Experiência de Óptica Geométrica

Tamanho: px
Começar a partir da página:

Download "Experiência de Óptica Geométrica"

Transcrição

1 1º Semestre 2003/2004 Istituto Superior Técico Experiêcia de Óptica Geométrica Liceciatura em Egeharia Física Tecológica Ricardo Figueira º53755 dré uha º53757 Tiago Marques º53775 LFX4 Professor Berardo Brotas de arvalho Lisboa, 3 de Novembro de 2003

2 Itrodução realização desta experiêcia tem como objectivos, a determiação experimetal do ídice de refracção de um vidro acrílico e das distâcias focais de de uma lete divergete (de forma cocava) e de uma lete divergete (de forma covexa). O cere do procedimeto experimetal cosiste os pricípios da óptica geométrica que derivam de uma margem de aproximação que cosiste em cosiderar a luz como um feómeo ão odulatório, devido às grades distâcias evolvidas. Determiação das distâcias focais de uma lete covergete e de uma lete divergete: determiação experimetal das distâcias focais cosiste em várias fases fudametais: omeçaremos por efectuar uma medida directa da distâcia focal da lete covergete, de seguida essa medida será ovamete efectuada através do método dos focos cojugados que cosiste a seguite relação: = + em que, f d d o I f : Distâcia focal da lete covergete d : Distâcia da lete ao objecto o d : Distâcia da lete à imagem focada I Poderemos também medir a ampliação da imagem em relação ao objecto experimetalmete visto que esta é igual ao quociete das dimesões da imagem pelas do objecto, ou aida calculá-la pelo quociete das distâcias da lete ao objecto pela da lete à imagem focada. través de uma associação das letes covergete e divergete tem-se para a distâcia focal da lete divergete a seguite relação: d = + + em que, f f f f. f T D D d : Distâcia etre as duas letes f T : Distâcia focal do cojuto de ambas as letes f D : Distâcia focal da lete divergete f : Distâcia focal da lete covergete

3 Determiação do ídice de refracção de um vidro acrílico Para a obteção do ídice de refracção de um vidro acrílico, começamos por realizar uma icidêcia do ar para o vidro em que se têm a seguite relação: si " 1 = si! 1 em que, : Ídice de refracção do vidro : Ídice de refracção do ar! :Âgulo de icidêcia! : Âgulo de refracção Realiza-se depois o processo iverso (icidêcia do vidro para o ar), possível graças á forma semicilídrica do corpo em acrílico dode se têm a seguite relação: si " 2 = si! 2 Determiar-se-á aida λ, o âgulo limite da reflexão total que permite calcular o ídice de refracção do vidro através da seguite relação: & ' = arcsi $ % Por fim, será observado o feixe reflectido quado o âgulo de icidêcia correspode ao de Brewster µ, através de um polaróide colocado em diferetes posições. través da relação etre os ídices de refracção dos meios cosiderados e do âgulo de Brewster, este pode ser determiado com precisão satisfatória: #! "

