Tarefa nº 9. (Plano de trabalho nº 4)
|
|
|
- Nathalia Bentes Meneses
- 9 Há anos
- Visualizações:
Transcrição
1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tarefa nº 9 VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO CUBO Pretende-se, com esta actividade, e utilizando o que estudou e trabalhou até aqui (secções no cubo) que parta para a descoberta de novos poliedros. 1. Com o cubo e com o material de que dispõe na sua mesa, substitua cada aresta por um vértice situado no seu ponto médio. Caracterize o novo sólido que obteve. Nota: Se não conseguir descobrir o seu nome utilize o programa Poly no computador. 2. Relacione os volumes do cubo e do sólido obtido. 3. Faça um pequeno relatório da actividade realizada. Na elaboração do seu relatório não deve esquecer, entre outros, os aspectos seguintes: Título Objectivo do trabalho. Material utilizado. Descrição do processo utilizado para a descoberta, das tentativas realizadas e das dificuldades encontradas. Conclusões. Comentários acerca do interesse e gozo suscitados por esta actividade. Clareza e correcção da linguagem utilizada. Identificação do autor do trabalho, da escola, da data, do ano e da turma. PROFESSORA: Rosa Canelas 1
2 Tarefa nº 9 proposta de resolução VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO CUBO Objectivo da tarefa: Utilizando a matéria já estudada até aqui (secções no cubo) descobrir novos poliedros. A tarefa divide-se em duas etapas: o Descobrir o poliedro e caracterizá-lo. o Comparar o volume do poliedro obtido com o do cubo. D 1ª etapa: Com o cubo em acetato e uma caneta apropriada que C tínhamos em cima da mesa, substituímos cada aresta por um vértice situado no seu ponto médio e obtivemos o poliedro da figura, que tem 6 faces quadradas (uma por cada face do cubo) e 8 triangulares (uma por cada vértice do cubo), 12 vértices (um por cada A B aresta do cubo) e 24 arestas todas iguais a a 2, sendo a a aresta 2 do cubo. Este novo poliedro, irregular, chama-se cuboctaedro como verificámos ao consultar os sólidos arquimedeanos, em planificação e montados, do Poly. 2ª etapa: Para relacionar os volumes do cubo e do cuboctaedro tivemos que pensar na pirâmide [ABCD], cuja base é um triângulo rectângulo com os dois catetos iguais a a 2 e com altura igual à a a a medida dos catetos. A área da base é a a a = e o volume é =. O volume do cuboctaedro vai ser igual à diferença entre o volume do cubo (a 3 ) e o volume das 8 pirâmides 3 3 a a 8 =. Então o volume do octaedro é dado por a 5a a =. 6 6 Podemos finalmente concluir que o volume do cuboctaedro é 5 6 do volume do cubo. PROFESSORA: Rosa Canelas 2
3 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tarefa nº 9 VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO OCTAEDRO Pretende-se, com esta actividade, e utilizando o que estudou e trabalhou até aqui (secções no cubo) que parta para a descoberta de novos poliedros. 1. Com o octaedro e com o material de que dispõe na sua mesa, substitua cada aresta por um vértice situado no seu ponto médio. Caracterize o novo sólido que obteve. Nota: Se não conseguir descobrir o seu nome utilize o programa Poly no computador. 2. Relacione os volumes do octaedro e do sólido obtido. 3. Faça um pequeno relatório da actividade realizada. Na elaboração do seu relatório não deve esquecer, entre outros, os aspectos seguintes: Título Objectivo do trabalho. Material utilizado. Descrição do processo utilizado para a descoberta, das tentativas realizadas e das dificuldades encontradas. Conclusões. Comentários acerca do interesse e gozo suscitados por esta actividade. Clareza e correcção da linguagem utilizada. Identificação do autor do trabalho, da escola, da data, do ano e da turma. PROFESSORA: Rosa Canelas 3
4 Tarefa nº 9 proposta de resolução VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO OCTAEDRO Objectivo da tarefa: Utilizando a matéria já estudada até aqui (secções no cubo) descobrir novos poliedros. V A tarefa divide-se em duas etapas: R S o Descobrir o poliedro e caracterizá-lo. Q o Comparar o volume do poliedro obtido com o do octaedro. O T 1ª etapa: Com o octaedro em acetato e uma caneta de acetato que tínhamos em cima da mesa, substituímos cada aresta por um vértice situado no seu ponto médio e obtivemos o poliedro da figura, que tem 6 faces quadradas (uma por cada vértice do octaedro) e 8 triangulares (uma por cada face do octaedro), 12 vértices (um por cada L M N aresta do octaedro) e 24 arestas todas iguais a a, sendo a a aresta 2 do octaedro. Este novo poliedro, irregular, chama-se cuboctaedro como verificámos ao consultar os sólidos arquimedeanos, em planificação e montados, do Poly. 2ª etapa: Para relacionar os volumes do octaedro e do cuboctaedro tivemos que pensar: o que o octaedro é resultado de duas pirâmides quadrangulares regulares iguais, coladas pela base. o que o cuboctaedro se obtém do octaedro quando tiramos 6 pirâmides quadrangulares regulares iguais à pirâmide [VQRST]. o As duas pirâmides são semelhantes e a razão de semelhança entre a menor e a maior é 1 2. o O volume da pirâmide menor vai ser 1 8 do volume da maior porque a razão dos volumes de duas figuras semelhantes é o cubo da razão de semelhança. o Porque o octaedro é formado por duas pirâmides das grandes o volume da pirâmide [VQRST] é 1 do volume do octaedro. 16 o O volume das seis pirâmides vai ser 6 16 o O volume do cuboctaedro é então do volume do octaedro. do volume do octaedro. Podemos finalmente concluir que o volume do cuboctaedro é 5 8 do volume do octaedro. PROFESSORA: Rosa Canelas 4
