Experiência de Óptica Geométrica
|
|
|
- Rachel Mascarenhas Fidalgo
- 9 Há anos
- Visualizações:
Transcrição
1 1º Semestre 2003/2004 Istituto Superior Técico Experiêcia de Óptica Geométrica Liceciatura em Egeharia Física Tecológica Ricardo Figueira º53755 dré uha º53757 Tiago Marques º53775 LFX4 Professor Berardo Brotas de arvalho Lisboa, 3 de Novembro de 2003
2 Itrodução realização desta experiêcia tem como objectivos, a determiação experimetal do ídice de refracção de um vidro acrílico e das distâcias focais de de uma lete divergete (de forma cocava) e de uma lete divergete (de forma covexa). O cere do procedimeto experimetal cosiste os pricípios da óptica geométrica que derivam de uma margem de aproximação que cosiste em cosiderar a luz como um feómeo ão odulatório, devido às grades distâcias evolvidas. Determiação das distâcias focais de uma lete covergete e de uma lete divergete: determiação experimetal das distâcias focais cosiste em várias fases fudametais: omeçaremos por efectuar uma medida directa da distâcia focal da lete covergete, de seguida essa medida será ovamete efectuada através do método dos focos cojugados que cosiste a seguite relação: = + em que, f d d o I f : Distâcia focal da lete covergete d : Distâcia da lete ao objecto o d : Distâcia da lete à imagem focada I Poderemos também medir a ampliação da imagem em relação ao objecto experimetalmete visto que esta é igual ao quociete das dimesões da imagem pelas do objecto, ou aida calculá-la pelo quociete das distâcias da lete ao objecto pela da lete à imagem focada. través de uma associação das letes covergete e divergete tem-se para a distâcia focal da lete divergete a seguite relação: d = + + em que, f f f f. f T D D d : Distâcia etre as duas letes f T : Distâcia focal do cojuto de ambas as letes f D : Distâcia focal da lete divergete f : Distâcia focal da lete covergete
3 Determiação do ídice de refracção de um vidro acrílico Para a obteção do ídice de refracção de um vidro acrílico, começamos por realizar uma icidêcia do ar para o vidro em que se têm a seguite relação: si " 1 = si! 1 em que, : Ídice de refracção do vidro : Ídice de refracção do ar! :Âgulo de icidêcia! : Âgulo de refracção Realiza-se depois o processo iverso (icidêcia do vidro para o ar), possível graças á forma semicilídrica do corpo em acrílico dode se têm a seguite relação: si " 2 = si! 2 Determiar-se-á aida λ, o âgulo limite da reflexão total que permite calcular o ídice de refracção do vidro através da seguite relação: & ' = arcsi $ % Por fim, será observado o feixe reflectido quado o âgulo de icidêcia correspode ao de Brewster µ, através de um polaróide colocado em diferetes posições. través da relação etre os ídices de refracção dos meios cosiderados e do âgulo de Brewster, este pode ser determiado com precisão satisfatória: #! "
4 Método experimetal 1) Esquema de motagem
5 oclusão Na primeira fase da experiêcia determiou-se a distâcia focal de uma lete covergete recorredo a 2 métodos diferetes. No primeiro, que ão é mais que uma medição directa da distâcia focal, resultou o valor 0,8 cm, com um desvio à precisão de 0,1 cm e um erro de leitura estimado em 0,2 cm. No segudo, recorreu-se ao método dos focos cojugados, para calcular o valor da distâcia focal a partir da distâcia ao objecto e à imagem, tedo-se obtido o valor de 0,743 cm com um erro à precisão de 0,400 cm. oclui-se que o primeiro método utilizado permitiu uma melhor precisão. Nesta motagem foi também possível comparar os valores da ampliação da largura e da altura do objecto com a ampliação calculada a partir das distâcias do objecto e imagem à lete. difereça destas ampliações represeta 5,7% do valor de ampliação observado durate a experiêcia. Seguidamete, mais uma vez recorredo ao método