INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
|
|
|
- João Gabriel Fagundes Cavalheiro
- 10 Há anos
- Visualizações:
Transcrição
1 INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/52
2 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias 7.2) Semigrupos 7.3) Produtos e Quocientes de Semigrupos 7.4) Grupos 7.5) Produtos e Quocientes de Grupos Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.2/52
3 ÁLGEBRA ABSTRATA Noção familiar: Álgebra Elementar. Exemplo: adição e multiplicação sobre os inteiros. Essência: operação binária sobre um conjunto de elementos. Abstração: recurso poderoso. Consiste em isolar a essência do problema. Conexão entre problemas aparentemente não relacionados. Problemas complexos viram simples casos particulares de esquema mais geral. Uma vez identificada a classe de um problema, pode-se aproveitar resultados prontos. Ponto de vista de modelagem em Ciência da Computação: interessa justamente mais o esquema geral do que os detalhes abstração permite focar apenas no que interessa Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.3/52
4 OPERAÇÕES BINÁRIAS Precisamos de uma definição precisa desta idéia familiar. Operação Binária sobre um conjunto A: função f : A A A definida para todo par ordenado de elementos de A apenas um elemento de A é atribuído a cada par de A A Ou seja: regra que atribui um único elemento de A a cada par ordenado de elementos de A. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.4/52
5 OPERAÇÕES BINÁRIAS Notação: como se trata de uma função, o normal seria denotar o elemento atribuído a (a, b) por (a, b) mas o usual é a b Importante: lembrar que a b A também se diz que A é fechado sob a operação Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.5/52
6 OPERAÇÕES BINÁRIAS Exemplo 1(/6): Seja A = Z. Defina a b como a + b. Então é uma operação binária sobre Z Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.6/52
7 OPERAÇÕES BINÁRIAS Exemplo 2(/6): Seja A = R. Defina a b como a/b. Então não é uma operação binária pois não é definida para todo par ordenado de A A por exemplo, 3 0 não é definida Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.7/52
8 OPERAÇÕES BINÁRIAS Exemplo 3(/6): Seja A = Z +. Defina a b como a b. Então não é uma operação binária: não atribui um elemento de A para todo par de A A por exemplo, 2 5 / A Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.8/52
9 OPERAÇÕES BINÁRIAS Exemplo 4(/6): Seja A = Z. Defina a b como um número menor do que a e do que b. Então não é uma operação binária: não atribui um elemento único de A para todo par de A A por exemplo, 8 6 poderia ser 5, 4, 3, 2, 1, etc. Neste caso, seria uma relação de A A para A mas não uma função Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.9/52
10 OPERAÇÕES BINÁRIAS Exemplo 5(/6): Seja A = Z. Defina a b como max{a, b}. Então é uma operação binária: 2 4 = 4 3 ( 5) = 3 Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.10/52
11 OPERAÇÕES BINÁRIAS Exemplo 6(/6): Seja A = P (S), para algum conjunto S. Sejam V e W dois subconjuntos de S. V W definida como V W é uma operação binária sobre A. Mas: V W definida como V W também. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.11/52
12 OPERAÇÕES BINÁRIAS Note que é possível definir muitas operações binárias sobre o mesmo conjunto. Exemplo: Seja M o conjunto de todas as matrizes Booleanas. São operações binárias: A B definido como A B A B definido como A B Exemplo: Seja L um reticulado. São operações binárias sobre L: a b definido como a b ( GLB de a e b) a b definido como a b ( LUB de a e b) Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.12/52
13 OPERAÇÕES BINÁRIAS & TABELAS Pode-se definir uma operação binária sobre um conjunto A = {a 1, a 2,..., a n } por meio de uma tabela: a 1 a 2... a j... a n a 1 a 2... a i... a i a j a n Elemento na posição i, j denota a i a j Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.13/52
14 OPERAÇÕES BINÁRIAS & TABELAS Exemplo: Operações e sobre A = {0, 1}: Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.14/52
15 NÚMERO DE OPERAÇÕES BINÁRIAS Seja A = {a, b}. O número de operações binárias que podem ser definidas sobre A é: toda operação binária sobre A pode ser descrita pela tabela: a b a b como cada espaço vazio pode ser preenchido com a ou b: há = 2 4 = 16 modos de completar a tabela Logo, existem 16 operações binárias possíveis sobre A. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.15/52
16 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Prop1: Uma operação binária é comutativa se: a b = b a a, b A Exemplo: a + b sobre A = Z é comutativa. Exemplo: a b sobre A = Z não é comutativa, pois: Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.16/52
17 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Uma operação binária definida por uma tabela é simétrica se e somente se a tabela é simétrica. Exemplo: Sejam as operações binárias sobre A: a b c d a a c b d b b c b a c c d b c d a a b b a b c d a a c b d b c d b a c b b a c d d a c d Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.17/52