5 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tarefa nº 9 VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO TETRAEDRO Pretende-se, com esta actividade, e utilizando o que estudou e trabalhou até aqui (secções no cubo) que parta para a descoberta de novos poliedros. 1. Com o tetraedro e com o material de que dispõe na sua mesa, substitua cada aresta por um vértice situado no seu ponto médio. Caracterize o novo sólido que obteve. Nota: Se não conseguir descobrir o seu nome utilize o programa Poly no computador. 2. Relacione os volumes do tetraedro e do sólido obtido. 3. Faça um pequeno relatório da actividade realizada. Na elaboração do seu relatório não deve esquecer, entre outros, os aspectos seguintes: Título Objectivo do trabalho. Material utilizado. Descrição do processo utilizado para a descoberta, das tentativas realizadas e das dificuldades encontradas. Conclusões. Comentários acerca do interesse e gozo suscitados por esta actividade. Clareza e correcção da linguagem utilizada. Identificação do autor do trabalho, da escola, da data, do ano e da turma. PROFESSORA: Rosa Canelas 5
6 Tarefa nº 9 proposta de resolução VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO TETRAEDRO Objectivo da tarefa: Utilizando a matéria já estudada até aqui (secções no cubo) descobrir novos poliedros. A tarefa divide-se em duas etapas: o Descobrir o poliedro e caracterizá-lo. o Comparar o volume do poliedro obtido com o do tetraedro. 1ª etapa: Com o tetraedro em acetato e uma caneta de acetato que tínhamos em cima da mesa, substituímos cada aresta por um vértice situado no seu ponto médio e obtivemos o poliedro da figura, que tem 8 faces triangulares. a 2 é a medida de cada aresta do poliedro, sendo a a aresta do octaedro. Este novo poliedro, regular, chama-se octaedro como já sabíamos. 2ª etapa: Para relacionar os volumes do tetraedro e do octaedro tivemos que pensar: o Que o octaedro se obtém do tetraedro quando tiramos 4 tetraedros com aresta igual a metade da aresta do tetraedro. o Os dois tetraedros são semelhantes e a razão de semelhança entre o menor e o maior é 1 2. o O volume do tetraedro menor vai ser 1 8 do volume do maior, porque a razão dos volumes de duas figuras semelhantes é o cubo da razão de semelhança. o O volume das 4 pirâmides vai, portanto, ser 4 8 do volume do tetraedro. o O volume do octaedro é então 4 8 do volume do tetraedro. Podemos finalmente concluir que o volume do octaedro é 1 do volume do tetraedro. 2 PROFESSORA: Rosa Canelas 6
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas
10º Ano de Matemática A Geometria no Plano e no Espaço I 2º Teste de avaliação Proposta de resolução. Grupo I
10º Ano de Matemática A Geometria no Plano e no Espaço I º Teste de avaliação Proposta de resolução Grupo I 8 1. (B) Os pontos A 3,7 e B 5,7 são simétricos em A B relação à recta de equação 1 6 4. (D)
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 3
Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A TEMA GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 3. Na figura 3 estão representadas duas circunferências: uma de centro O, de que [AD] e [FE]
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 6 Estes trabalhos de casa, até ao fim do período, vão continuar a ser constituídos por
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos
Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros
Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática Geometria no Plano e no spaço I º Teste de avaliação Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
Escola Secundária com º ciclo D. Dinis 10º no de Matemática TEM 1 GEOMETRI NO PLNO E NO ESPÇO I TP nº entregar em 19-11-01 1. Na figura 7 estão representados uma esfera de centro O e raio e um sólido que
Chama-se poliedro a uma figura geométrica, a três dimensões, cujas faces são polígonos. Um poliedro regular é aquele em que as faces são polígonos
Ana Salgado INTRODUÇÃO Acedendo ao site The Geometry Junkyard, encontrei o link All the junk in one big pile onde escolhi o tema Poly. Poly, é um programa para explorar várias classes de poliedros, incluindo
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. Módulo Inicial
Escola Secundária com º ciclo D. Dinis 10º no de Matemática TPC nº Entregar no dia de outubro 1. Medidas importantes: 1.1. Considere um quadrado com lado, exprima em função de a medida da diagonal do quadrado.
