GABARITO - LISTA 1 DE SÉRIES
|
|
|
- Antônio Furtado Mascarenhas
- 9 Há anos
- Visualizações:
Transcrição
1 1-A- Pelo teste da integral temos: GABARITO - LISTA 1 DE SÉRIES Uma vez que o valor da integral é um valor finito, a série converge. Resolução alternativa: Teste da razão: Dividindo o numerador e denominador da segunda fração por e^(2n), temos: Uma vez que L< 1, a série é absolutamente convergente.
2 1-B- Teste da comparação direta: É trivial que: Uma vez que a série usada na comparação é divergente, a primeira série também o é. 1-C- Resolução alternativa: Teste da comparação direta: Logo: Uma vez que a série usada na comparação é divergente, a primeira série também o é. Resolução do gabarito: Teste da integral:
3 Uma vez que a integral diverge, a série é divergente. 1-D- Teste da integral: Uma vez que a integral possui um valor finito, a série é convergente.
4 GABARITO - LISTA 1 DE SÉRIES (PARTE 2) 1-E- Teste da comparação direta: A série mais à direita representa o termo geral de uma P.G. de razão 1/2, sendo assim sabe-se que a mesma é convergente. Logo, a série do enunciado também o é. 1-F- Teste da raiz: L<1, logo a série é (absolutamente) convergente. 1-G- Teste da comparação direta: É trivial que: Uma vez que a série utilizada na comparação é divergente, a primeira série também o é. 1-H- Teste da comparação direta: Agora precisamos checar se a série mais à direita é convergente. Se for, a série do enunciado também será. Utilizaremos o teste da integral:
5 Visto que tal série é convergente e maior que a série do enunciado para todo n, está provado, por comparação direta, que a série cuja análise é requisitada é convergente. 1-I- Teste da comparação no limite: Uma vez que a série do denominador diverge, a do numerador também deve divergir. 1-J- Teste da comparação no limite: Uma vez que a série do denominador converge, a do numerador também deve divergir. 1-K- Teste da razão: Sendo a razão menor do que 1, a série é (absolutamente) convergente. 1-L- Teste da razão: Já que L vale infinito, a série diverge.
6 1-M- Teste da razão: Sendo L menor do que 1, a série é (absolutamente) convergente. 1-N- Teste da raiz: Por L Hôspital: L<1, logo a série converge (absolutamente). 1-P- Teste da raiz: Por L Hôspital: L< 1, logo a série é (absolutamente) convergente.
7 GABARITO - LISTA 1 DE SÉRIES (PARTE 3) Primeiramente, gostaríamos de pedir desculpas por pequenos erros no gabarito anterior: E1 - QUESTÃO 1.J- A justificativa correta é que, assim como a série do denominador converge, a do numerador também deve CONVERGIR. E2- QUESTÃO 1.N-- A solução mostrada nesse item é, na verdade, do item 1.O. A solução do item 1.N será apresentada posteriormente. Justificados os erros, prosseguiremos com o gabarito: 1-N- Teste da razão: Uma vez que L<1, a série é (absolutamente) convergente. 1-Q- Teste da razão: L<1, logo a série é (absolutamente) convergente. 1-R- Teste da raiz: Já que L é infinito, a série é divergente.
8 2-A- Teste da razão: Uma vez que L<1, a série é (absolutamente) convergente. 2-B- Teste da razão: L>1, logo a série é divergente. 2-C- Teste do n-ésimo termo: Seguindo este raciocínio, vemos que: Logo: Já que o limite do n-ésimo termo é diferente de zero, a série diverge.
9 A justificativa para isso é que, quando n é suficientemente grande, a(n) sempre valerá 1 (ou um valor incrivelmente próximo). E, a cada parcela, o valor se aproximará mais de 1. Sendo assim, a partir de um n suficientemente grande, teremos mais infinitas parcelas cujo valor é (quaaaaase) 1. Logo, quando somadas, fazem a série divergir, tendendo ao infinito. 3- Uma vez que a série dada possui apenas termos não-negativos, é trivial que: Por comparação direta, uma vez que a série à direita é convergente, a série à esquerda também é. Resolução alternativa: Teste da comparação no limite Uma vez que a série do denominador é convergente, a série do numerador também deve ser convergente.
10 GABARITO - LISTA 1 DE SÉRIES (PARTE 4) 4-A- Teste da série alternada: Uma vez que a série obedece ambas as condições determinadas pelo teste, ela é convergente. 4-B- Teste da série alternada: Checando apenas o limite de a(n) quando n tende ao infinito, vemos que: Logo, a série não obedece à segunda condição do teste, o que é suficiente para que a caracterizemos como divergente. Resolução alternativa: Teste da raiz Apesar do teste da série alternada só poder ser usado, obviamente, em séries alternadas, nada impede que um outro método seja utilizado, afinal o teste da raíz, por exemplo, é aplicável em qualquer série, incluindo as alternadas. Já que L vale infinito, a série é divergente. 4-C- Teste da série alternada:
11 Logo, a série é convergente. 4-D- Teste da série alternada: Podemos checar apenas o limite de a(n) quando n tende ao infinito: Por L Hôspital: Uma vez que o limite é diferente de 0, a série é divergente. 4-E- Teste da série alternada: Logo, a série é convergente. 4-F- Teste da série alternada: Isso porque, ao passo que o numerador cresce linearmente (com uma derivada constante igual a 1), o numerador cresce, obviamente, logaritmicamente (com uma derivada igual a 1/n, o que indica que sua taxa de crescimento diminui ao passo que n aumenta). Logo, o denominador cresce com uma velocidade maior que o denominador, o que justifica a afirmação acima.
