Cálculo Combinatório
|
|
|
- Sophia Canto Domingos
- 9 Há anos
- Visualizações:
Transcrição
1 Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática que estuda os métodos de contagem. Esses estudos foram iniciados já no século XVI, pelo matemático italiano Niccollo Fontana ( ), conhecido como Tartaglia. Depois vieram os franceses Pierre de Fermat ( ) e Blaise Pascal( ). A Análise Combinatória visa desenvolver métodos que permitam contar, de uma forma indirecta, o número de elementos de um conjunto, estando esses elementos agrupados sob certas condições. Factorial Seja n um número inteiro não negativo. Definimos o factorial de n (indicado pelo símbolo n!) como sendo: n! = n.(n-1). (n-2) , para n 2 Para n = 0, teremos : 0! = 1. Para n = 1, teremos : 1! = 1 Exemplos: a) 6! = = 720 b) 4! = = 24 c) 6! = 6.5.4! d) 10! = e) 10! = ! f) 10! = ! Princípio fundamental da contagem PFC Se determinado acontecimento ocorre em n etapas diferentes, e se a primeira etapa pode ocorrer de k 1 maneiras diferentes, a segunda de k 2 maneiras diferentes, e assim sucessivamente, então o número total T de maneiras de ocorrer o acontecimento é dado por: T = k 1. k 2. k k n Sabendo que as matrículas do carros portugueses usam 2 letras do alfabeto e 4 algarismos, qual o número máximo de matrículas com esse formato (dígito-dígito-letra-letra-letra-letra)
2 Como o alfabeto possui 26 letras e nosso sistema numérico possui 10 algarismos (de 0 a 9), podemos concluir que: para a 1ª posição, temos 10 alternativas, e como pode haver repetição, para a 2ª também temos 10 alternativas. Em relação as letras, concluímos facilmente que temos 26 alternativas para cada um dos 4 lugares. Podemos então afirmar que o máximo de matrículas será de 10*10*26*26*26*26= ! Permutações simples Permutações simples de n elementos distintos são os agrupamentos formados com todos os n elementos e que diferem uns dos outros pela ordem de seus elementos. Com os elementos A, B, C são possíveis as seguintes permutações: ABC, ACB, BAC, BCA, CAB e CBA. O número total de permutações simples de n elementos distintos é dado por n!, isto é P n = n! onde n! = n(n-1)(n-2) Exemplos: a) P 6 = 6! = = 720 b) Calcule o número de formas distintas de 5 pessoas ocuparem os lugares de um banco rectangular de cinco lugares. P 5 = 5! = = 120 Denomina-se ANAGRAMA o agrupamento formado pelas letras de uma palavra, que podem ter ou não significado na linguagem comum. Os possíveis anagramas da palavra REI são: REI, RIE, ERI, EIR, IRE e IER. Permutações com elementos repetidos Se entre os n elementos de um conjunto, existem a elementos repetidos, b elementos repetidos, c elementos repetidos e assim sucessivamente, o número total de permutações que podemos formar é dado por:
3 Determine o número de anagramas da palavra MATEMATICA. Temos 10 elementos, com repetição. Observe que a letra M está repetida duas vezes, a letra A três, a letra T, duas vezes. Na fórmula anterior, teremos: n=10, a=2, b=3 e c=2. Sendo k o número procurado, podemos escrever: k= 10! / (2!.3!.2!) = Resposta: anagramas. Arranjos simples Dado um conjunto com n elementos, chama-se arranjo simples de taxa k, a todo agrupamento de k elementos distintos dispostos numa certa ordem. Dois arranjos diferem entre si, pela ordem de colocação dos elementos. Assim, no conjunto E = {a,b,c}, teremos: a) Arranjos