1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino
1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Determine o número de vértices de um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 pentagonal e 2 hexagonais. 07) Um poliedro de sete vértices tem cinco ângulos tetraédricos
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. 4º Teste de avaliação versão Grupo I As cinco questões deste grupo
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL Tarefa 1 Aluno: Thiago Milani Cabral Grupo 2 Tutora: Susi Cristine
INTRODUÇÃO À GEOMETRIA ESPACIAL
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 1º Bimestre/2013 Avaliação da Implementação do Plano de Trabalho2 INTRODUÇÃO À GEOMETRIA ESPACIAL Carmen Lucia Martins
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com 3º ciclo. inis 10º no de Matemática Geometria no Plano e no spaço I º Teste de avaliação Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP [email protected] Uma aplicação da congruência de triângulos e polígonos
Ficha de avaliação nº1 Versão A1
st ireção-eral dos stabelecimentos scolares SI ireção de Serviços da egião lgarve UMNTO SOLS JÚLIO NTS LOS (145415) Matemática - 10ºNO 4/10/013 no letivo 013/014 icha de avaliação nº1 Versão 1 rupo I rupo
Teste de avaliação (Versão A) Grupo I
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 09-03 - 007 Teste de avaliação (Versão A) Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. 4º Teste de avaliação versão1 Grupo I As cinco questões deste
UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um
ESPAÇO E FORMA. CURSO: Pró-Letramento. TURMA: Revezamento. ÁREA: Matemática. CONTEÚDO: Espaço e Forma. TEMA: Dobradura, Tangram e Mosaicos
ESPAÇO E FORMA CURSO: Pró-Letramento TURMA: Revezamento ÁREA: Matemática CONTEÚDO: Espaço e Forma TEMA: Dobradura, Tangram e Mosaicos DATA DO ENCONTRO: 22/08/2012 a 24/08/2012 PROFESSOR RESPONSÁVEL: Profª
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
Escola Secundária com º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I 4º Teste de avaliação versão A Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I. Grupo I
Escola Secundária com º ciclo. inis 10º no de Matemática eometria no Plano e no Espaço I 1º Teste de avaliação rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2. Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 -
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2 Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 - Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ MATEMÁTICA 2º ANO/ENS.
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015
Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 3ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº entregar no dia 25 02 201 1. Uma jovem, sentada num baloiço, é largada de uma certa altura.
Matemática 2º Ano 3º Bimestre/2013 Plano de Trabalho 2 Pirâmides
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 3º Bimestre/2013 Plano de Trabalho 2 Pirâmides Cursista: Marta Vieira de Andrade. 1 Série: 2ª. Tutor: Andréa Silva
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
PROVA ESCRITA DE MATEMÁTICA A 10º A 2009 Novembro 02 Duração da prova: 90 minutos VERSÃO 2. Grupo I
PROVA ESCRITA DE MATEMÁTICA A 0º A 2009 Novembro 02 Duração da prova: 90 minutos VERSÃO 2 Grupo I Para cada uma das cinco questões deste grupo, seleccione a resposta correcta de entre as alternativas que
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
Escola Secundária com º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I 4º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI Professora: ANA PAULA LIMA Matrículas: 09463027/09720475 Série: 2º ANO ENSINO MÉDIO Tutora: KARINA
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. TPC nº 5 (entregar no dia 6 ou )
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II TPC nº (entregar no dia 6 ou 7 1 010) 1. Considere, num cubo de 8 cm de aresta, a secção que resulta
Oficina MATEGAMI: a matemática do origami
Oficina MATEGAMI: a matemática do origami Cristiana Pilatti¹ Giovana de Oliveira¹ ¹Acadêmicas do Curso de Licenciatura em Matemática e bolsistas do Programa de Educação Tutorial (PET) Matemática do IFRS
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
VOLUME DE PIRÂMIDES E CONES
VOLUME DE PIRÂMIDES E CONES PLANO DE TRABALHO 2 CURSO DE FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROJETO SEEDUC MATEMÁTICA 2º ANO 3º BIMESTRE / 2012 PLANO DE TRABALHO TAREFA
1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º Ano 3º Bimestre/2012
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 3º Bimestre/2012 Plano de Trabalho 2 Pirâmides e Cones Cursista: Ângela Pereira Cerqueira Halfeld Tutora: Ana Paula
10 11 Escola Municipal Francis Hime SÓLIDOS GEOMÉTRICOS 6º ANO Nome: 1601 Geometria: Uma ciência de muitos povos A geometria, assim como as ciências, nasceu das necessidades e das observações do homem.
