Mais Permutações e Combinações (grupo 2)
|
|
|
- Maria de Belem Araújo Lobo
- 8 Há anos
- Visualizações:
Transcrição
1 Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente as quatro operações. Há, no entanto, certos problemas que ocorrem com frequência e que não são imediatos, como o problema das combinações simples, para os quais é interessante conhecer a fórmula que expressa sua solução, para empregá-la em outros problemas. Neste material adicional, veremos alguns problemas que utilizam permutações e combinações em sua solução e travaremos contato com algumas outras fórmulas combinatórias que podem ser úteis. Exemplo 1. De quantos modos 4 crianças podem formar uma roda? Solução: À primeira vista, pode parecer que para formar uma roda com as 4 crianças basta escolher uma ordem para elas, o que pode ser feito de 4! = 24 modos. Entretanto, as rodas ABCD, BCDA, CDAB e DABC mostradas na figura abaixo são iguais, já que cada uma resulta da anterior por uma virada de 1/4 de volta. 30
2 31 B C D A A C B D C A D B D A B C Para calcular o número de maneiras possíveis de formar uma roda, podemos raciocinar de dois modos diferentes. Um deles consiste em partir do resultado anterior (4! = 24) e perceber que cada roda está sendo contada 4 vezes. Logo, o número correto de rodas que podem ser formadas é 24 4 = 6. Alternativamente, podemos começar por fixar a criança A na posição à esquerda (já que em qualquer roda A pode ficar nesta posição). Agora, temos 3 lugares para as 3 crianças que restaram, para um total de 3! = 6 possibilidades. De modo geral, o número de modos de colocar n objetos em círculo, considerando-se iguais disposições que coincidam por rotação (ou seja, o número de permutações circulares de n objetos) é PC n = (n 1)!. Exemplo 2. Considere um grupo formado por 7 homens (entre os quais José) e 5 mulheres (entre as quais Maria), do qual se quer extrair uma comissão constituída por 4 pessoas. Quantas são as comissões: (a) Possíveis? Solução: Devemos escolher 4 das 12 pessoas, o que pode ser feito de C modos, que é igual a = 495 comissões. (b) Formadas por 2 homens e 2 mulheres? Solução: Para formar uma comissão, devemos escolher os 2 homens, o que pode ser feito de C7 2 modos, e, a seguir, as 2 mulheres, o que
3 32 CAP. 4: MAIS PERMUTAÇÕES E COMBINAÇÕES pode ser feito de C5 2 maneiras. O número total de possibilidades de escolha, pelo princípio multiplicativo, é C7 2 C2 5 = = 210 comissões. (c) Em que haja pelo menos 2 mulheres? Solução: Há 3 tipos de comissão possíveis: com 2 homens e 2 mulheres, com 1 homem e 2 mulheres e com 4 mulheres. Para obter o número total de comissões, contamos separadamente as comissões de cada tipo e somamos os resultados, obtendo C 2 7 C2 5 +C1 7 C3 5 +C4 5 = = 285 comissões. Uma tentativa de contagem que leva a um erro muito comum é a seguinte: como a comissão deve ter pelo menos 2 mulheres, inicialmente escolhemos 2 mulheres, o que podemos fazer de C5 2 = 10 modos. A seguir, basta escolher 2 pessoas quaisquer entre as 10 que sobraram, o que pode ser feito de C10 2 = 45 modos. Logo, por este raciocínio, teríamos = 450, que difere do resultado (correto) encontrado acima. Essa solução, portanto, está errada. Você sabe explicar onde está o erro no raciocínio? (d) Em que José participe, mas Maria não? Solução: Como José deve participar da comissão, resta escolher apenas 3 outras pessoas, entre as 10 restantes (já que José já foi escolhido e Maria não pode ser escolhida). Logo, o número de possibilidades é igual a C 3 10 = 120. (e) Formadas por 2 homens, entre os quais José, e 2 mulheres, mas sem incluir Maria? Solução: Temos que escolher 1 homem entre 6 (José já está escolhido) e 2 mulheres entre 4 (Maria não pode ser escolhida). O número de comissões é 6 C4 2 = 6 6 = 36. Exemplo 3. Quantos anagramas podemos formar com a palavra