dos focos cojugados, calculou-se a distâcia focal de uma lete divergete por associação da mesma à aterior lete covergete, criado uma úica lete, para a qual foi medida a sua ova distâcia focal. distâcia focal da lete total foi estimada em 15,1 cm, o que os permitiu obter o valor de 4,3 cm para a distâcia focal da lete divergete. Quato à determiação do ídice de refracção do vidro chegou-se ao valor médio de 1,52 com um desvio à precisão de 8,55%. Para calcular este valor assumiu-se que do ar é igual a 1, ou seja, que a velocidade da luz o ar é igual à o vácuo. Durate a execução desta motagem em particular foi aida possível observar que o âgulo de reflexão total é 42,5 º, âgulo para o qual ão há trasmissão de luz do vidro para o ar. Na fase seguite da protocolo, calculou-se o âgulo de Brewster, ou seja, provocou-se a polarização paralela da luz e seguidamete observou-se qual o âgulo para o qual deixa de haver reflexão. No etato, para os agulos etre 54º e 60º a reflexão ão era observável devido às codições em que se desevolvia a experiêcia pelo que se tomou o valor médio, isto é, 57º. ofirmou-se aida que para uma polarização perpedicular ao plao de icidêcia, formado pela direcção de propagação e de reflexão, era possível observar a reflexão para todos os âgulos.
6 pêdice Bibliografia: otribuição para o desevolvimeto do esio da Física Experimetal o IST, tóio. Ribeiro, Pedro Sebastião e Fracisco Tomé potametos das aulas práticas e teóricas e protocolos, professor Berardo Brotas e Isabel abaço
Experiência da determinação da velocidade da luz
º Semestre 003/00 Instituto Superior Técnico Eperiência da determinação da velocidade da luz Licenciatura em Engenharia Física Tecnológica Ricardo Figueira nº53755 André Cunha nº53757 Tiago Marques nº53775
Ótica geométrica. Descrição dos fenómenos óticos que ocorrem em sistemas com componentes de dimensões superiores aos comprimentos de onda da radiação
Ramos da Ótica Ótica Geométrica Ótica geométrica Descrição dos feómeos óticos que ocorrem em sistemas com compoetes de dimesões superiores aos comprimetos de oda da radiação Ótica Física Em sistemas com
REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ
I) FÓRMULA DE REFRAÇÃO DA LUZ c = ídice de refração: represeta quatas vezes a velocidade da luz o meio em questão é meor que a velocidade da luz o vácuo REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda
4Parte OBJETIVO GERAL. Parte I Preparação da atividade laboratorial
Relatórios das atividades laboratoriais AL 3.1 ONDAS: ABSORÇÃO, REFLEXÃO, REFRAÇÃO E REFLEXÃO TOTAL OBJETIVO GERAL Ivestig os feómeos de absorção, reflexão, refração e reflexão total, determi o ídice de
Propriedades das Ondas
Propriedades das Odas Reflexão, Refração da Luz e Difração da Luz Reflexão, Absorção e Trasmissão de uma oda E icidete = E reflectida + E absorvida + E trasmitida Reflexão Regular e Difusa da Luz Quado
REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ
REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda seu meio de propagação, com mudaça em sua velocidade. Porém é válido lembrar que simultaeamete com a refração ocorre também a reflexão e absorção da luz.
Aula 2 Óptica geométrica (reflexão e refração) F-428: Física Geral IV
Aula Óptica geométrica (reflexão e refração) F-48: Física Geral IV Odas eletromagéticas plaas o vácuo E(r,t) E 0 se (k. r - t) O vetor de propagação k defiirá a direção e setido do raio associado a óptica
Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?
1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de
OTI0001- Óptica Física
OTI0001- Óptica Física Lúcio Mioru Tozawa [email protected] UDESC CCT - DFI Aula 4 Letes Superfícies Refratoras Esféricas (a) Reflexão pela superfície Luz icidete e refletida o lado R (Images Reais).