de taxa 2: ab, ac, bc, ba, ca, cb. b) Arranjos de taxa 3: abc, acb, bac, bca, cab, cba. Representando o número total de arranjos de n elementos tomados k a k (taxa k) por A n,k, teremos a seguinte fórmula: Obs.: é fácil perceber que A n,n = n! = P n. Um cofre possui um disco marcado com os dígitos 0,1,2,...,9. O segredo do cofre é marcado por uma sequência de 3 dígitos distintos. Se uma pessoa tentar abrir o cofre, quantas tentativas deverá fazer (no máximo) para conseguir abri-lo? As sequências serão do tipo xyz. Para a primeira posição teremos 10 alternativas, para a segunda, 9 e para a terceira, 8. Podemos aplicar a fórmula de arranjos, mas pelo princípio fundamental de contagem, chegaremos ao mesmo resultado: = 720. Observe que 720 = A 10,3
4 Combinações simples Denominamos combinações simples de n elementos distintos tomados k a k (taxa k) aos subconjuntos formados por k elementos distintos escolhidos entre os n elementos dados. Observe que duas combinações são diferentes quando possuem elementos distintos, não importando a ordem em que os elementos são colocados. No conjunto E= {a,b.c,d} podemos considerar: a) combinações de taxa 2: ab, ac, ad,bc,bd, cd. b) combinações de taxa 3: abc, abd,acd,bcd. c) combinações de taxa 4: abcd. Representando por C n,k o número total de combinações de n elementos tomados k a k (taxa k), temos a seguinte fórmula: Obs: o número acima é também conhecido como Número binomial e indicado por: Uma prova consta de 15 questões das quais o aluno deve resolver 10. De quantas formas ele poderá escolher as 10 questões? Observe que a ordem das questões não muda o teste. Logo, podemos concluir que trata-se de um problema de combinação de 15 elementos com taxa 10. Aplicando simplesmente a fórmula chegaremos a: C 15,10 = 15! / [(15-10)!. 10!] = 15! / (5!. 10!) = ! / ! = 3003 Tente resolver os 3 problemas seguintes: 1) - Um cocktail é preparado com duas ou mais bebidas distintas. Se existem 7 bebidas distintas, quantos cocktails diferentes podem ser preparados? Resp: 120
5 2) - Sobre uma circunferência são marcados 9 pontos, dois a dois distintos. Quantos triângulos podem ser construídos com vértices nos 9 pontos marcados? Resp: 84 3) - Uma família com 5 pessoas possui um automóvel de 5 lugares. Sabendo que somente 2 pessoas sabem dirigir, de quantos modos poderão se acomodar para uma viagem? Resp: 48 Exercício resolvido: Um salão tem 6 portas. De quantos modos distintos esse salão pode estar aberto? Para a primeira porta temos duas opções: aberta ou fechada Para a segunda porta temos também, duas opções, e assim sucessivamente. Para as seis portas, teremos então, pelo Princípio Fundamental da Contagem PFC: N = = 64 Lembrando que uma dessas opções corresponde a todas as duas portas fechadas, teremos então que o número procurado é igual a 64-1 = 63. Resposta: o salão pode estar aberto de 63 modos possíveis. Vimos em Análise Combinatória que o número de combinações simples de n elementos de um conjunto dado, tomados k a k, ou seja, de taxa k, é dado por: C n, k = n! / k! (n k)! onde n! = (n 1).n, é denominado factorial de n. C 7,5 = 7! / 5! (7 5)! = 7! / 5! 2! = ( )/( ) = 21 Considere o conjunto A = {a, b, c, d, e} formado por cinco elementos distintos. As combinações desses cinco elementos tomados dois a dois são: ab ac ad ae bc bd be cd ce de, num total de 10 combinações. Realmente são 10 combinações, pois: C 5,2 = 5! / 2!