18 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Prop2: Uma operação binária é associativa se: a (b c) = (a b) c a, b, c A Exemplo: a + b sobre A = Z é associativa. Exemplo: a b sobre A = Z não é associativa, pois: 2 (3 5) (2 3) 5 Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.18/52
19 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Exemplo: A operação binária a b = a b, sobre um reticulado L, é comutativa e associativa. Também é idempotente: a a = a. Nota: o converso disto é parcialmente verdadeiro... Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.19/52
20 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Exemplo: Seja uma operação binária sobre A que satisfaz: a = a a a b = b a a (b c) = (a b) c (idempotência) (comutatividade) (associatividade) E seja uma relação sobre A definida por: a b se e somente se a = a b Então, mostre que: 1) (A, ) é um poset 2) GLB(a, b) = a b, a, b A Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.20/52
21 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Exemplo (cont.): 1) Mostrando que (A, ) é um poset: reflexiva: como a = a a, temos que a a, a A antissimétrica: se a b e b a, então: a = a b = b a = b transitiva: se a b e b c, então: a = a b = a (b c) = (a b) c = a c Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.21/52
22 PROPRIEDADES DAS OPERAÇÕES BINÁRIAS Exemplo (cont.): 2) Mostrando que a b = a b: temos que: a b = a (b b) = (a b) b de modo que: a b b similarmente: a b a conclusão: a b é uma cota inferior para a e b agora, se c a e c b: c = c a e c = c b portanto: c = (c a) b = c (a b) de modo que: c a b conclusão: a b é a maior cota superior de a e b. Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.22/52
II. DEFINIÇÕES INICIAIS 1
-1- ELPO: Definições Iniciais [MSL] II. DEFINIÇÕES INICIAIS 1 No que se segue, U é um conjunto qualquer e X, Y,... são os subconjuntos de U. Ex.: U é um quadrado e X, Y e Z são três círculos congruentes
MÉTODOS DISCRETOS EM TELEMÁTICA
1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/23 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias
Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira
Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204
Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos
Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola
Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números
AULA 6 LÓGICA DOS CONJUNTOS
Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/51 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente
ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}.
ESPAÇOS QUOCIENTES DANIEL SMANIA 1. Relações de equivalência Seja uma relação de equivalência sobre um conjunto X, isto é, uma rel ção binária que satisfaz as seguintes propriedades i. (Prop. Reflexiva.)
RELAÇÕES BINÁRIAS Produto Cartesiano A X B
RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os
MD Teoria dos Conjuntos 1
Teoria dos Conjuntos Renato Martins Assunção [email protected] Antonio Alfredo Ferreira Loureiro [email protected] MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um
Conceitos Fundamentais
Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/31 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
INE5403 - Fundamentos de Matemática Discreta para a Computação
INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares
FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da
FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto
Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:
Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:
Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)
Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2015 Roteiro 1 Morfologia Matemática Fundamentos Matemáticos Operadores
Sistemas de Numerações.
Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais
AS ÁLGEBRAS DOS OPERADORES DE CONSEQÜÊNCIA
AS ÁLGEBRAS DOS OPERADORES DE CONSEQÜÊNCIA Mauri Cunha do NASCIMENTO 1 Hércules de Araújo FEITOSA 1 RESUMO: Neste trabalho, introduzimos as TK-álgebras associadas com os operadores de conseqüência de Tarski,
3 Sistemas de Numeração:
3 Sistemas de Numeração: Os computadores eletrônicos têm como base para seu funcionamento a utilização de eletricidade. Diferente de outras máquinas que a presença ou ausência de eletricidade apenas significam
SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com
- Aula 3 - ÁLGEBRA BOOLEANA 1. Introdução O ponto de partida para o projeto sistemático de sistemas de processamento digital é a chamada Álgebra de Boole, trabalho de um matemático inglês que, em um livro
Programa de Formação Contínua em Matemática para Professores do 1.º e 2.º Ciclos do Ensino Básico. I. Conjuntos
I. Conjuntos 1. Introdução e notações 1.1. Relação de pertença 1.2. Modos de representar um conjunto 1.3. Classificação de conjuntos quanto ao número de elementos 1.4. Noção de correspondência 2. Relações
ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.
ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional
Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013
Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho [email protected] Álgebra de Boole Binária A Álgebra de Boole binária através do recurso à utiliação
ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores
ARQUITETURA DE COMPUTADORES Sistemas de Numeração 1 Sistemas de Numeração e Conversão de Base Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,3,4,5,6,7,8 e 9. Números superiores a 9; convencionamos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/14 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/42 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias
QUESTÕES COMENTADAS E RESOLVIDAS
LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades
ESTRUTURAS DE DADOS II MSc. Daniele Carvalho Oliveira
ESTRUTURAS DE DADOS II MSc. Daniele Carvalho Oliveira ÁRVORES ED2: MSc. Daniele Oliveira 2 Introdução Filas, pilhas» Estruturas Lineares Um dos exemplos mais significativos de estruturas não-lineares são
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em
Notas de Aula - Álgebra de Boole Parte 1
Universidade de Brasília Departamento de Engenharia Elétrica Sistemas Digitais 1 Prof. Dr. Alexandre Romariz Revisado em 27/4/06 Notas de Aula - Álgebra de Boole Parte 1 1 Introdução Fundamentos, Teoremas
Disciplina: Introdução à Álgebra Linear
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa
Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES
FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça
INE Fundamentos de Matemática Discreta para a Computação
INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de
Outras Realidades. Ou: Quão bem conhecemos as nossas operações elementares?
Outras Realidades Ou: Quão bem conhecemos as nossas operações elementares? 1 Operações Binárias Todos conhecem + - x Mas o que é uma OPERAÇÃO? 2 Operações Binárias Dado um conjunto A define-se uma operação
ÁLGEBRA. Isidorio Rodrigues Queiroz. Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO
VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA ÁLGEBRA Conteudista Isidorio Rodrigues Queiroz Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE
Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h
Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Álgebra de Boole A Álgebra de Boole é empregada no projeto de circuitos digitais, para: análise - é um
Raciocínio Lógico Matemático Caderno 1
Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...
OTIMIZAÇÃO VETORIAL. Formulação do Problema
OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis
FUNÇÃO REAL DE UMA VARIÁVEL REAL
Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
Autómatos Finitos Determinísticos
Ficha 2 Autómatos Finitos Determinísticos 2.1 Introdução Se olharmos, de forma simplificada, para um computador encontramos três componentes principais: a) A unidade de processamento central b) As unidades
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO MATERIAL EXTRAÍDO DOS LIVROS-TEXTOS (KOLMAN/ROSEN) UFSC - CTC - INE UFSC/CTC/INE p. 1 11 - ESTRUTURAS ALGÉBRICAS 11.1) Operações Binárias 11.2)
Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade
Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos
ficha 3 espaços lineares
Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo
SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com
- Aula 1 - SISTEMA DE NUMERAÇÃO BINÁRIA E DECIMAL Todos os computadores são formados por circuitos digitais, onde as informações e os dados são codificados com dois níveis de tensão, pelo que o seu sistema
Somatórias e produtórias
Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +
Bacharelado em Ciência da Computação Matemática Discreta
Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 [email protected] (IFMG) Matemática
Aula 5 - Matemática (Gestão e Marketing)
ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado
Lista de Exercícios 4: Soluções Sequências e Indução Matemática
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,
Banco de Dados. Álgebra Relacional. Prof. Enzo Seraphim
Banco de Dados Álgebra Relacional Prof. Enzo Seraphim Introdução A álgebra relacional é composta por um conjunto de operações utilizadas para manipular Relações como um todo Toda Operação Relacional é
Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.
Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio
Representação de Conhecimento. Lógica Proposicional
Representação de Conhecimento Lógica Proposicional Representação de conhecimento O que éconhecimento? O que érepresentar? Representação mental de bola Representação mental de solidariedade Símbolo como
Universidade Federal de Mato Grosso do Sul Faculdade de Computação Disciplina de Verão: Algoritmos e Programação II
Universidade Federal de Mato Grosso do Sul Faculdade de Computação Disciplina de Verão: Algoritmos e Programação II Professores: Liana Duenha 10 de março de 2014 Professores: Liana Duenha () Universidade
Funções Lógicas e Portas Lógicas
Funções Lógicas e Portas Lógicas Nesta apresentação será fornecida uma introdução ao sistema matemático de análise de circuitos lógicos, conhecido como Álgebra de oole Serão vistos os blocos básicos e
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Capítulo 7. Topologia Digital. 7.1 Conexidade
Capítulo 7 Topologia Digital A Topologia Digital estuda a aplicação das noções definidas em Topologia sobre imagens binárias. Neste capítulo vamos introduzir algumas noções básicas de Topologia Digital,
Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos
Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
Introdução. de Eletrônica Digital (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. Carga Horária: 60 horas
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Conceitos Básicos B de Eletrônica Digital (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan
Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com
Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas
Linguagens Formais e Autômatos Alfabetos, Palavras, Linguagens e Gramáticas Cristiano Lehrer, M.Sc. Introdução (1/3) A Teoria das Linguagens Formais foi originariamente desenvolvida na década de 1950 com
Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft
Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística
1. Sistemas de numeração
1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,
CT-234. Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches CT-234 4) Árvores balanceadas AVL, Rubro-Negras, B-Trees Operações em árvores binárias de busca
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:
11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08
INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos
Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros
Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos
Aula 03 Custos de um algoritmo e funções de complexidade
BC1424 Algoritmos e Estruturas de Dados I Aula 03 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco [email protected] 1Q-2015 1 Custo de um algoritmo e funções de complexidade
Aula 2 Modelagem de Sistemas. Introdução Modelo de Base Lógica de 1ª Ordem. Concorrentes
Aula 2 Modelagem de Sistemas Introdução Modelo de Base Lógica de 1ª Ordem Concorrentes 1 Aula 2 Modelagem de Sistemas Introdução Modelo de Base Lógica de 1ª Ordem Concorrentes 2 Constituição dos Sistemas
Capítulo 1. x > y ou x < y ou x = y
Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
IME, UFF Julho de 2013
IME, UFF Julho de 2013 Sumário. Problemas n, ω, 2ω, Z, ω 2, Q, R. David (1862-1943) Longe, muito longe, em um ponto infinitamente distante no universo, existe um lugar onde as pessoas convivem com o infinito.
