INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
|
|
|
- Luís Guterres Ferrão
- 9 Há anos
- Visualizações:
Transcrição
1 INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20
2 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos (permutações) 4.2) Combinações 4.3) O Princípio do Pombal 4.4) Relações de Recorrência Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.2/20
3 ANÁLISE COMBINATÓRIA Técnicas para a contagem de conjuntos são importantes na Ciência da Computação. Especialmente na análise de algoritmos. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.3/20
4 REVISÃO SOBRE ARRANJOS Resultado auxiliar: Teorema 1 ( Princípio da Multiplicação para a Contagem ): Suponha que duas tarefas devem ser executadas em seqüência: se há n 1 modos de executar a tarefa T 1 e se, para um destes modos, T 2 pode ser realizada de n 2 maneiras então a seqüência T 1 T 2 pode ser realizada de n 1 n 2 formas diferentes. Prova: cada escolha de método para T 1 resulta em um caminho diferente para a seqüência existem n 1 destes métodos para cada um deles, podemos escolher n 2 maneiras de realizar T 2 logo, no todo, serão n 1 n 2 opções para a seqüência T 1 T 2. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.4/20
5 REVISÃO SOBRE ARRANJOS Ilustração (n 1 = 3 e n 2 = 4): modos possíveis para a tarefa 1 modos possíveis para a tarefa 2 modos possíveis para realizar a tarefa 1 e depois a tarefa 2 Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.5/20
6 REVISÃO SOBRE ARRANJOS Este teorema pode ser facilmente estendido... Teorema 2: suponha que as tarefas T 1, T 2,..., T k devem ser realizadas em seqüência: se T 1 pode ser realizada de n 1 maneiras, e para cada uma destas maneiras, T 2 pode ser realizada de n 2 maneiras, e para cada um dos n 1 n 2 modos de realizar T 1 T 2 em seqüência, T 3 pode ser realizada de n 3 maneiras, e assim por diante, então a seqüência T 1 T 2 T k pode ser realizada de exatamente n 1 n 2 n k modos. Prova: indução sobre k. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.6/20
7 REVISÃO SOBRE ARRANJOS Exemplo: Um certo esquema de rotulagem para identificação de equipamentos consiste de uma letra seguida por 3 dígitos. Quantos identificadores distintos são possíveis, se for permitido que haja repetição? Solução: pelo princípio da multiplicação estendido, existem: = possibilidades Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.7/20
8 REVISÃO SOBRE ARRANJOS Exemplo: Seja A um conjunto com n elementos. Quantos subconjuntos A possui? Solução: cada subconjunto é formado por alguns dos n elementos de A a participação de cada elemento em um dado subconjunto pode ser representada como um 0 ou um 1 em um vetor de comprimento n ora, pelo princípio visto, existem: 2 } 2 {{ 2 } = 2 n n fatores modos de preencher o vetor e, portanto, 2 n subconjuntos de A. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.8/20
9 REVISÃO SOBRE ARRANJOS Questão: Seja A qualquer conjunto com n elementos e 1 r n. Quantas seqüências diferentes de comprimento r podem ser formadas usando elementos de A se: (a) elementos na seqüência podem ser repetidos? (b) todos os elementos na seqüência devem ser distintos? Nota: qualquer seqüência de comprimento r pode ser formada pelo preenchimento de r caixas, em ordem, da esquerda para a direita: caixa 1 caixa 2 caixa 3 caixa r 1 caixa r Seja T i a tarefa: preencha a caixa i. Então, T 1 T 2 T r representa a formação da seqüência. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.9/20
10 QUESTÃO (CONTINUAÇÃO) Caso (a): para cada posição i, podemos copiar qualquer elemento de A ou seja, há sempre n modos de realizar cada tarefa então, pelo princípio da multiplicação estendido, o número de seqüências que podem ser formadas é: Teorema 3: n n n }{{} r fatores = n r Seja A um conjunto com n elementos e seja 1 r n. Então o número de seqüências de comprimento r que podem ser formadas com elementos de A, permitindo repetições, é n r. Exemplo: Quantas palavras de 3 letras podem ser formadas com letras do conjunto {a, b, y, z}, se for permitido repetição? Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.10/20
11 QUESTÃO (CONTINUAÇÃO) Caso (b): T 1 ainda pode ser realizada de n modos mas aí, qualquer que seja o escolhido, restam só (n 1) opções ou seja: há apenas (n 1) maneiras de realizar T 2 isto continua até vermos que T r pode ser realizada de (n (r 1)) = (n r + 1) modos portanto, pelo princípio da multiplicação, uma seqüência de r elementos distintos de A pode ser montada de n(n 1)(n 2) (n r + 1) modos Uma seqüência de r elementos distintos de A é chamada de arranjo (ou permutação) de A tomado r a r. Note que a quantidade destas seqüências depende apenas de n. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.11/20