4 Método experimetal 1) Esquema de motagem

5 oclusão Na primeira fase da experiêcia determiou-se a distâcia focal de uma lete covergete recorredo a 2 métodos diferetes. No primeiro, que ão é mais que uma medição directa da distâcia focal, resultou o valor 0,8 cm, com um desvio à precisão de 0,1 cm e um erro de leitura estimado em 0,2 cm. No segudo, recorreu-se ao método dos focos cojugados, para calcular o valor da distâcia focal a partir da distâcia ao objecto e à imagem, tedo-se obtido o valor de 0,743 cm com um erro à precisão de 0,400 cm. oclui-se que o primeiro método utilizado permitiu uma melhor precisão. Nesta motagem foi também possível comparar os valores da ampliação da largura e da altura do objecto com a ampliação calculada a partir das distâcias do objecto e imagem à lete. difereça destas ampliações represeta 5,7% do valor de ampliação observado durate a experiêcia. Seguidamete, mais uma vez recorredo ao método dos focos cojugados, calculou-se a distâcia focal de uma lete divergete por associação da mesma à aterior lete covergete, criado uma úica lete, para a qual foi medida a sua ova distâcia focal. distâcia focal da lete total foi estimada em 15,1 cm, o que os permitiu obter o valor de 4,3 cm para a distâcia focal da lete divergete. Quato à determiação do ídice de refracção do vidro chegou-se ao valor médio de 1,52 com um desvio à precisão de 8,55%. Para calcular este valor assumiu-se que do ar é igual a 1, ou seja, que a velocidade da luz o ar é igual à o vácuo. Durate a execução desta motagem em particular foi aida possível observar que o âgulo de reflexão total é 42,5 º, âgulo para o qual ão há trasmissão de luz do vidro para o ar. Na fase seguite da protocolo, calculou-se o âgulo de Brewster, ou seja, provocou-se a polarização paralela da luz e seguidamete observou-se qual o âgulo para o qual deixa de haver reflexão. No etato, para os agulos etre 54º e 60º a reflexão ão era observável devido às codições em que se desevolvia a experiêcia pelo que se tomou o valor médio, isto é, 57º. ofirmou-se aida que para uma polarização perpedicular ao plao de icidêcia, formado pela direcção de propagação e de reflexão, era possível observar a reflexão para todos os âgulos.

6 pêdice Bibliografia: otribuição para o desevolvimeto do esio da Física Experimetal o IST, tóio. Ribeiro, Pedro Sebastião e Fracisco Tomé potametos das aulas práticas e teóricas e protocolos, professor Berardo Brotas e Isabel abaço

Experiência da determinação da velocidade da luz

Experiência da determinação da velocidade da luz º Semestre 003/00 Instituto Superior Técnico Eperiência da determinação da velocidade da luz Licenciatura em Engenharia Física Tecnológica Ricardo Figueira nº53755 André Cunha nº53757 Tiago Marques nº53775

Leia mais

Ótica geométrica. Descrição dos fenómenos óticos que ocorrem em sistemas com componentes de dimensões superiores aos comprimentos de onda da radiação

Ótica geométrica. Descrição dos fenómenos óticos que ocorrem em sistemas com componentes de dimensões superiores aos comprimentos de onda da radiação Ramos da Ótica Ótica Geométrica Ótica geométrica Descrição dos feómeos óticos que ocorrem em sistemas com compoetes de dimesões superiores aos comprimetos de oda da radiação Ótica Física Em sistemas com

Leia mais

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ c = ídice de refração: represeta quatas vezes a velocidade da luz o meio em questão é meor que a velocidade da luz o vácuo REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda

Leia mais

4Parte OBJETIVO GERAL. Parte I Preparação da atividade laboratorial

4Parte OBJETIVO GERAL. Parte I Preparação da atividade laboratorial Relatórios das atividades laboratoriais AL 3.1 ONDAS: ABSORÇÃO, REFLEXÃO, REFRAÇÃO E REFLEXÃO TOTAL OBJETIVO GERAL Ivestig os feómeos de absorção, reflexão, refração e reflexão total, determi o ídice de

Leia mais

Propriedades das Ondas

Propriedades das Ondas Propriedades das Odas Reflexão, Refração da Luz e Difração da Luz Reflexão, Absorção e Trasmissão de uma oda E icidete = E reflectida + E absorvida + E trasmitida Reflexão Regular e Difusa da Luz Quado

Leia mais

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda seu meio de propagação, com mudaça em sua velocidade. Porém é válido lembrar que simultaeamete com a refração ocorre também a reflexão e absorção da luz.

Leia mais

Aula 2 Óptica geométrica (reflexão e refração) F-428: Física Geral IV

Aula 2 Óptica geométrica (reflexão e refração) F-428: Física Geral IV Aula Óptica geométrica (reflexão e refração) F-48: Física Geral IV Odas eletromagéticas plaas o vácuo E(r,t) E 0 se (k. r - t) O vetor de propagação k defiirá a direção e setido do raio associado a óptica

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

OTI0001- Óptica Física

OTI0001- Óptica Física OTI0001- Óptica Física Lúcio Mioru Tozawa [email protected] UDESC CCT - DFI Aula 4 Letes Superfícies Refratoras Esféricas (a) Reflexão pela superfície Luz icidete e refletida o lado R (Images Reais).