(5 2)! =( ) / ( ) = 10. As combinações desses cinco elementos tomados três a três são: abc abd abe acd ace ade bcd bce, num total de 10 combinações. Realmente neste caso, também são 10 combinações, pois: C 5,3 = 5! / 3!(5 3)! = ( ) / ( ) = 10. Observe que no conjunto dado, para cada combinação de taxa dois, corresponde uma única combinação de taxa três, ou seja, definida uma combinação de taxa dois, fica definida imediatamente uma outra combinação (dita complementar) de taxa três. Isto justifica o fato de que C 5,2 = C 5,3 Assim, por exemplo, no caso acima, poderemos escrever as combinações e suas respectivas combinações complementares:
6 Combinação Combinação complementar ab ac ad ae bc bd be cd ce de cde bde bce bcd ade ace acd abe abd abc De uma forma geral, num conjunto de n elementos, para cada combinação dos n elementos tomados k a k, ou seja, de taxa k, corresponderá uma única combinação complementar formada pelos n k elementos restantes e, portanto, deveremos ter sempre C n, k = C n, n - k. Isto pode também ser verificado algebricamente, conforme mostraremos a seguir: Já sabemos que: C n, k = n! / k! (n k)! Para C n, n - k poderemos escrever: C n,n-k = n! / [(n k)! [n (n k)] = n! / (n k)! k! = C n, k Assim, poderemos exemplificar: C 7,3 = C 7,4 porque = 7. C 1000, 60 = C 1000, 940 porque = C 700, 100 = C 700, 600 porque = 700. Genericamente, C n, n - k = C n, k porque (n k) + k = n. Um caso particular e importante é obtido fazendo k = 0 na igualdade acima, obtendo-se: C n, n 0 = C n,0 ou seja: C n, n = C n, 0 Pela fórmula C n, k = n! / k! (n k)!, fazendo k = 0, obteremos finalmente: C n,0 = n! / 0! (n 0)! = n! / n! = 1, já que, por definição, o factorial de zero é igual a 1 ou seja, 0! = 1. Portanto, C n, n = C n, 0 = 1.
7 Exercício resolvido Determine o conjunto solução da equação C 200, 2x = C 200,9-x Deveremos ter: 2x = 9 x ou 2x + 9 x = 200. Da primeira, tiramos: 2x + x = 9 x = 3. Da segunda, tiramos: 2x x = x = 191. Logo, o conjunto solução é S = {3, 191} Exercício proposto: Resolva a equação C 14, x+2 = C 14, 5x Resposta: S = {2}. Enviar comentários para: Sérgio Silva
Análise Combinátorio. 1 - Introdução. 2 - Fatorial
Análise Combinátorio 1 - Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática
Matemática Régis Cortes ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1 ANÁLISE COMBINATÓRIA PERMUTAÇÃO é o tipo de agrupamento ordenado em que cada grupo entram todos os elementos. Os grupos diferem pela ORDEM Pn = n! ARRANJO : é o tipo de agrupamento
Raciocínio Lógico Matemático e Analítico
Raciocínio Lógico Matemático e Analítico Professor Cláudio Serra Aula 2 Análise Combinatória www.masterjuris.com.br TÓPICOS INTRODUTÓRIOS E CONCEITUAIS 1 - Fatorial Seja n um número inteiro não negativo.
CAPÍTULO 2 ANÁLISE COMBINATÓRIA
CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um
Fatorial de um número natural
Fatorial de um número natural Exemplos: a) 6! 6. 6. 5. 4. 3. 2. 1 720 b) 4. 3! 4. 3. 2. 1 24 c) 7! 7. 6! 7. 6. 5. 4. 3. 2. 1 5040 d) 10. 9. 8. 7. 6. 5. 4. 3. 2. 1 3.628.800 e) 3! 3. 2. 1 6 Perceba que
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
TÓPICO 01 RACIOCÍNIO LÓGICO. Análise combinatória: aplicações do princípio fundamental da contagem e do princípio da casa dos pombos.