12 QUESTÃO (CONTINUAÇÃO) Teorema 4: Se 1 r n, então o número de arranjos de n objetos tomados r a r é dado por: np r = n (n 1) (n 2) (n r + 1) = n! (n r)! Nota: na verdade, está fórmula vale para n 0 e 0 r n Exemplo: Seja A dado por {1, 2, 3, 4}. Alguns arranjos de A tomados 3 a 3: 124,421,341,243,... Nro total de arranjos de A tomados 3 a 3: 4P 3 = = 24 Alguns arranjos de A tomados 2 a 2: 12,43,31,24,21,... Nro total de arranjos de A tomados 2 a 2: 4P 2 = 4 3 = 12 Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.12/20
13 REVISÃO SOBRE ARRANJOS Quando r = n, estamos contando todos os distintos arranjos de A em seqüências de comprimento n. Estas seqüências são chamadas de permutações. Número de permutações de A: np n = n! Exemplo: As possíveis permutações de A = {a, b, c} são: abc, acb, bac, bca, cab e cba. Note que o número destas permutações é 3! = 6. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.13/20
14 REVISÃO SOBRE ARRANJOS Exemplo: A consiste de todas as 52 cartas de um baralho. Assuma que elas foram embaralhadas e que foi distribuída uma mão de 5 cartas. Uma lista de cartas nesta mão, na ordem em que foram dadas, é um arranjo de A 5 a 5. Exemplos de mãos: A, 3, 5, 2, J 2, 3, 5, Q, K J, J, J, 4, 4 3, 2, A, J, 5 Note que a 1 a e a última mãos são arranjos diferentes. Quantidade destes arranjos: 52P 5 = 52! 47! = = Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.14/20
15 REVISÃO SOBRE ARRANJOS Exemplo: Quantas palavras com 3 letras distintas podem ser formadas das letras da palavra CASO? Solução: O número é 4 P 3 = 4! (4 3)! = 24 Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.15/20
16 REVISÃO SOBRE ARRANJOS Exemplo: E se a palavra chave do exemplo anterior tivesse sido CASA? Solução: 4P 3 contaria como distntos alguns arranjos que não podem ser distinguidos: se rotularmos os dois As como A 1 e A 2 : A 1 SA 2 e A 2 SA 1 são dois dos arranjos que seriam contados mas, sem os rótulos, são a mesma palavra... Isto leva a um último exemplo a considerar: permutações com repetições limitadas... Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.16/20
17 PERMUTAÇÕES COM REPETIÇÕES LIMITADAS Exemplo (1/2): Quantos permutações distinguíveis existem com as letras da palavra BANANA? Solução: Começar rotulando os A s e os N s. Para B, A 1, N 1, A 2, N 2, A 3 existem 6! = 720 permutações. Só que algumas destas permutações são idênticas, exceto pela ordem em que os N s aparecem: exemplo: A 1 A 2 A 3 BN 1 N 2 e A 1 A 2 A 3 BN 2 N 1 de fato, as 720 podem ser listadas em pares que diferem apenas na ordem dos dois N s isto significa que, tirando os rótulos dos N s, restam apenas = 360 permutações distinguíveis Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.17/20
18 PERMUTAÇÕES COM REPETIÇÕES LIMITADAS Exemplo (2/2): Quantos permutações distinguíveis existem com as letras da palavra BANANA? Solução: De modo similar, notamos que estas 360 podem ser agrupadas em grupos de 3! = 6 que diferem apenas na ordem dos 3 A s um destes grupos de 6 seria: BNNA 1 A 2 A 3, BNNA 1 A 3 A 2, BNNA 2 A 1 A 3, BNNA 2 A 3 A 1, BNNA 3 A 1 A 2, BNNA 3 A 2 A 1 tirando os rótulos, estas 6 ficam, simplesmente: BN N AAA Portanto, existem de BANANA. = 60 permutações distinguíveis das letras Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.18/20
19 PERMUTAÇÕES COM REPETIÇÕES LIMITADAS Teorema: O números de permutações distintas que pode ser formado com uma coleção de n objetos, aonde: o 1 o objeto aparece k 1 vezes o 2 o objeto aparece k 2 vezes etc... é dado por: n! k 1!k 2! k t! aonde: k 1 + k k t = n Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.19/20
20 PERMUTAÇÕES COM REPETIÇÕES LIMITADAS Exemplo: O número de palavras distintas que podem ser formadas a partir das letras de MISSISSIP I é: 11! 1!.4!.4!.2! = Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.20/20
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/18 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
10 opções. 10 opções. 9 opções. 22 opções. 23 opções
Contagem Princípio Fundamental de Contagem Se algum procedimento pode ser realizado de n 1 maneiras diferentes; se, seguindo este, um segundo procedimento pode ser realizado de n 2 maneiras diferentes;