3º Trabalho de Laboratório Óptica geométrica
3º Trabalho de Laboratório Óptica geométrica NOTA: Os valores esperados devem ser calculados antes da realização experimental deste trabalho. Experiência 1: Determinação do índice de refracção de um vidro
Gabarito: Resposta da questão 1: [D] Observando a figura, temos que: Do meio 3 para o 2, o raio se aproxima da normal, logo: n2 n 3.
Gabarito: Resposta da questão : [D] Observado a figura, temos que: Do meio 3 para o, o raio se aproxima da ormal, logo: 3. Do meio para o, o raio sofre reflexão total, logo:. Aplicado a lei de Sell do
Óptica Geométrica. Construções geométricas em lentes delgadas"
Óptica Geométrica Construções geométricas em lentes delgadas" Gonçalo Figueira [email protected] Complexo Interdisciplinar, ext. 3375 Tel. 218 419 375 1.º semestre 2015/16" https://fenix.tecnico.ulisboa.pt/disciplinas/lfeb2517/2015-2016/1-semestre"
1º trabalho de Laboratório Óptica geométrica
1º trabalho de Laboratório Óptica geométrica Experiência 1: Determinação do índice de refracção de um vidro acrílico A direcção de propagação da luz altera-se quando a luz atravessa uma superfície de separação
CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE
CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS.
TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. 1.1 Objectivos Medir gradezas físicas, utilizado os istrumetos adequados. Apresetar correctamete os resultados das medições, ao ível da utilização
ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003
ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma
APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM 3D
APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM D PERTILE, R. J. 1 ; DE TONI, P. T. 1 ; FRACCANABBIA, N. 1 ; BAVARESCO, D. 2 ; RESUMO - Este trabalho apreseta resultados de um projeto de apredizagem, o qual
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química
Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza
Capítulo 5- Introdução à Inferência estatística.
Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.
LENTES. Refração em uma superfície esférica
LENTES efração em uma suerfície esférica coveção de siais aroximação araxial equação do diotro simles Letes tios de letes, roriedades, coveção de siais, aroximação das letes fias costrução da imagem or
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização
Ajuste de Curvas pelo Método dos Quadrados Mínimos
Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias
UNIVERSIDADE DA MADEIRA
Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação
ESCOLA BÁSICA DE ALFORNELOS
ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º B1. Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º B Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
FICHA DE TRABALHO 11º ANO. Sucessões
. Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus
Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem
Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas
Métodos de Amostragem
Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cico ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções, das quais só uma está
Cálculo II Sucessões de números reais revisões
Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto [email protected] Departameto de Matemática Uiversidade
Álgebra. Universidade Eduardo Mondlane. Unidade 1. Números Complexos. Operações Algébricas. Interpretação geométrica
Uiversidade Eduardo Modlae Faculdade de Ciêcias. Departameto de Matemática e Iformática Álgebra Para Estudates do Esio à Distâcia do Curso de Liceciatura em Matemática, ao 01 Uidade 1. Números Complexos.
Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC
Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto
O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2
MÓDULO 4 - PROBLEMAS DE TRANSPORTE Baseado em Novaes, Atôio Galvão, Métodos de Otimização: aplicações aos trasportes. Edgar Blücher, São Paulo, 978..CONCEITOS BÁSICOS DE PROGRAMAÇÃO LINEAR É uma técica
1 Amintas engenharia
1 Amitas egeharia 2 Cálculo Numérico 1. Itrodução Amitas Paiva Afoso 3 1. Itrodução O que é o Cálculo Numérico? 4 1. Itrodução O Cálculo Numérico correspode a um cojuto de ferrametas ou métodos usados
Capítulo II - Sucessões e Séries de Números Reais
Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,
MAE Introdução à Probabilidade e Estatística II Resolução Lista 1
MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X
DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular
Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,
Índice de refracção e propriedades ópticas. Química 12º Ano. Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial
Índice de refracção e propriedades ópticas Química 12º Ano Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial Dezembro 2005 Jorge R. Frade, Ana Teresa Paiva Dep. Eng. Cerâmica
DEEC Área Científica de Telecomunicações Instituto Superior Técnico. Propagação & Antenas Prof. Carlos R. Paiva INTRODUÇÃO AOS GUIAS DE ONDA
4 DEEC Área Cietífica de Telecomuicações Istituto Superior Técico Propagação & Ateas Prof Carlos R Paiva INTRODUÇÃO AOS GUIAS DE ONDA Nestes apotametos fa-se uma pequea itrodução ao estudo dos guias de
Sumário. 2 Índice Remissivo 19
i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................