Parte 2. Polinômios sobre domínios e corpos
Parte Polinômios sobre domínios e corpos Pressupomos que o estudante tenha familiaridade com os anéis comutativos com unidade, em particular com domínios e corpos. Alguns exemplos importantes são Z Q R
Algoritmos e Linguagens de Programação. Álgebra Booleana. Faculdade Pitágoras Prof. Edwar Saliba Júnior Abril de 2007. Unidade 02-001 Álgebra Booleana
Álgebra Booleana Faculdade Pitágoras Prof. Edwar Saliba Júnior Abril de 2007 1 Histórico A álgebra booleana, também conhecida como álgebra de boole, foi criada pelo matemático inglês George Boole (1815-1864)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos
Processamento e Otimização de Consultas
Introdução Processamento e Banco de Dados II Prof. Guilherme Tavares de Assis Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM 1 Processamento
PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano
COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 7º ano PROFESSORAS: SANDRA MARA
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I
1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária
Organização de Computadores Capítulo 4 Cálculos Binários e Conversão entre Bases Aritmética Binária Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina e não substitui
PROGRAMAÇÃO EM LINGUAGEM LADDER LINGUAGEM DE RELÉS
1 PROGRAMAÇÃO EM LINGUAGEM LADDER LINGUAGEM DE RELÉS INTRODUÇÃO O processamento interno do CLP é digital e pode-se, assim, aplicar os conceitos de lógica digital para compreen8 der as técnicas e as linguagens
Título: Sistemas Lineares no CAp UFRJ: Interpretações Algébrica e Gráfica
Autor Letícia Guimarães Rangel Co-autor(es): Fernando Celso Villar Marinho Lílian Káram Parente Cury Spiller Rita Maria Cardoso Meirelles Tipo de Pesquisa Ensino Médio Números e Operações Componente Curricular
Introdução à Álgebra Max-Plus III Colóquio de Matemática da Região Sul
A. T. Baraviera e Flávia M. Branco Introdução à Álgebra Max-Plus III Colóquio de Matemática da Região Sul Florianópolis, SC 2014 A. T. Baraviera e Flávia M. Branco Introdução à Álgebra Max-Plus III Colóquio
Universidade Federal do Vale do São Francisco. Estruturas de Dados. Professor: Marcelo Santos Linder E-mail: [email protected].
Universidade Federal do Vale do São Francisco Estruturas de Dados Professor: Marcelo Santos Linder E-mail: [email protected] Ementa Alocação dinâmica de memória; Vetores, pilhas, filas, listas:
UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA. Banco de Dados II. Integridade. Carlos Eduardo Portela Serra de Castro
UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA Banco de Dados II Integridade Carlos Eduardo Portela Serra de Castro * Integridade Introdução Restrições de Integridade de Domínio de Relação Asserções Procedimentos-gatilho
MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade
MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha
Complexidade de Algoritmos
Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada
MATERIAL MATEMÁTICA I
MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades
FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}
Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação
Prof. Raul Sidnei Wazlawick UFSC-CTC-INE. Fonte: Análise e Projeto de Sistemas de Informação Orientados a Objetos, 2ª Edição, Elsevier, 2010.
Casos de Uso de Alto Nível Prof. Raul Sidnei Wazlawick UFSC-CTC-INE 2010 Fonte: Análise e Projeto de Sistemas de Informação Orientados a Objetos, 2ª Edição, Elsevier, 2010. Contexto Na fase de concepção
BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. [email protected]
BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 [email protected] Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é