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/51 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/10 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/42 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza
Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,
Análise Combinátorio. 1 - Introdução. 2 - Fatorial
Análise Combinátorio 1 - Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO MATERIAL EXTRAÍDO DOS LIVROS-TEXTOS (KOLMAN/ROSEN) UFSC - CTC - INE UFSC/CTC/INE p. 1 11 - ESTRUTURAS ALGÉBRICAS 11.1) Operações Binárias 11.2)
Contagem e Combinatória Elementar
Contagem e Combinatória Elementar Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de janeiro de 2013 Motivação (I) Combinatória
10. Fatorial e Análise combinatória
10. Fatorial e Análise combinatória 1. Definição e propriedades básicas. Seja n um número natural, n 2. Então, designamos o produto 123... (n-1)n como, que se lê n fatorial. Dessa definição, deduzimos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/31 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/23 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
Cálculo Combinatório
Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática
Breve revisão de Análise Combinatória
1. Princípio fundamental da contagem Breve revisão de Análise Combinatória Considere que certo procedimento pode ocorrer de duas maneiras diferentes, quais sejam: A 1ª maneira, ocorrendo de a modos distintos;
Combinatória II Continuação
12 Combinatória II Continuação Sumário 12.1 Introdução....................... 2 12.2 Permutações e Combinações............. 2 1 Unidade 12 Introdução 12.1 Introdução Nesta unidade, são estudadas as permutações
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/14 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Análise Combinatória
Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.
8 ANÁLISE COMBINATÓRIA E
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES EXEMPLO QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos
Sumário. 2 Índice Remissivo 9
i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade Exemplo: NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES -Roteiro do aluno- QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8
COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA
Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto
INE Fundamentos de Matemática Discreta para a Computação
INE5403 - Fundamentos de Matemática Discreta para a Computação ) Fundamentos.1) Conjuntos e Sub-conjuntos.) Números Inteiros.3) Funções.4) Seqüências e Somas.5) Crescimento de Funções Seqüências Uma seqüência
Métodos de contagem. Francimário Alves de Lima. Universidade Federal do Rio Grande do Norte. 6 de agosto de 2014
Universidade Federal do Rio Grande do Norte 6 de agosto de 2014 Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Sumário 1 Introdução 2 Permutação 3 Combinações 4 Exercícios Introdução Um sistema
Oi, Ficou curioso? Então conheça nosso universo.
Oi, Somos do curso de Matemática da Universidade Franciscana, e esse ebook é um produto exclusivo criado pra você. Nele, você pode ter um gostinho de como é uma das primeiras aulas do seu futuro curso.
CAPÍTULO 2 ANÁLISE COMBINATÓRIA
CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente
Raciocínio Lógico Matemático e Analítico
Raciocínio Lógico Matemático e Analítico Professor Cláudio Serra Aula 2 Análise Combinatória www.masterjuris.com.br TÓPICOS INTRODUTÓRIOS E CONCEITUAIS 1 - Fatorial Seja n um número inteiro não negativo.
Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52
1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio
Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2
Curso: Ciência da Computação Turma: 4ª Série Aula 2 Análise Combinatória: Arranjo, Permutação, Combinação Simples e com Repetição Motivação Quantas ordenações são possíveis fazer com um baralho de 52 cartas?
Matemática Régis Cortes ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1 ANÁLISE COMBINATÓRIA PERMUTAÇÃO é o tipo de agrupamento ordenado em que cada grupo entram todos os elementos. Os grupos diferem pela ORDEM Pn = n! ARRANJO : é o tipo de agrupamento
Combinatória. Samuel Barbosa. 28 de março de 2006
Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um
Combinatória I. Sumário Introdução Princípios Básicos... 2
11 Combinatória I Sumário 11.1 Introdução....................... 2 11.2 Princípios Básicos................... 2 1 Unidade 11 Introdução 11.1 Introdução Combinatória é um vasto e importante campo da matemática
4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas).