4 33 MATEMATICA? Solução: Um anagrama é uma palavra (não necessariamente fazendo sentido) formada com as mesmas letras, mas em uma ordem qualquer. Quando as n letras de uma palavra são todas distintas, o número de anagramas é igual ao número de permutações de n, que, como vimos, é igual a n!. Mas a palavra MATEMATICA tem letras repetidas: há 3 A, 2 M e 2 T, além de E, I e C, que aparecem uma vez cada. Uma solução (consistente com o princípio de atacar o mais complicado antes) é, antes de mais nada, decidir o que fazemos com as letras repetidas. Para colocar os A, temos que escolher 3 dentre os 10 lugares possíveis, o que pode ser feito de C10 3 modos. Para colocar os M, restam agora 7 lugares, dos quais devemos escolher 2, o que pode ser feito de C7 2 maneiras. Agora só restam 5 lugares, dos quais devemos escolher 2 para colocar os T; temos C5 2 possibilidades. Agora, só restam 3 lugares, nos quais devem ser colocadas as 3 letras restantes, o que pode ser feito de modos. Logo, o número total de anagramas é C10 3 C2 7 C2 5 6 = Mas há um outro modo de pensar, partindo do número de permutações de 10 letras distintas (igual a 10!). Esta contagem não está correta, porque consideramos letras iguais como se fossem distintas. Ou seja, é como se considerássemos as permutações de A 1,A 2,A 3,M 1,M 2,T 1,T 2,E,I e C. Para corrigir a contagem, basta contar quantas vezes cada anagrama foi contado. Por exemplo, o anagrama AAAMMTTEIC foi contado várias vezes: um como A 1 A 2 A 3 M 1 M 2 T 1 T 2 EIC, outro como A 2 A 1 A 3 M 1 M 2 T 1 T 2 EIC etc. Na verdade, ele foi contado tantas vezes como os modos de ordenar os 3 A, os 2 M e os 2 T, que é igual a 3! 2! 2!. O número de 10! anagramas é, então, 3!2!2! = , como encontrado anteriormente. O segundo raciocínio pode ser facilmente estendido para uma situação geral. O número de permutações de n objetos nem todos distintos, em que um deles aparece n 1 vezes, outro n 2 vezes, e assim por diante, é P n 1,n 2,... n = n! n 1!n 2!....
5 34 CAP. 4: MAIS PERMUTAÇÕES E COMBINAÇÕES Exemplo 4. De quantos modos 6 pessoas (João, Maria, Pedro, Janete, Paulo e Alice) podem ser divididas em 3 duplas? Solução: O problema é mais sutil do que parece a princípio. À primeira vista, pode parecer que a situação é a mesma do problema anterior. Uma maneira de dividir as 6 pessoas em duplas é colocar as pessoas em fila e formar uma permutação de AABBCC. Como visto 6! no exemplo anterior, isto pode ser feito de 2!2!2! = 90 modos. Mas isto não está correto, pois atribuiu nomes específicos (A, B e C) às duplas formadas. Note que colocar João e Maria na dupla A e Pedro e Janete na dupla B é equivalente a colocar João e Maria na dupla B e Pedro e Janete na dupla A. Portanto, uma mesma distribuição em duplas está sendo contada várias vezes. Mais precisamente, cada distribuição em duplas está sendo contada tantas vezes quanto o número de modos de ordenar A, B e C, ou seja, 3! = 6 vezes. Logo, o número de possíveis distribuições em duplas é 90 6 = 15. Exemplo 5. Uma professora tem 3 bolas de gude para distribuir para 5 meninos (digamos, Alfredo, Bernardo, Carlos, Diogo e Eduardo). De quantos modos ela pode fazer essa distribuição: (a) Supondo que ela dê as bolas para 3 alunos distintos? Solução: Neste caso, ela deve escolher 3 dentre os 5 meninos para receber as bolas, o que pode ser feito de C5 3 = 10 modos. (b) Supondo que os contemplados possam ganhar mais de uma bola? (Por exemplo, Carlos pode receber todas as bolas.) Solução: Listamos abaixo algumas possíveis escolhas dos contemplados: Alfredo, Bernardo, Eduardo Alfredo, Alfredo, Diogo Alfredo, Diogo, Diogo Carlos, Carlos, Carlos