CONTEÚDO PROGRAMÁTICO (De acordo com o edital 001/2018) RACIOCÍNIO LÓGICO Sequencias lógicas e leis de formção (verbais. Numéricas, geométricas); Teoria dos conjuntos (simbologia, operações, e diagramas
10 opções. 10 opções. 9 opções. 22 opções. 23 opções
Contagem Princípio Fundamental de Contagem Se algum procedimento pode ser realizado de n 1 maneiras diferentes; se, seguindo este, um segundo procedimento pode ser realizado de n 2 maneiras diferentes;
Breve revisão de Análise Combinatória
1. Princípio fundamental da contagem Breve revisão de Análise Combinatória Considere que certo procedimento pode ocorrer de duas maneiras diferentes, quais sejam: A 1ª maneira, ocorrendo de a modos distintos;
10. Fatorial e Análise combinatória
10. Fatorial e Análise combinatória 1. Definição e propriedades básicas. Seja n um número natural, n 2. Então, designamos o produto 123... (n-1)n como, que se lê n fatorial. Dessa definição, deduzimos
Análise Combinatória
Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
ARRANJO OU COMBINAÇÃO?
ARRANJO OU COMBINAÇÃO? As principais ferramentas da Análise Combinatória são a Permutação, o Arranjo e a Combinação, mas muitos estudantes se confundem na hora de decidir qual delas utilizar para resolver
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 17 de maio de 2017 Introdução A Análise Combinatória é a parte da Matemática
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA DEFINIÇÃO Ao produto dos números naturais começando em n e decrescendo até 1 denominamos de fatorial de n e representamos por n!. Exemplo: 7! = 7.6.5.4.3.2.1 12! = 12.11.10.9.8.7.6.5.4.3.2.1
Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina
Análise Combinatória Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 18 de abril de 2018 Londrina 1 / 11 Análise Combinatória A Análise Combinatória é a parte
Reaprendendo a contar
Reaprendendo a contar Aula 16 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: www.sxc.hu Meta Apresentar diferentes problemas de análise combinatória. Objetivos Após o estudo desta
APOSTILA DE MATEMÁTICA
1 NEEJA: NÚCLEO DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO APOSTILA DE MATEMÁTICA ENSINO MÉDIO MÓDULO - 8 PROFESSOR: Suzerly Fatima Bonotto Ano: 2015 2 MÓDULO/ 8 SEQUÊNCIAS: Muitos problemas
Polinômios e o Problema de Contagem
Polinômios e o Problema de Contagem Jorge Alencar Universidade Estadual de Campinas I Workshop de Álgebra da UFG-CAC Catalão, Brazil Novembro 12-14, 2013 Polinômios Um polinômio é uma expressão matemática
ESTUDO DA ANÁLISE COMBINATÓRIA
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Matemática e Raciocínio Lógico Análise Combinatória Prof. Dudan
Matemática e Raciocínio Lógico Análise Combinatória Prof. Dudan Matemática e Raciocínio Lógico ANÁLISE COMBINATÓRIA Fatorial Ao produto dos números naturais começando em n e decrescendo até 1 denominamos
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade Exemplo: NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES -Roteiro do aluno- QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8
8 ANÁLISE COMBINATÓRIA E
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES EXEMPLO QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
CELESC Distribuição S.A. do Estado de Santa Catarina CELESC. Comum aos Cargos de Nível Médio e Nível Médio Técnico:
CELESC Distribuição S.A. do Estado de Santa Catarina CELESC Comum aos Cargos de Nível Médio e Nível Médio Técnico: Eletricista Técnico em Segurança do Trabalho Técnico Industrial - Edificações Técnico
Ensino Médio. Fatorial
As Permutações Comentários: As primeiras atividades matemáticas da humanidade estavam ligadas à contagem de objetos de um conjunto, enumerando seus elementos. As civilizações antigas, como egípcia, babilônia,
(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?
Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da
Combinatória II Continuação
12 Combinatória II Continuação Sumário 12.1 Introdução....................... 2 12.2 Permutações e Combinações............. 2 1 Unidade 12 Introdução 12.1 Introdução Nesta unidade, são estudadas as permutações
PROBABILIDADE. Prof. Patricia Caldana
PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
Introdução as Probabilidades e ao Cálculo Combinatório
Aula # 13 e 14 DISCIPLINA: PROBABILIDADE E ESTATÍSTICA Introdução as Probabilidades e ao Cálculo Combinatório Professor: Dr. Wilfredo Falcón Urquiaga Professor Titular Engenheiro em Telecomunicações e
Oi, Ficou curioso? Então conheça nosso universo.