Combinatória básica Introdução INTRODUÇÃO 4. COMBINATÓRIA BÁSICA Introdução Regra da soma e do produto Modelo de amostragem Modelo de distribuição Modelo de equação Identidades combinatórias Coeficientes
AULA 5 - Independência, Combinatória e
AULA 5 - Independência, Combinatória e permutações Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Independência Um importante caso particular da probabilidade condicional surge quando a ocorrˆncia
Polinômios e o Problema de Contagem
Polinômios e o Problema de Contagem Jorge Alencar Universidade Estadual de Campinas I Workshop de Álgebra da UFG-CAC Catalão, Brazil Novembro 12-14, 2013 Polinômios Um polinômio é uma expressão matemática
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Problemas de Teoria dos Números e Contagem - Aula 09
Problemas de Teoria dos Números e Contagem - Aula 09 Após os conceitos de números inteiros que foram trabalhados até este ponto, como divisores, múltiplos e outros, estes podem ser utilizados em problemas
> Princípios de Contagem e Enumeração Computacional 0/19
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações Combinações > Princípios de Contagem e Enumeração Computacional 0/19 Permutações Utilizamos P(n, r) para denotar o número de sequências
Análise Combinatória com o Interpretador Hall Parte 2
Análise Combinatória com o Interpretador Hall Parte 2 O interpretador Hall disponibiliza as seguintes funções para se trabalhar com os conceitos da análise combinatória. As funções são: Permutações PermS(n)
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade PERMUTAÇÕES SIMPLES -Roteiro do professor- Exemplo: QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto A = {7, 8,
Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina
Análise Combinatória Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 18 de abril de 2018 Londrina 1 / 11 Análise Combinatória A Análise Combinatória é a parte
Mais Permutações e Combinações (grupo 2)
Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente
Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco
1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação
Fatorial de um número natural
Fatorial de um número natural Exemplos: a) 6! 6. 6. 5. 4. 3. 2. 1 720 b) 4. 3! 4. 3. 2. 1 24 c) 7! 7. 6! 7. 6. 5. 4. 3. 2. 1 5040 d) 10. 9. 8. 7. 6. 5. 4. 3. 2. 1 3.628.800 e) 3! 3. 2. 1 6 Perceba que
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO O JOGO DE PÔQUER: UMA SITUAÇÃO REAL PARA DAR SENTIDO AOS CONCEITOS
Probabilidade Aula 02
0303200 Probabilidade Aula 02 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário 2.3 Técnicas de contagem 2.4 Probabilidade condicional 2.3 Princípio fundamental da contagem Suponhamos que
Probabilidade. Objetivos de Aprendizagem. UFMG-ICEx-EST. Cap. 2 - Probabilidade Espaços Amostrais e Eventos. 2.1.
2 ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES E AXIOMAS DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL
MA12 - Unidade 12. Paulo Cezar Pinto Carvalho. 28 de Abril de 2013 PROFMAT - SBM
MA12 - Unidade 12 Permutações e Combinações Paulo Cezar Pinto Carvalho PROFMAT - SBM 28 de Abril de 2013 Permutações Simples De quantos modos podemos ordenar em fila n objetos distintos? A escolha do objeto
ARRANJO OU COMBINAÇÃO?
ARRANJO OU COMBINAÇÃO? As principais ferramentas da Análise Combinatória são a Permutação, o Arranjo e a Combinação, mas muitos estudantes se confundem na hora de decidir qual delas utilizar para resolver
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 17 de maio de 2017 Introdução A Análise Combinatória é a parte da Matemática
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
Calculou as bases do trapézio corretamente: +3 pontos
1. O quadrado ABCD abaixo tem área 144 cm 2 e seus lados satisfazem BC 3P C, CD 4DQ e AD 5AR (notação: dados dois pontos X e Y, denotamos a medida do segmento que liga X à Y por XY ). Responda o que se
MD Análise Combinatória 1
nálise ombinatória ntonio lfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD nálise ombinatória 1 Introdução Ramo da matemática que trata da contagem. Em geral, a dificuldade
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova 2 Na aula de hoje Técnicas básicas de contagem; Tentativa e Erro; Recursividade.
Ciclo 2 Encontro 2 PERMUTAÇÕES E COMBINAÇÕES. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 2 Encontro 2 PERMUTAÇÕES E COMBINAÇÕES Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. ATUALIZAR O ENDEREÇO RESIDENCIAL ATÉ 07/08! 2 ATUALIZAR O ENDEREÇO RESIDENCIAL ATÉ 07/08!