Leia mais

3º Trabalho de Laboratório Óptica geométrica

3º Trabalho de Laboratório Óptica geométrica 3º Trabalho de Laboratório Óptica geométrica NOTA: Os valores esperados devem ser calculados antes da realização experimental deste trabalho. Experiência 1: Determinação do índice de refracção de um vidro

Leia mais

Gabarito: Resposta da questão 1: [D] Observando a figura, temos que: Do meio 3 para o 2, o raio se aproxima da normal, logo: n2 n 3.

Gabarito: Resposta da questão 1: [D] Observando a figura, temos que: Do meio 3 para o 2, o raio se aproxima da normal, logo: n2 n 3. Gabarito: Resposta da questão : [D] Observado a figura, temos que: Do meio 3 para o, o raio se aproxima da ormal, logo: 3. Do meio para o, o raio sofre reflexão total, logo:. Aplicado a lei de Sell do

Leia mais

Óptica Geométrica. Construções geométricas em lentes delgadas"

Óptica Geométrica. Construções geométricas em lentes delgadas Óptica Geométrica Construções geométricas em lentes delgadas" Gonçalo Figueira [email protected] Complexo Interdisciplinar, ext. 3375 Tel. 218 419 375 1.º semestre 2015/16" https://fenix.tecnico.ulisboa.pt/disciplinas/lfeb2517/2015-2016/1-semestre"

Leia mais

1º trabalho de Laboratório Óptica geométrica

1º trabalho de Laboratório Óptica geométrica 1º trabalho de Laboratório Óptica geométrica Experiência 1: Determinação do índice de refracção de um vidro acrílico A direcção de propagação da luz altera-se quando a luz atravessa uma superfície de separação

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS.

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. 1.1 Objectivos Medir gradezas físicas, utilizado os istrumetos adequados. Apresetar correctamete os resultados das medições, ao ível da utilização

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM 3D

APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM 3D APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM D PERTILE, R. J. 1 ; DE TONI, P. T. 1 ; FRACCANABBIA, N. 1 ; BAVARESCO, D. 2 ; RESUMO - Este trabalho apreseta resultados de um projeto de apredizagem, o qual

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

LENTES. Refração em uma superfície esférica

LENTES. Refração em uma superfície esférica LENTES efração em uma suerfície esférica coveção de siais aroximação araxial equação do diotro simles Letes tios de letes, roriedades, coveção de siais, aroximação das letes fias costrução da imagem or

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º B1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º B1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º B Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cico ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções, das quais só uma está

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto [email protected] Departameto de Matemática Uiversidade

Leia mais

Álgebra. Universidade Eduardo Mondlane. Unidade 1. Números Complexos. Operações Algébricas. Interpretação geométrica

Álgebra. Universidade Eduardo Mondlane. Unidade 1. Números Complexos. Operações Algébricas. Interpretação geométrica Uiversidade Eduardo Modlae Faculdade de Ciêcias. Departameto de Matemática e Iformática Álgebra Para Estudates do Esio à Distâcia do Curso de Liceciatura em Matemática, ao 01 Uidade 1. Números Complexos.