6 35 Esses grupamentos são chamados de combinações completas (ou com repetição) dos 5 meninos tomados 3 a 3. Note que o que distingue as diferentes distribuições é o número de bolas que cada aluno recebe. Portanto, o número de possibilidades é igual ao número de listas (x 1,x 2,x 3,x 4,x 5 ) de números inteiros não negativos (representando o número de objetos dados a Alfredo, Bernardo, Carlos, Diogo e Eduardo, respectivamente) que satisfazem a equação x 1 +x 2 +x 3 +x 4 +x 5 = 3. Neste caso simples, podemos resolver o problema separando a contagem em casos. A primeira possibilidade é a de que haja três premiados, cada um ganhando uma bola. Como vimos acima, isto pode ser feito de C5 3 = 10 modos. A segunda possibilidade é de que haja dois premiados, um ganhando 1 bola e outro 2 bolas. O primeiro menino pode ser escolhido de 5 modos, e o segundo, de 4; logo, há 4 5 = 20 maneiras de distribuir as bolas para dois dos meninos. Finalmente, as bolas podem ir todas para um só menino, que pode ser escolhido de 5 modos. Portanto, o número total de possibilidades é = 35. No entanto, dividir a contagem em casos, como fizemos acima, não vai ser prático caso o número de bolas e meninos seja maior. Para contar de modo eficiente o número de distribuições, vamos recorrer a um truque, que nos permite transformar este problema em outro mais simples. Para formar as diferentes distribuições, colocamos as bolas em fila e as separamos em cinco lotes (correspondentes a cada um dos meninos), através de traços verticais. É claro que, neste caso, alguns desses lotes estarão vazios. Vejamos alguns exemplos: corresponde a dar 1 bola para Alfredo, para Carlos e para Diogo, enquanto Bernardo e Eduardo não ganham bolas corresponde a dar 2 bolas para Carlos e 1 para Eduardo, enquanto Alfredo, Bernardo e Carlos não ganham bolas. Note que há uma correspondência perfeita entre as possíveis distribuições e as listas formadas por 3 bolas e 4 traços. Mas estas últimas
7 36 CAP. 4: MAIS PERMUTAÇÕES E COMBINAÇÕES nós já sabemos contar! Basta escolher 3 das 7 posições para colocar as bolas, o que pode ser feito de C7 3 = 35 maneiras, como encontramos acima. Naturalmente, podemos aplicar esta solução para o problema geral de contar o número de maneiras de distribuir p objetos para n pessoas (ou seja, de calcular o número de soluções inteiras e não negativas de x 1 + x x n = p, ou ainda, de calcular o número CRn p de combinações completas de n elementos tomados p a p). Temos p bolas, que devem ser separadas por n 1 tracinhos. Ou seja, precisamos escolher p das n+p 1 posições para as bolas. A resposta, portanto, é CRn p = C p n+p 1. Exercícios 1) De quantos modos podemos formar uma roda com 5 meninos e 5 meninas de modo que crianças de mesmo sexo não fiquem juntas? 2) De quantos modos podemos formar uma roda de ciranda com 6 crianças, de modo que duas delas, Vera e Isadora, não fiquem juntas? 3) De quantos modos é possível dividir 15 atletas em três times de 5 atletas, denominados Esporte, Tupi e Minas? 4) De quantos modos é possível dividir 15 atletas em três times de 5 atletas? 5) De quantos modos é possível dividir 20 objetos em 4 grupos de 3 e 2 grupos de 4? 6) Um campeonato é disputado por 12 clubes em rodadas de 6 jogos cada. De quantos modos é possível selecionar os jogos da primeira rodada? 7) Quantos são os anagramas da palavra ESTRELADA?
