUNÇÃO LINEAR E O UBER 1 Sandra Marisa Horszczaruk Centenaro 2, Andrey Macedo Da Silva 3, Eduardo Zanatta Kapp 4, Sandra Marisa Horszczaruk Centenaro 5 1 Trabalho desenvolvido por alunos do 2º ano do
Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Atividade extra. Exercício 1. Exercício 2 (PUC-SP Adaptada) Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O banco A cobra uma tarifa para manutenção de conta da seguinte forma: uma taxa de R$ 11,00 mensais e mais uma taxa de R$ 0,14 por cheque emitido. O banco B cobra como tarifa
Questões para Prova Integrada Institucional Curso: Administração de Empresas Semestre: 2osem/3osem Disciplina: Matemática Aplicada à Administração
Questões para Prova Integrada Institucional Curso: Administração de Empresas Semestre: 2osem/3osem Disciplina: Matemática Aplicada à Administração FÓRMULAS: q = a.p + b (oferta e demanda) R T = p v.q (p
Registro CMI Aulas 4 e 5
Registro CMI 4317 Aulas 4 e 5 QUESTÃO 01 Seja a n uma sequência de números reais cujo termo geral é verdadeira? a) a n é uma progressão aritmética de razão 1. b) a n é uma progressão geométrica de razão
Resolução _ Lista ENEM Função, Função do 1º e 2º Graus de 2010 até Gabarito: T(h) h 22h 85. (h 22h 85) [(h 11) 36] 36 (h 11).
Resolução _ Lista ENEM Função, Função do 1º e º Graus de 010 até 015 Gabarito: Resposta da questão 1: Escrevendo a lei de T na forma canônica, vem T(h) h h 85 (h h 85) [(h 11) 6] 6 (h 11). Assim, a temperatura
MATEMÁTICA MÓDULO 5 FUNÇÃO AFIM 1. DEFINIÇÃO OBSERVAÇÃO 2. GRÁFICO OBSERVAÇÃO. b x. De forma mais geral, a ÚNICA raiz de f x 5
FUNÇÃO AFIM 1. DEFINIÇÃO Uma função do 1º grau (ou função afim) é dada pela lei de formação número a é chamado de coeficiente angular de f e b é dito coeficiente linear. f x ax b, com, ab e a 0. O EXEMPLO:
Lista 3-B Acréscimos e decréscimos Prof. Ewerton
Lista 3-B Acréscimos e decréscimos Prof. Ewerton 01) (Unicamp 2015 1ª fase) (Acréscimo e decréscimo percentual) Uma compra no valor de 1.000 reais será paga com uma entrada de 600 reais e uma mensalidade
Questão 1. De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
SE18 - Matemática LMAT1A2 - Equações e inequações do 1o grau Questão 1 Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais. Verificou-se
A função do primeiro grau. Fascículo 3. Unidade 9
A função do primeiro grau Fascículo 3 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento,
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
FUNÇÃO DO 2 GRAU TERÇA FEIRA
FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
Por vezes podemos identificar, em várias situações práticas, variáveis que estão em relação de dependência.
Título : B1 FUNÇÕES Conteúdo : 1. FUNÇÕES Na matemática, uma relação é apenas um conjunto de pares requisitados. Se utilizamos {} como o símbolo para o conjunto, temos abaixo alguns exemplos de relações
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo
Aula n ọ 02 01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo 100 km Taxa fixa de R$ 50,00 300 km Taxa fixa de R$ 65,00 500 km Taxa fixa de R$ 75,00 Considerando
MAT-103 Complementos de Matemáticas para Contabilidade Prof. Juan Carlos Gutierrez Fernandez
MAT-03 Complementos de Matemáticas para Contabilidade Prof Juan Carlos Gutierrez Fernandez Lista : Números é funções Ano 206 Em uma pesquisa foram encontrados os seguintes resultados: 60% das pessoas entresvistadas
ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D.
ADA 1º BIMESTRE CICLO I MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM 1 DA ADA Observe as equações da reta a seguir: I) y = x 1 II) y 4x = III) y 4x + = 0 IV) y + 1 = x V) y + 1 = (x 1 ) Dessas equações, a que
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS
QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é
FGV 1 a Fase maio/2002
FGV 1 a Fase maio/00 Matemática Questão 01 Uma cesta básica de produtos contém kg de arroz, 1 kg de feijão e kg de farinha. No período de 1 ano, o preço do quilograma de arroz subiu 10%, o do feijão subiu
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como retas paralelas têm o mesmo declive, o declive da reta s,
Lista de problemas sobre funções (em geral) e função afim
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE Lista de problemas sobre funções (em geral) e função afim QUESTÃO 01 Seu José sai de casa normalmente
COLÉGIOMARQUES RODRIGUES- SIMULADO
COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Matemática para contabilidade/mário INTRODUÇÃO. Vejamos os problemas.
INTRODUÇÃO Vejamos os problemas. 1- Seja a oferta de mercado de uma utilidade dada por: S = -20 + 2p, com p R$270,00. Poderíamos querer saber: a) A partir de que preço haverá oferta? b) Qual o valor da
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 2 CEDAE Acompanhamento Escolar Ciências da Natureza e 1) Numa certa cidade existem duas empresas de TV por assinatura prestando
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
Função do 1º grau Prof. Hugo Gomes
Função do º grau Prof. Hugo Gomes Anotações Exercícios Nível. Para organizar uma competição esportiva tem-se um custo de R$ 000,00. Se a taxa de inscrição por participante para essa competição é de R$
MOVIMENTO RETILÍNEO UNIFORME. S = So + v.t
MOVIMENTO RETILÍNEO UNIFORME S = So + v.t MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO v = v 0 + a. t v = v 0 2 + 2. α. s s = s 0 + v 0. t + α 2. t2 MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO GRÁFICOS DO MUV
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
UFSM MATEMÁTICA 1º DIA
UFSM 0 - MATEMÁTICA º DIA 0) Uma pessoa ingere uma certa substância que se concentra em seu cérebro. O gráfico a seguir mostra essa concentração em função do tempo t. Admitindo que a concentração y seja
Exercícios: Funções - Gráficos Prof. André Augusto
Exercícios: Funções - Gráficos Prof. André Augusto 1. TESTES DE VESTIBULARES Exercício 1 (ENEM). O gráfico mostra a variação da extensão média de gelo marítimo, em milhões de quilômetros quadrados, comparando
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:
Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80
Matemática A Semiextensivo V. 2
Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Observando a representação das retas e as coordenadas dos pontos
CENTRO UNIVERSITÁRIO DE VOLTA REDONDA CENTRO INTEGRADO DE TECNOLOGIA PROGRAMA DE APOIO À APRENDIZAGEM PARA OS CURSOS DE ENGENHARIA
LISTA DE EXERCÍCIOS Nº 06 Disciplina: MATEMÁTICA Data: 27/10/2012. 1ª Questão: Dada a função f(x)= 1-5x,calcule: a)f(0)= b)f(-1)= 2ªQuestão: O custo de um produto de uma indústria é dado por C(x)=250 +
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