Oi, Somos do curso de Matemática da Universidade Franciscana, e esse ebook é um produto exclusivo criado pra você. Nele, você pode ter um gostinho de como é uma das primeiras aulas do seu futuro curso.
Combinatória III Continuação
1 Combinatória III Continuação Sumário 11 Introdução 2 12 O Triângulo Aritmético 4 1 O Binômio de Newton 5 1 Unidade 1 Introdução 11 Introdução A unidade se inicia com o triângulo de Tartaglia-Pascal,
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 14 Regras de Associação Max Pereira Regras de Associação Motivação O que é geralmente comprado junto com o produto x? Que pares de produtos são comprados juntos?
ESTUDO DA ANÁLISE COMBINATÓRIA
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2
Curso: Ciência da Computação Turma: 4ª Série Aula 2 Análise Combinatória: Arranjo, Permutação, Combinação Simples e com Repetição Motivação Quantas ordenações são possíveis fazer com um baralho de 52 cartas?
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan IDENTIFICAÇÃO PERMUTAÇÃO SIMPLES É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em questões que envolvem anagramas
Soma das amplitudes dos ângulos internos de um quadrilátero
Escola Básica de Santa Marinha Matemática 2009/2010 7.º Ano Síntese de conteúdos Quadriláteros Soma das amplitudes dos ângulos internos de um quadrilátero Na figura seguinte encontra-se representado o
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado
UFRJ - CCMN - IM - Departamento de Métodos Estatísticos Planejamento de Experimentos - P2 Turma: MAA
UFRJ - CCMN - IM - Departamento de Métodos Estatísticos Planejamento de Experimentos - P2 Turma: MAA 18-06-2012 1. (Montgomery e Runger) Quatro fatores influenciam o sabor de um refrigerante, a saber,
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Treinamento 7 Nível 3 Dias/Horários
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues
Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Alguns Conceitos Básicos de Contagem As ideias de contagem se relacionam com
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações. Professores Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria Plana - Parte 2 Congruência de Triângulos e Aplicações. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria Plana - Parte 2. Congruência
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.
CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois
Aula 2 Congruência de Triângulos
Aula 2 Congruência de Triângulos A idéia de congruência entre segmentos, ângulos e triângulos formouse intuitivamente, levando-se em conta que dois segmentos congruentes, dois ângulos congruentes e dois
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade PERMUTAÇÕES SIMPLES -Roteiro do professor- Exemplo: QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto A = {7, 8,
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan Análise Combinatória Análise Combinatória Permutação Simples É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan Análise Combinatória Permutação Simples Análise Combinatória É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também
a) Em quantas ordem quatro pessoas podem senta num sofá de 4 lugares?
ANÁLISE COMBINATÓRIA 1. PRINCIPIO FUNDAMENTAL DA CONTAGEM A análise combinatória é um ramo da matemática que tem por objetivo resolver problemas que consistem, basicamente em escolher e agrupar os elementos
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete
para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados!
Álgebra: É Necessário ter Ideias para Fazer Contas? A primeira e, de longe, mais importante lição é 1. Fatoração é legal; fatoração é sua amiga 1.1. Produtos notáveis; em especial, diferença de quadrados!
1 a Parte ANÁLISE COMBINATÓRIA 1
Registro CMI 40616 Aula 1 1) Fatorial 1 a Parte ANÁLISE COMBINATÓRIA 1 O fatorial de um número n (n pertence ao conjunto dos números naturais) é sempre o produto de todos os seus antecessores, incluindo
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
Mais Permutações e Combinações (grupo 2)
Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A PARTE A Na parte A serão atribuídos pontos para cada resposta correta e a pontuação máima para essa
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
RESOLUÇÃO DA 1 a AVALIAÇÃO DE MATEMÁTICA UNIDADE I
RESOLUÇÃO DA 1 a AVALIAÇÃO DE MATEMÁTICA UNIDADE I - 2018 PESQUISA: PROF. ADIANO CARIBÉ E PROF WALTER PORTO. PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. Questão 01. (UNIT-2014) No triângulo ABC, Â = 80, Portanto
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação de Stewart 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação
Agrupamento de Escolas de Santo António Parede Escola Básica 2,3 de Santo António FICHA DE PREPARAÇÃO PARA A AVALIAÇÃO DE MATEMÁTICA.