8 37 8) Quantos são os números naturais de 7 algarismos nos quais o algarismo 4 figura exatamente 3 vezes e o algarismo 8 exatamente 2 vezes? 9) Quantos são os subconjuntos de {a 1,a 2,...,a n }, com p elementos, nos quais: (a) a 1 figura? (b) a 1 não figura? (c) a 1 e a 2 figuram? (d) pelo menos um dos elementos a 1, a 2 figura? (e) exatamente um dos elementos a 1, a 2 figura? 10) Considere um conjunto C de 20 pontos do espaço que tem um subconjunto C 1 formado por 8 pontos coplanares. Sabe-se que toda vez que 4 pontos dec são coplanares, então, eles são pontos dec 1. Quantos são os planos que contêm pelo menos três pontos de C? 11) Quantos são os anagramas da palavra PARAGUAIO que não possuem consoantes juntas? 12) De quantos modos podemos selecionar p elementos do conjunto {1, 2,..., n} sem selecionar dois números consecutivos? 13) Depois de ter dado um curso, um professor resolve se despedir de seus 7 alunos oferecendo, durante 7 dias consecutivos, 7 jantares para 3 alunos cada, de modo que o mesmo par de alunos não compareça a mais de um jantar. (a) Prove que cada aluno deve comparecer a exatamente 3 jantares. (b) De quantos modos o professor pode fazer os convites para os jantares?
9 38 CAP. 4: MAIS PERMUTAÇÕES E COMBINAÇÕES 14) Em uma escola, um certo número de professores se distribuem em 8 bancas examinadoras de modo que cada professor participa de exatamente duas bancas e cada duas bancas têm exatamente um professor em comum. (a) Quantos são os professores? (b) Quantos professores há em cada banca? 15) Quantas são as soluções inteiras e positivas de x + y + z = 7? 16) Quantas são as soluções inteiras e não negativas da desigualdade x+y +z 6? 17) Uma indústria fabrica 5 tipos de balas, que são vendidas em caixas de 20 balas, de um só tipo ou sortidas. Quantos tipos diferentes de caixa podem ser fabricados?
Combinatória II Continuação
12 Combinatória II Continuação Sumário 12.1 Introdução....................... 2 12.2 Permutações e Combinações............. 2 1 Unidade 12 Introdução 12.1 Introdução Nesta unidade, são estudadas as permutações
MA12 - Unidade 12. Paulo Cezar Pinto Carvalho. 28 de Abril de 2013 PROFMAT - SBM
MA12 - Unidade 12 Permutações e Combinações Paulo Cezar Pinto Carvalho PROFMAT - SBM 28 de Abril de 2013 Permutações Simples De quantos modos podemos ordenar em fila n objetos distintos? A escolha do objeto
Permutacões com elementos repetidos
Permutacões com elementos repetidos Lembre-se de que permutar um grupo de elementos consiste em colocá-los em uma determinada ordem. E lembre-se de que, quando n é um inteiro não negativo, a quantidade
Continuando com. O título desta aula já indica que continuaremos. Nossa aula. Permutações com repetição
A UA UL LA Continuando com permutações Introdução Nossa aula O título desta aula já indica que continuaremos o assunto da Aula 49, em que vimos vários exemplos de permutações denominadas permutações simples
> Princípios de Contagem e Enumeração Computacional 0/19
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações Combinações > Princípios de Contagem e Enumeração Computacional 0/19 Permutações Utilizamos P(n, r) para denotar o número de sequências
Análise Combinatória - 2/6/2018. Prof. Walter Tadeu
Análise Combinatória - 2/6/2018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br PRINCÍPIO FUNDAMENTAL DA CONTAGEM(PFC) OU PRINCÍPIO MULTIPLICATIVO Constitui a ferramenta básica para os problemas que
Combinatória I. Sumário Introdução Princípios Básicos... 2
11 Combinatória I Sumário 11.1 Introdução....................... 2 11.2 Princípios Básicos................... 2 1 Unidade 11 Introdução 11.1 Introdução Combinatória é um vasto e importante campo da matemática
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
Análise Combinatória AULA 1. Métodos Simples de Contagem
Análise Combinatória AULA 1 Métodos Simples de Contagem Tales Augusto de Almeida 1. Introdução A primeira ideia que surge no imaginário de qualquer estudante quando ele ouve a palavra contagem seria exatamente
MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES e a t M Arranjo Combinação e Permutação PÁGINA 33 01 O número de interruptores será igual ao número de combinações de 6 elementos (lâmpadas) tomados de 3 em 3.