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Alguns Conceitos Básicos de Contagem As ideias de contagem se relacionam com
Referências e materiais complementares desse tópico
Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:
MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto
Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação
Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/52 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
Princípio da inclusão e exclusão: Alguns Exemplos de Uso do Princípio da Inclusão e Exclusão
Matemática Discreta Capítulo 5 SUMÁRIO PRINCÍPIO DA INCLUSÃO E EXCLUSÃO BASEADO EM TOWNSEND (1987), CAP. 5 Princípio da Inclusão e Exclusão Alguns Exemplos de Uso do Princípio da Inclusão e Exclusão Newton
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
Geometria Computacional
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina. TE802 Conceitos Básicos de Teoria de Probabilidade. Evelio M. G.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 23 de agosto de 2017 Informação sobre a disciplina Segundas e Quartas feiras das 09:30 às 11:20 horas Professor:
Princípio da Multiplicação Gerando todas as palavras de um alfabeto. > Princípios de Contagem e Enumeração Computacional 0/18
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Princípio da Multiplicação Gerando todas as palavras de um alfabeto Permutações > Princípios de Contagem e Enumeração Computacional 0/18 Objetivos
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Segunda Lista de Exercícios/Solução do professor
Departamento de Ciência da Computação ICEx/UFMG Matemática Discreta 2 o semestre de 2013 Professor: Newton José Vieira www.dcc.ufmg.br/~nvieira Segunda Lista de Exercícios/Solução do professor Combinatória
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES e a t M Arranjo Combinação e Permutação PÁGINA 33 01 O número de interruptores será igual ao número de combinações de 6 elementos (lâmpadas) tomados de 3 em 3.
Aula 1: Introdução ao curso
Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer [email protected] Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos
Lista 1 - PMR2300. Fabio G. Cozman 3 de abril de 2013
Lista 1 - PMR2300 Fabio G. Cozman 3 de abril de 2013 1. Qual String é impressa pelo programa: p u b l i c c l a s s What { p u b l i c s t a t i c void f ( i n t x ) { x = 2 ; p u b l i c s t a t i c void
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/10 ÁREAS DA COMPUTAÇÃO 2005: estudo de ACM e IEEE a
Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial
Matemática Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Seja n um número natural tal que n > 1. Definimos n fatorial e representamos por n!, da seguinte forma: Propriedade fundamental
Análise Combinatória
Análise Combinatória Rodrigo Machado [email protected] Instituto de Informática Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil http://www.inf.ufrgs.br 2/168 Conteúdo Princípios aditivo e
Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade
Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016 Conceitos ásicos de Probabilidade Camilo Daleles Rennó [email protected] http://www.dpi.inpe.br/~camilo/estatistica/ Frequência Absoluta
> Princípios de Contagem e Enumeração Computacional 1/13
Princípios de Contagem e Enumeração Computacional > Princípios de Contagem e Enumeração Computacional 1/13 Objetivos Contar/listar o número de elementos de conjuntos finitos Aplicações > Princípios de
Fabio G. Cozman, Thiago Martins 2017
Lista 1 - adendo - PMR3201 Fabio G. Cozman, Thiago Martins 2017 Exercícios 1. (P1 2016) A listagem a seguir mostra o código de uma função que converte uma cadeia de caracteres com a representação decimal
OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1
1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222
ESTUDO DA ANÁLISE COMBINATÓRIA
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Algoritmos para Gerar Permutações e Combinações em Ordem Lexicográfica
Matemática Discreta ESTiG\IPB Cap3. Princípios Elementares de Contagem pg 76 Algoritmos para Gerar Permutações e Combinações em Ordem Lexicográfica Algoritmo: conjunto de instruções cuja execução, numa
APOSTILA DE MATEMÁTICA
1 NEEJA: NÚCLEO DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO APOSTILA DE MATEMÁTICA ENSINO MÉDIO MÓDULO - 8 PROFESSOR: Suzerly Fatima Bonotto Ano: 2015 2 MÓDULO/ 8 SEQUÊNCIAS: Muitos problemas
Introdução as Probabilidades e ao Cálculo Combinatório
Aula # 13 e 14 DISCIPLINA: PROBABILIDADE E ESTATÍSTICA Introdução as Probabilidades e ao Cálculo Combinatório Professor: Dr. Wilfredo Falcón Urquiaga Professor Titular Engenheiro em Telecomunicações e