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2

O termo linear significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2 MÓDULO 4 - PROBLEMAS DE TRANSPORTE Baseado em Novaes, Atôio Galvão, Métodos de Otimização: aplicações aos trasportes. Edgar Blücher, São Paulo, 978..CONCEITOS BÁSICOS DE PROGRAMAÇÃO LINEAR É uma técica

Leia mais

1 Amintas engenharia

1 Amintas engenharia 1 Amitas egeharia 2 Cálculo Numérico 1. Itrodução Amitas Paiva Afoso 3 1. Itrodução O que é o Cálculo Numérico? 4 1. Itrodução O Cálculo Numérico correspode a um cojuto de ferrametas ou métodos usados

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Índice de refracção e propriedades ópticas. Química 12º Ano. Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial

Índice de refracção e propriedades ópticas. Química 12º Ano. Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial Índice de refracção e propriedades ópticas Química 12º Ano Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial Dezembro 2005 Jorge R. Frade, Ana Teresa Paiva Dep. Eng. Cerâmica

Leia mais

DEEC Área Científica de Telecomunicações Instituto Superior Técnico. Propagação & Antenas Prof. Carlos R. Paiva INTRODUÇÃO AOS GUIAS DE ONDA

DEEC Área Científica de Telecomunicações Instituto Superior Técnico. Propagação & Antenas Prof. Carlos R. Paiva INTRODUÇÃO AOS GUIAS DE ONDA 4 DEEC Área Cietífica de Telecomuicações Istituto Superior Técico Propagação & Ateas Prof Carlos R Paiva INTRODUÇÃO AOS GUIAS DE ONDA Nestes apotametos fa-se uma pequea itrodução ao estudo dos guias de

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Universidade de São Paulo Instituto de Física

Universidade de São Paulo Instituto de Física Equipe Uiversidade de São Paulo Istituto de Física 4331 Física Experimetal A NOTA POFESSO 1 1)... fução... Turma:... )... fução... Data:... 3)... fução... Mesa o :... EXP Movimeto uiformemete acelerado,

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

GABARITO AULA DE VÉSPERA USP/UNICAMP

GABARITO AULA DE VÉSPERA USP/UNICAMP GABARITO AULA DE VÉSPERA USP/UNICAMP João Paulo 1 4 5 6 7 8 9 10 C B C C C 11 1 1 14 15 16 17 18 19 0 C C C E B E E D A 1 4 5 6 7 8 9 0 E A C D D D C A C 1 4 5 6 7 8 9 40 C E B A A B E B B D COMENTÁRIOS

Leia mais

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES Guilherme de Martii Uiversidade Tecológica Federal do Paraá - Câmpus Toledo

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

ARRANJO SIMPLES PROFº: VALDÉCIO FÉLIX. Choquitomóvel

ARRANJO SIMPLES PROFº: VALDÉCIO FÉLIX. Choquitomóvel HC ARRANJO SIMPLES HENRIQUE CASTRICIANO Choquitomóvel PROFº: VALDÉCIO FÉLIX Temos o destio que merecemos. O osso destio está de acordo com os ossos méritos. Albert Eistei ED ESCOLA DOMÉSTICA AGRUPAMENTOS

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari [email protected] O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS

Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS INTRODUÇÃO O desevolvimeto do homem deve-se ao fato de que ele procurou observar os acotecimetos ao seu redor. Ao ver os resultados dos diversos evetos, ele

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Óptica Geométrica Séries de Exercícios 2018/2019

Óptica Geométrica Séries de Exercícios 2018/2019 Óptica Geométrica Séries de Exercícios 2018/2019 24 de Maio de 2019 =2= 2018/2019 Óptica Geométrica Série de exercícios n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido

Leia mais

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói CES Cetro de Esio Superior de C. Lafaiete Faculdade de Egeharia Elétrica Física II Prof. Aloísio Elói Superposição e Odas Estacioárias Resumo Serway & Jewett, capítulo 14. 1. Pricípío da superposição:

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

CF358 Física BásicaExperimental I

CF358 Física BásicaExperimental I CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO

Leia mais

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto] [Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a: 01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3

Leia mais

2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO

2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Tipos de fluidos: Os vários tipos de problemas ecotrados em Mecâica dos Fluidos podem ser classificados com base a observação de características físicas do campo de fluxo. Uma possível classificação é

Leia mais

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO Sérgio Ferado Mayerle, Dr. UFSC / CTC / EPS - [email protected] - Floriaópolis - SC Thiago Dedavid de Almeida Bastos

Leia mais