Material Teórico - Módulo de Métodos Sofisticados de Contagem. Permutações circulares. Segundo Ano do Ensino Médio
Material Teórico - Módulo de Métodos Sofisticados de Contagem Permutações circulares Segundo Ano do Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Permutações Circulares
Encontro 5: Permutação e resolução de exercícios de contagem
Encontro 5: Permutação e resolução de exercícios de contagem Relembrando: Princípio Aditivo: Sejam e conjuntos disjuntos, isto é, conjuntos com interseção vazia. Se possui m elementos e se possui n elementos,
Soluções dos Problemas do Capítulo 6
Soluções do Capítulo 6 171 Soluções dos Problemas do Capítulo 6 Seção 1 1. A resposta da primeira questão pode ser marcada de 5 modos diferentes. A da segunda, também de 5 modos, etc. A resposta é 5 10.
Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4
Problemas dos Círculos Matemáticos Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Quantos triângulos existem na figura abaixo?
Oi, Ficou curioso? Então conheça nosso universo.
Oi, Somos do curso de Matemática da Universidade Franciscana, e esse ebook é um produto exclusivo criado pra você. Nele, você pode ter um gostinho de como é uma das primeiras aulas do seu futuro curso.
Ensino Médio. Fatorial
As Permutações Comentários: As primeiras atividades matemáticas da humanidade estavam ligadas à contagem de objetos de um conjunto, enumerando seus elementos. As civilizações antigas, como egípcia, babilônia,
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Métodos de Contagem e Probabilidade
page 1 Métodos de Contagem e Probabilidade Paulo Cezar Pinto Carvalho page 2 Sobre o autor. Paulo Cezar Pinto Carvalho é formado em Engenharia pelo Instituto Militar de Engenharia, Mestre em Estatística
Explorando os métodos de contagem no jogo senha
Explorando os métodos de contagem no jogo senha Trabalho apresentado como atividade do PIPE na disciplina Matemática Finita do Curso de Matemática no 1º semestre de 2009 Lucas Fernandes Pinheiro Maria
Material Teórico - Módulo de Métodos Sofisticados de Contagem. Permutações circulares. Segundo Ano do Ensino Médio. Prof. Fabrício Siqueira Benevides
Material Teórico - Módulo de Métodos Sofisticados de Contagem Permutações circulares Segundo Ano do Ensino Médio Prof. Fabrício Siqueira Benevides Permutações Circulares Estudamos anteriormente que, dado
Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.
Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 19 de Setembro de 2014
Sumário 1 Análise Combinatória 1 1.1 Questões de Vestibular.............................. 1 1.1.1 IME-RJ, Adaptada............................ 1 1.1.2 ESPM-SP................................. 2 1.1.3 Mackenzie-SP,
Módulo de Métodos Sofisticados de Contagens. Permutação Circular. Segundo ano
Módulo de Métodos Sofisticados de Contagens Permutação Circular Segundo ano 1 Exercícios Introdutórios Exercício 1. Dois colares de pérolas serão considerados iguais se um deles puder ser obtido através
Aula 2 4º Encontro. Aplicações do Princípio Multiplicativo Combinações 08/10/2016
Aula 2 4º Encontro Aplicações do Princípio Multiplicativo Combinações 08/10/2016 1. Sem usar o algarismo 0, Carolina escreveu todos os números de três algarismos diferentes nos quais o algarismo do meio
Exercícios sobre Métodos de Contagem
Exercícios sobre Métodos de Contagem 1) Um grupo de 4 alunos (Alice, Bernardo, Carolina e Daniel) tem que escolher um líder e um vice-líder para um debate. (a) Faça uma lista de todas as possíveis escolhas
Solução da prova da 1.ª Fase. b) Queremos os números interessantes do tipo ABC6. Isso implica que A x B x C = 6. Temos dois casos a considerar:
Solução da prova da 1.ª Fase Nível 3 Ensino Médio 1. a Fase 15 de setembro de 018 QUESTÃO 1 a) Para que o número 14A8 seja interessante devemos ter: 1 x 4 x A = 8; logo, A =. b) Queremos os números interessantes
Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Soluções do Exercícios Adicionais Paulo Cezar Pinto Carvalho 1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC b) O líder pode ser escolhido de modos; uma vez escolhido o líder,
8 ANÁLISE COMBINATÓRIA E
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES EXEMPLO QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos
Análise Combinatória
Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.
Permutações Circulares
Permutações Circulares Permutações Circulares Exemplo 20: De quantos modos 5 crianças podemformarumarodadeciranda? Exemplo 21: De quantos modos podemos formar uma roda de ciranda com 7 crianças, de modo
Matemática E Extensivo V. 3
Matemática E Extensivo V. Exercícios 01) 10 anagramas. POEMA 5 letras 5! 10. 0) 60 anagramas. Vogais: e, i, o omeçando com e : e _ 10 omeçando com i : i _ 10 omeçando com o : o _ 10 Logo 10 60. 4! 4 (permutação
(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?
Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar
Análise Combinatória - ENEM
Prof Rômulo Garcia https://wwwfacebookcom/matematicaenem Análise Combinatória - ENEM 1)Quantos são os gabaritos possíveis de um teste de 10 questões de múltipla escolha, com 5 opções por questão? Podemos
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade Exemplo: NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES -Roteiro do aluno- QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8
a) Em quantas ordem quatro pessoas podem senta num sofá de 4 lugares?
ANÁLISE COMBINATÓRIA 1. PRINCIPIO FUNDAMENTAL DA CONTAGEM A análise combinatória é um ramo da matemática que tem por objetivo resolver problemas que consistem, basicamente em escolher e agrupar os elementos
Considere a figura, em que estão indicadas as possíveis localizações do cliente.
36. [C] Considere a figura, em que estão indicadas as possíveis localizações do cliente. A resposta é 12. 37. [C] Como cada tarefa pode ser distribuída de três modos distintos, podemos concluir, pelo Princípio
CAPÍTULO 2 ANÁLISE COMBINATÓRIA
CAPÍTULO 2 ANÁLISE COMBINATÓRIA A análise combinatória é um ramo da matemática, que tem por fim estudar as propriedades dos agrupamentos que podemos formar, segundo certas leis, com os elementos de um
Probabilidade e Estatística Preparação para P1
robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$
Sumário. 2 Índice Remissivo 9
i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................
Solução da prova da 2.ª Fase
Solução da prova da.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental. a Fase de setembro de 08 QUESTÃO a) As páginas pares do álbum têm os números,,,..., 0 num total de 0 = 0 páginas e as páginas ímpares
Módulo de Métodos Sofisticados de Contagens. Combinação completa. Segundo ano
Módulo de Métodos Sofisticados de Contagens Combinação completa Segundo ano Combinações Completas 1 Exercícios Introdutórios Exercício 1. As triplas (x, y, z) = (2, 2, 0), (1, 2, 1) e (0, 1, 3) são soluções
Arranjos, Permutações e Combinações
Arranjos, Permutações e Combinações AULA META Definir e diferenciar a noção de arranjo, permutação e combinação. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir arranjo, permutação e
Cálculo Combinatório
Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014
Sumário 1 Análise Combinatória 1 1.1 Princípio Multiplicativo.............................. 1 1.1.1 Exercícios................................. 4 1.2 Permutação Simples................................