Agrupamento de Escolas de Santo António Parede Escola Básica, de Santo António FICHA DE PREPARAÇÃO PARA A AVALIAÇÃO DE MATEMÁTICA Nome: N.º: 7.º Ano Turma Parede, / /. Prof.: José Aragão / Mário Silva.
Análise Combinatória para professores do Ensino Médio
Análise Combinatória para professores do Ensino Médio José Plínio de O. Santos 1 Instituto de Matemática, Estatística e Comp. Científica - IMECC Universidade Estadual de Campinas - UNICAMP Robson da Silva
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES e a t M Arranjo Combinação e Permutação PÁGINA 33 01 O número de interruptores será igual ao número de combinações de 6 elementos (lâmpadas) tomados de 3 em 3.
5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27
MATEMÁTICA CADERNO CURSO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos: Definição e Eistência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = ( )
Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 016 Nível 1. Para cada m R, considere a função f(x) = x + 3x + m. (V) (F) Se m = a função possui uma raiz real. (V) (F) Se m = 1 a soma das raízes de f é 3.
TESTE GLOBAL PROBABILIDADES 12.º ANO
TESTE GLOBAL PROBABILIDADES 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / DURAÇÃO DO TESTE: 90 MINUTOS VERSÃO 2 Na tua folha de respostas, indica de forma legível a versão do teste. FORMULÁRIO Probabilidades
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): N
Sistemas Digitais Módulo 5 Teoremas Lógicos, Simplificação Algébrica e Projeto de Circuitos Lógicos
Universidade Federal de Uberlândia Faculdade de Computação Sistemas Digitais Módulo 5 Teoremas Lógicos, Simplificação Algébrica e Projeto de Circuitos Lógicos Graduação em Sistemas de Informação Prof.
2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS
2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade
Sumário. 2 Índice Remissivo 9
i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................
Solução. Este problema pode ser resolvido de modo análogo ao problema anterior.
page 11 1.2 Sistema posicional de numeração 11 Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. Exercício 15: Em um conjunto de 101 moedas, há 50 falsas e as demais são verdadeiras.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento
r a t (I), ht rs (II) e (III) r s t r a
01 De T 1 e T 3, temos: a h r s h r a t (I), ht rs (II) e (III) r s t r a De T e T 3, temos: h b s s b s b t (IV) e (V) r s t r h De (III) e (V): b h h a b (VI) h a Somando (I) e (IV) temos: r s at bt
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Braille, Entrelinha 1,5 sem figuras Critérios de Classificação Página 1
Prova Final de Matemática Prova 9.ª Fase.º Ciclo do Ensino Básico 07 Decreto-Lei n.º 9/0, de 5 de julho Braille, Entrelinha,5 sem figuras Critérios de Classificação 0 Páginas Prova 9/.ª F./Adp CC Página
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
FIGURAS GEOMÉTRICAS. MEDIDA
7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Alfabeto Grego. Linhas poligonais e polígonos. Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o
Solução da prova da 1 a fase OBMEP 2009 Nível 2
1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o número, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente ao algarismo 5,
MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto
Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 84) AD TM TC. Aula 38 (pág. 85) AD TM TC. Aula 39 (pág.
Matemática Setor A Prof.: Índice-controle de Estudo Aula 7 (pág. 84) AD TM TC Aula 8 (pág. 85) AD TM TC Aula 9 (pág. 85) AD TM TC Aula 40 (pág. 87) AD TM TC Aula 41 (pág. 89) AD TM TC Aula 4 (pág. 89)