1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1
Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética
Universidade de São Paulo Instituto de Física
Equipe Uiversidade de São Paulo Istituto de Física 4331 Física Experimetal A NOTA POFESSO 1 1)... fução... Turma:... )... fução... Data:... 3)... fução... Mesa o :... EXP Movimeto uiformemete acelerado,
Secção 1. Introdução às equações diferenciais
Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço
GABARITO AULA DE VÉSPERA USP/UNICAMP
GABARITO AULA DE VÉSPERA USP/UNICAMP João Paulo 1 4 5 6 7 8 9 10 C B C C C 11 1 1 14 15 16 17 18 19 0 C C C E B E E D A 1 4 5 6 7 8 9 0 E A C D D D C A C 1 4 5 6 7 8 9 40 C E B A A B E B B D COMENTÁRIOS
A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES
A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES Guilherme de Martii Uiversidade Tecológica Federal do Paraá - Câmpus Toledo
INTERPOLAÇÃO POLINOMIAL
1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,
EPR 007 Controle Estatístico de Qualidade
EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como
ARRANJO SIMPLES PROFº: VALDÉCIO FÉLIX. Choquitomóvel
HC ARRANJO SIMPLES HENRIQUE CASTRICIANO Choquitomóvel PROFº: VALDÉCIO FÉLIX Temos o destio que merecemos. O osso destio está de acordo com os ossos méritos. Albert Eistei ED ESCOLA DOMÉSTICA AGRUPAMENTOS
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,
Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS
Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS INTRODUÇÃO O desevolvimeto do homem deve-se ao fato de que ele procurou observar os acotecimetos ao seu redor. Ao ver os resultados dos diversos evetos, ele
MAE Introdução à Probabilidade e Estatística II Resolução Lista 2
MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,
Óptica Geométrica Séries de Exercícios 2018/2019
Óptica Geométrica Séries de Exercícios 2018/2019 24 de Maio de 2019 =2= 2018/2019 Óptica Geométrica Série de exercícios n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido
CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói
CES Cetro de Esio Superior de C. Lafaiete Faculdade de Egeharia Elétrica Física II Prof. Aloísio Elói Superposição e Odas Estacioárias Resumo Serway & Jewett, capítulo 14. 1. Pricípío da superposição:
Análise Matemática I 2 o Exame
Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e
Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.
Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que
CAP. I ERROS EM CÁLCULO NUMÉRICO
CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução
( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...
Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
CF358 Física BásicaExperimental I
CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO
[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]
[Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação
Experimento 1 Estudo da Lei de Hooke
Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos
01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:
01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3
2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO
EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA
Cap. VI Histogramas e Curvas de Distribuição
TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:
Sucessões Reais. Ana Isabel Matos DMAT
Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites
S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números
S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes
Tipos de fluidos: Os vários tipos de problemas ecotrados em Mecâica dos Fluidos podem ser classificados com base a observação de características físicas do campo de fluxo. Uma possível classificação é
O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO
O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO Sérgio Ferado Mayerle, Dr. UFSC / CTC / EPS - [email protected] - Floriaópolis - SC Thiago Dedavid de Almeida Bastos