Combinatória. Samuel Barbosa. 28 de março de 2006
Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
Permutações simples. Permutações circulares
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de breu e Souza itor Emanuel Gulisz nálise Combinatória: Permutações e Combinações ntes de
Soluções da Lista de Exercícios Unidade 15
Soluções da Lista de Exercícios Unidade 15 1. Um armário ficará aberto se ele for mexido um número ímpar de vezes. Por outro lado, o armário de ordem k é mexido pelas pessoas cujos números são divisores
Matemática Discreta. Aula 01: Análise Combinatória I. Tópico 02: Arranjos com e sem repetição. Solução. Arranjos com Repetição.
Aula 01: Análise Combinatória I Tópico 02: Arranjos com e sem repetição Agora que demos o pontapé inicial aprendendo os Princípios Fundamentais de Contagem com e sem repetições, vamos ver que o restante
QUESTÃO 3 (ALTERNATIVA A) Como já foram colocados 1500 baldes na caixa, faltam 500 baldes para enchê-la. O enunciado diz que 2000
1 QUESTÃO 1 Como Mário correu 8 = 1 6 + 2 km em sentido horário e a pista tem 6 km, então ele deu 1 volta completa e ficou a 2 km do ponto de partida no sentido horário. Do mesmo modo, João correu 15 =
Aula 6 Revisão de análise combinatória
Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FIHA de AVALIAÇÃO de MATEMÁTIA A 1.º Ano Versão 3 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Estatística Básica Capítulo 2 Ayrton Barboni. Anotamos n(x) o número de elementos do conjunto X. Vejamos algumas situações:
2. TÉCNICAS DE CONTAGEM Capítulo 2 Para resolver problemas de probabilidades, que serão estudados adiante, é necessário, em alguns casos, contar os elementos de um conjunto finito. 2.1. REGRAS DE CONTAGEM
Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C
Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
= 24. 2) Algarismos = {0,1,2,3,4,5,6,7,8,9} = 10 possibilidades (i) O número possui o seguinte formato: 1ªpos. 2ªpos. 3ªpos.
Lista 2 de Matemática Combinatória (Combinações e Permutações) Gabarito Monitor: Bruno Mayerle Leite 1) Cores possíveis: Azul, Branco e Cinza. Para colorirmos uma primeira listra temos 3 possibilidades
MA21: Resolução de Problemas - segunda prova - gabarito. Problema 1 (Olimpíada turca de 1996; 2 pontos) Considere o polinomio:
MA21: Resolução de Problemas - segunda prova - gabarito Problema 1 (Olimpíada turca de 1996; 2 pontos) Considere o polinomio: p(x) (1 + x 3 ) (1 + 2x 9 ) (1 + 3x 27 )... (1 + nx 3n )... (1 + 1996 x 31996
Centro Educacional ETIP
Centro Educacional ETIP Trabalho Trimestral de Matemática 2 Trimestre/2014 Data: 08/08/2014 Professor: Nota: Valor : [0,0 2,0] Nome do (a) aluno (a): Nº Turma: 3 M CONTEÚDO Análise Combinatória, Princípio
Contagem 2: permutação e resolução de exercícios de contagem. - Assuntos a serem abordados: Contagem permutação e resolução de exercícios de contagem
Contagem 2: permutação e resolução de exercícios de contagem - Assuntos a serem abordados: Contagem permutação e resolução de exercícios de contagem - Textos: Apresentado neste roteiro da aula Apostila
10 opções. 10 opções. 9 opções. 22 opções. 23 opções
Contagem Princípio Fundamental de Contagem Se algum procedimento pode ser realizado de n 1 maneiras diferentes; se, seguindo este, um segundo procedimento pode ser realizado de n 2 maneiras diferentes;
Roda Numérica. Equipe:
Roda Numérica Equipe: Aniura Milanés Barrientos Carmen Rosa Giraldo Vergara Leandro Augusto Rodrigues Araújo Nora Olinda Cabrera Zúñiga Taciany da Silva Pereira Universidade Federal de Minas Gerais Descrição
Análise Combinátorio. 1 - Introdução. 2 - Fatorial
Análise Combinátorio 1 - Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática
Lista de exercícios 02. Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 02 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes
Material Teórico - Módulo de Princípios Básicos de Contagem. O fatorial de um número e as permutações simples. Segundo Ano do Ensino Médio