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
Resoluções das atividades
Resoluções das atividades ódulo Geometria spacial I 01 tividades para sala Um plano divide o espaço em dois semiespaços opostos, dos quais ele é origem. Observe os casos: I. α 17 d 17 itágoras ( 17) =
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
PLANO DE TRABALHO SOBRE GEOMETRIA ESPACIAL. H07 Relacionar diferentes poliedros ou corpos redondos com suas planificações.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: COLÉGIO ESTADUAL PAULINO PINHEIRO BAPTISTA PROFESSORA: PATRÍCIA DOMINGUES DE SOUZA MATRÍCULA: 0912303-5 TUTOR: SUSI
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 10 1. Na figura está representado, num referencial
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão1 rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 9 1. Considere a seguinte condição: x + ( y ) 4 ( x 3 0 y ) 1.1. Represente, num referencial
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática eometria no lano e no spaço I 1º Teste de avaliação rupo I s cinco questões deste grupo são de escolha múltipla. ara cada uma delas são indicadas
Mistério geométrico e planificação
X 2 = Mistério geométrico e planificação nós na sala de aula - módulo: matemática 4º e 5º anos - unidade 9 Esta atividade tem como objetivo desafiar os seus alunos a reconhecer as figuras geométricas planas
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1:
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1: Observando a natureza A primeira descrição formal do dodecaedro rômbico deve-se a Kepler,
UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Teste de avaliação (Versão B) Grupo I
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 0º ANO DE MATEMÁTICA A 2-03 - 2007 Teste de avaliação (Versão B) Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A 5º Teste de avaliação versão Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
GEOMETRIA ESPACIAL PROF. VALDIR AGUIAR
GEOMETRIA ESPACIAL PROF. VALDIR AGUIAR Sólidos geométricos PARA COMEÇAR... No mundo de hoje, as inúmeras obras de engenharia, arquitetura, artes plásticas etc. mostram a imensa quantidade de formas que
Matemática - 3C12/14/15/16/26 Lista 2
Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE
MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE Como pode cair no enem (ENEM) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido
GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE
GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar
Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2012 Disciplina: Matemática Ano: 2012 Professor (a): Ana Cristina Turma: 2 o FG/TI Caro aluno, você está recebendo o conteúdo
Volume do dodecaedro e do icosaedro
Capítulo Volume do dodecaedro e do icosaedro.1 Introdução. Os cálculos do volume dos sólidos platônicos que geralmente são abordados pelos livros didáticos de Matemática do ensino médio, resumem-se ao
Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e
Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF
Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Elementos de um poliedro
RELAÇÃO DE EULER 1 Elementos de um poliedro A Face Vértice B Aresta C D Imagem: Pablo rigel / public domain O ponto A é um dos vértices desse poliedro. O segmento de reta AB é uma das arestas. A região
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 14 1. Um cilindro como o da figura tem 10 cm de
SÓLIDOS GEOMÉTRICOS. Materiais manipulativos para o ensino de COLEÇÃO MATHEMOTECA. ORGANIZADORAS Katia Stocco Smole Maria Ignez Diniz
COLEÇÃO MATHEMOTECA ORGANIZADORAS Katia Stocco Smole Maria Ignez Diniz Anos iniciais do ensino fundamental Materiais manipulativos para o ensino de SÓLIDOS GEOMÉTRICOS ATIVIDADES 1. Faça as construções
5º Teste de avaliação versão1. Grupo I
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A 5º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