12 Por L Hôspital: Logo, uma vez que a série satisfaz ambas as condições do teste para que seja convergente, ela o é.
13 GABARITO - LISTA 1 DE SÉRIES (PARTE 5) 5- Para essa questão, temos que conhecer a diferença entre convergência absoluta e condicional. Convergência absoluta é quando a série dos módulos da série dada é convergente (o que implica no fato da série em si também o ser), o que pode ser verificado usando, principalmente, os testes da raiz e da razão (outros testes podem ser usados). Convergência condicional é quando a série é convergente, porém a série de seus módulos não o é. 5-A- Teste da raiz: Podemos ignorar a potência de -1, uma vez que o teste da razão avalia um módulo (o módulo de qualquer potência de -1 é 1, que é o elemento nulo da operação de multiplicação, logo não interfere na mesma). Já que L< 1, a série é absolutamente convergente. 5-B- Utilizaremos o teste da integral na série dos módulos para verificarmos se esta é convergente:
14 Vemos então que a série dos módulos é divergente. Agora utilizaremos o teste da série alternada para verificar a convergência da série em si: Vemos então que a série é convergente, porém a série dos módulos não o é. Logo, a série possui convergência condicional. 5-C- Teste da razão: Por L Hôspital: Logo, a série converge absolutamente. 5-D- Verificaremos se a série dos módulos é convergente, usando o teste da integral: Sendo assim a série dos módulos é divergente. Utilizaremos agora o teste da série alternada:
15 Vemos então que a série em si é convergente. Logo, a série possui convergência condicional. 5-E- Teste do n-ésimo termo: (Justificativa por L Hôspital ou dividindo o numerador e denominador por n ) Logo, uma vez que o n-ésimo termo não tende a 0, a série é divergente. 5-F- Aplicaremos o teste da comparação direta na série dos módulos: Visto que a série mais à direita é convergente, sabemos que a série dos módulos é convergente. Sendo assim, a série possui convergência absoluta. 5-G- Teste da razão: Uma vez que L< 1, a série é absolutamente convergente. 5-H- Teste da razão: Já que L<1, a série é absolutamente convergente. 5-I- Utilizaremos o teste da comparação no limite para a série dos módulos:
16 Uma vez que a série do denominador converge e o limite é uma constante de valor finito e maior que 0, é obrigatório que a série do numerador também convirja. Sendo assim, uma vez que a série dos módulos converge, a série em si é absolutamente convergente. 5-J- É válido notarmos que, com a variação de n, o cosseno será sempre 1 ou -1, uma vez que sempre teremos o cosseno de um valor múltiplo de pi. Logo: Uma vez que a série dos módulos é uma série-p com p = 3/2, ou seja, p>1, sabemos que a série do módulos é convergente. Sendo assim, a série em si é absolutamente convergente. 5-K- Teste da raiz: Uma vez que L<1, a série é absolutamente convergente.
Sequências numéricas:
Sequências numéricas: Sequências de número com uma lógica entre elas. Exemplos: P.A. P.G. Sequência Fibonacci (1;1;2;3;5;8;13;...) Uma sequência pode ser Convergente : tem um limite bem definido. Divergente
Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma:
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries infinitas.
Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.
11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo
CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.
Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização
1 kp. k=1. + Na série. 1 temos p = 2 p >1 converge. k=1 + Na série k=1. temos p = 1/7 p <1 diverge. ⁷ k. se lim u k. k +
TESTES DE CONVERGÊNCIA Existem diversos testes de convergência e que são cobrados em provas, mas não fique preocupado, pois fizemos esse resumão pra te ajudar a lembrar de todos! Lembre-se que esses testes
A sequência é ordenada pois existe um primeiro termo,, um segundo termo,, e, se denota um número inteiro positivo arbitrário, um n-ésimo termo.
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SEQUÊNCIAS INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries
Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k =
Séries Alternadas São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = 1 1 2 + 1 3 1 4 + 1 5 Em geral escrevemos, para uma série alternada, ou ( 1) k+1 a k =
Material Básico: Calculo A, Diva Fleming
1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de
6. Frações contínuas como as melhores aproximações de um número real
6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas
Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.
11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
1 Primos em uma PA? 2 Pequeno teorema de Dirichlet
Pequeno teorema de Dirichlet Primos em uma PA? O famoso teorema de Dirichlet, também conhecido como PCP princípio das casas dos primos), diz: Teorema. Dirichlet) Sejam a e n dois inteiros com a, n). Então
Convergência, séries de potência e funções analíticas
Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)
Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações
n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série
Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.
Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série
Convergência, séries de potência e funções analíticas
Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
Capítulo 5. séries de potências
Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da
( x)(x 2 ) n = 1 x 2 = x
Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x
Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a
Sequencias e Series Autor: Dr. Cristian Novoa MAF- PUC- Go [email protected] Este texto tem como objetivo principal, introduzir alguns conceitos de Sequencias e Series,para os cursos de Engenharia,
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina
3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais.
LIVRO Séries de Números Reais META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. PRÉ-REQUISITOS Seqüências (Aula 02). Séries de Números Reais.
Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.
Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência
Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral
Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral 4 4 13 + 1 = 53 Em que temos a fórmula geral: Exatamente um
ANÁLISE MATEMÁTICA II
ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB
ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807
t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )
MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para
Vamos revisar alguns fatos básicos a respeito de séries de potências
Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais
Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é
Revisão Determinação de uma tangente para o gráfico de uma função f '( x 0) = O coeficiente angular da reta tangente em P é Taxas de variação: derivada em um ponto A expressão abaixo é chamada de quociente
Notas Sobre Sequências e Séries Alexandre Fernandes
Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
Notas de curso: Séries Numéricas e Séries de Taylor
UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 23 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Objetivo. Estas notas têm o objetivo de auxiliar
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
Convergência de Séries de Números Complexos
Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência
Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
Transformada Z. A transformada Z de uma sequência x n é definida como:
Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
Teoremas de uma, duas e três séries de Kolmogorov
Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob
Gabarito da G3 de Equações Diferenciais
Gabarito da G3 de Equações Diferenciais 03. MAT 54 Ques..a.b.c.a.b 3 4 5.a 5.b soma Valor.0.0.0.0.0.0.0.0.0 0.0 Nota ) Considere o problema abaixo que representa o comportamento de duas espécies(com densidades
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
Bons estudos e um ótimo semestre a todos!
Cálculo 206.2 Caro aluno, O Dáskalos tem como objetivo proporcionar aos universitários um complemento de ensino de qualidade, por meio de aulas particulares, apostilas e aulões. Tendo isso em vista, a
NÚMEROS RACIONAIS Professor: Carlos
NÚMEROS RACIONAIS Professor: Carlos O que são? O conjunto dos números racionais é formado por todos os quocientes de números inteiros a e b, em que b é não nulo. O uso da letra "Q" é derivado da palavra
Capítulo 3. Séries Numéricas
Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos
LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número
MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro
MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação
Transformada Z. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Transformada de Fourier de uma Sequência Problema: Há casos onde a Transformada de Fourier não converge Solução Transformada Z A Transformada
Cálculo Numérico / Métodos Numéricos. Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01
Cálculo Numérico / Métodos Numéricos Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01 Idéia Seja f(x) uma função continua em [a,b], intervalo que contém a raiz da equação f(x)=0.
F = m d 2 x d t 2. F R = bv = b d x
Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até
Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio
PROGRESSÃO GEOMÉTRICA
Hewlett-Packard PROGRESSÃO GEOMÉTRICA Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2018 Sumário PROGRESSÃO GEOMÉTRICA (P.G.)... 1 PRELIMINAR 1... 1 DEFINIÇÃO... 1 A RAZÃO DE
Prova Extramuro BOA PROVA! Respostas da Parte II
Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!
Testes de Convergência
Testes de Convergência Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas outubro - 203 Teste da Divergência Teorema Se a série a n for convergente, então lim a n =
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof José Carlos Eidam Lista 4 INSTRUÇÕES Esta lista, de entrega facultativa, tem três partes e seus exercícios versam
Sequência divergente: toda sequência que não é convergente.
1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo
Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.
Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se
Aula 4: Bases Numéricas
Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)
(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit
MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns
Lista de Exercícios de Funções de Várias Variáveis
Lista de Exercícios de Funções de Várias Variáveis 29 de dezembro de 2016 2 Sumário 1 Sequências e Séries InnitasP1) 5 1.1 Sequências............................. 5 1.1.1 Digitado por:luele Ribeiro de
Os números reais. Capítulo O conjunto I
Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais
Resumo Elementos de Análise Infinitésimal I
Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =
Sistema de Equações Fracionárias. 8 o ano/7 a série E.F.
Módulo de Equações e Sistemas de Equações Fracionárias Sistema de Equações Fracionárias. 8 o ano/7 a série E.F. Equações e Sistemas de Equações Fracionárias Sistema de Equações Fracionárias. Eercícios
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:
Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11
Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa
Resistores e CA. sen =. logo
Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de
MATEMÁTICA PARA TÉCNICOS
PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS
INTEGRAÇÃO DE FUNÇÕES RACIONAIS
Cálculo Volume Dois - 40 INTEGRAÇÃO DE FUNÇÕES RACIONAIS Quando uma função racional da forma N()/D() for tal que o grau do polinômio do numerador for maior do que o do denominador, podemos obter sua integral
Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.
11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.1 Sequências Copyright Cengage Learning. Todos os direitos reservados. Pode-se pensar numa sequência como uma
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
Métodos iterativos para sistemas lineares.
Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central
5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.
LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