Material Teórico - Módulo de Princípios Básicos de Contagem O fatorial de um número e as permutações simples Segundo Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Análise Combinatória e Probabilidade
Análise Combinatória e Probabilidade PERMUTAÇÕES SIMPLES -Roteiro do professor- Exemplo: QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto A = {7, 8,
RESPOSTA Princípio Fundamental da contagem
RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Alguns Conceitos Básicos de Contagem As ideias de contagem se relacionam com
Princípio da Multiplicação Gerando todas as palavras de um alfabeto. > Princípios de Contagem e Enumeração Computacional 0/18
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Princípio da Multiplicação Gerando todas as palavras de um alfabeto Permutações > Princípios de Contagem e Enumeração Computacional 0/18 Objetivos
Centro Educacional ETIP
Centro Educacional ETIP Trabalho Trimestral de Matemática 2 Trimestre/2014 Data: 08/08/2014 Professor: Nota: Valor : [0,0 2,0] Nome do (a) aluno (a): Nº Turma: 2 M CONTEÚDO Análise Combinatória, Princípio
Lista - Matemática. w: e: Princípio Multiplicativo. Princípio Multiplicativo e permutações.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Princípio Multiplicativo e permutações. 1. Dispondo das letras A, B e C e dos algarismos 1, 2, 3, 4 e 5, quantas placas de automóveis
COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA
Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício
Matemática E Extensivo v. 3
Matemática xtensivo v. xercícios 0) Octógno tem 0 e decágono tem. Número de vértices de um octógono: 8 vértices. D = nn ( ) D = 88 ( ) 8. 0 = = = 0 Número de vértices de um decágono: 0 vértices. D = nn
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
PROBABILIDADE. Prof. Patricia Caldana
PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,
Física do Calor - 22ª Aula. Prof. Alvaro Vannucci
Física do Calor - 22ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair com suas
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De
Matemática 4 Módulo 9
Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n
Interbits SuperPro Web
Ita analise combinatoria 1. (Ita 2016) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor
Soluções da Lista de Exercícios Unidade 20
Soluções da Lista de Exercícios Unidade 0. As peças do dominó são formadas por dois, não necessariamente distintos, dos números 0,,, 3, 4, 5 e 6. Há CR 7 C 8 8 peças e há C 8 modos de selecionar duas peças
SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:
N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
ESTUDO DA ANÁLISE COMBINATÓRIA
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA V Capítulo 0 Conhecimentos Numéricos Análise Combinatória Parte I Princípios de Contagem E) Esta quantidade será calculada escolhendo as posições para colocar as consoantes.
Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina
Análise Combinatória Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 18 de abril de 2018 Londrina 1 / 11 Análise Combinatória A Análise Combinatória é a parte
CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses
CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,
Material Teórico - Módulo de Princípios Básicos de Contagem. Permutações com elementos repetidos. Segundo Ano do Ensino Médio
Material Teórico - Módulo de Princípios Básicos de Contagem Permutações com elementos repetidos Segundo Ano do Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Permutações
Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza
Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez
ARRANJO OU COMBINAÇÃO?
ARRANJO OU COMBINAÇÃO? As principais ferramentas da Análise Combinatória são a Permutação, o Arranjo e a Combinação, mas muitos estudantes se confundem na hora de decidir qual delas utilizar para resolver
Problemas de Teoria dos Números e Contagem - Aula 09
Problemas de Teoria dos Números e Contagem - Aula 09 Após os conceitos de números inteiros que foram trabalhados até este ponto, como divisores, múltiplos e outros, estes podem ser utilizados em problemas
