APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM 3D
|
|
|
- Fábio Melgaço Malheiro
- 8 Há anos
- Visualizações:
Transcrição
1 APRENDIZAGEM BASEADA EM PROJETOS DE MODELAGEM D PERTILE, R. J. 1 ; DE TONI, P. T. 1 ; FRACCANABBIA, N. 1 ; BAVARESCO, D. 2 ; RESUMO - Este trabalho apreseta resultados de um projeto de apredizagem, o qual foram desevolvidos modelos de objetos tridimesioais. Nesta ação a modelagem tridimesioal cosiste a elaboração de protótipos por meio de softwares para posterior cofecção em uma impressora D. A ação acora-se a proposta teórico-metodológica de Apredizagem Baseada em Projetos e, também, a proposta de Pesquisa de Desevolvimeto em Projetos Eperimetais. Com objetivo de cofeccioar uma peça composta pela iterseção ortogoal de três cilidros o processo demadou ampla aplicação de coceitos e cohecimetos matemáticos para a obteção de peças bem defiidas. Desse modo o cohecimeto matemático costitui-se como base do processo de modelagem tridimesioal precisa e de qualidade. PALAVRAS-CHAVE: Iovação tecológica. Prototipagem. Liceciatura em Matemática. 1 - INTRODUÇÃO Este trabalho apreseta resultados de um processo ivestigatório cetrado o desevolvimeto de um projeto de apredizagem de modelagem de objetos tridimesioais. O problema em estudo pode ser descrito da seguite forma: Três cilidros de 2 cm de diâmetro e 8 cm de altura se itersectam ao meio formado uma peça úica. Essa peça é depositada um plao de modo que os três cilidros tocam o plao coforme ilustra a Figura 1a. Para a cofecção desse cilidro por meio de uma impressora D precisamos obter uma cuha cilídrica a ser acoplada a etremidade de cada um dos cilidros de modo a resultar uma superfície plaa de sustetação e aderêcia ao plao de impressão, coforme ilustra a Figura 1b. 1 Estudates, Curso Liceciatura em Matemática, IFRS Campus Beto Goçalves, Av. Osvaldo Araha, 540, CEP , Beto Goçalves, RS, [email protected], [email protected], petra.toi157gmail.com 2 Prof. Doutor, IFRS-BG, Av. Osvaldo Araha, 540, CEP , Beto Goçalves, RS. [email protected]
2 Figura 1: Represetação do problema de estudo A questão orteadora que permeia a pesquisa pode ser descrita por: Quais coceitos e cohecimetos matemáticos se mostraram ecessários durate o processo de modelagem de um objeto baseado a uião ortogoal de três cilidros depositados sobre um plao?. Esta ação se justifica com base as discussões cotemporâeas de desevolvimeto cietífico e tecológico a partir da educação e com vista a iovação. A metodologia de Projetos Eperimetais utilizada possui como uma de suas características o aprofudameto da compreesão do feômeo sob ivestigação pelo pesquisador equato a atividade está em adameto. É esse ceário que se desecadeou o projeto de pesquisa e produção de materiais didático eperimetais para o esio de ciêcia, resultado, também, a produção desse trabalho. 2 PROCEDIMENTOS METODOLÓGICOS As discussões teórica-metodológicas que sustetas o desevolvimeto da pesquisa são delieadas pela perspectiva de Projetos Eperimetais em Pesquisas Educacioais (COBB, et al. 200). Essa perspectiva vem se apresetado com uma proposta de iovação educacioal, sobretudo para o esio e apredizagem de ciêcias eatas, como é o caso da Física e da Matemática (REIS, 2010). Nessa proposta, em vez de serem estimulados por aulas tradicioais, os estudates devem buscar respostas a questões compleas, muitas vezes multidiscipliares, e devem apresetar um produto fial como resultado de suas pesquisas. O percurso que resultou a produção desse trabalho foi desecadeado pela ecessidade de costruir uma peça para uir varetas de modo a servir como origem do sistema cartesiao tridimesioal. O processo de modelagem deveria permitir a cofecção da peça com uso de uma impressora D. Com uso do software de modelagem tridimesioal Bleder, a equipe laçouse esse desafio e se deparou com a ecessidade de utilização de relações matemáticas e aplicação de diferetes coceitos para a modelagem da peça.
3 - RESULTADOS E DISCUSSÃO O processo de impressão tridimesioal demada a modelagem de objetos de tal modo que estes possuam uma base de apoio e fiação para que as sucessivas camadas de filameto possam ser depositas. Diate disso, o primeiro desafio para obteção de uma peça regular foi a determiação do âgulo que cada cilidro faz com relação ao plao horizotal. Esse resultado foi alcaçado ao comparar a posição da peça com um plao icliado que corta os três eios cartesiaos a uma mesma distâcia da origem, coforme ilustra a Figura 2a. Plaos com essa característica tem equações do tipo y z k (esse caso escolhemos k ) coforme ilustra a Figura 2b traçada o software Maple. A partir disso podemos obter a icliação do plao com relação a cada um dos eios (que correspodem aos cilidros) com base o âgulo formado pelo vetor diretor do plao e o vetor diretor de cada um dos eios coordeados, coforme mostra a Figura 2c. À vista disso, obtém-se a icliação dos cilidros a partir do âgulo formado pelos vetores (1,1,1), que é o vetor diretor do plao de equação y z é o vetor diretor do eio, por meio da relação:., e (1,0,0), que cos cos 54,756º (1). Figura 2 : Comparação da alocação da peça com o plao dado pela equação y z z ( a ) ( b ) ( c ) ( d ) yz α y z y α ( e ) A Figura 2d mostra essa composição. A Figura 2e mostra a obteção de um triâgulo formado por segmetos de retas s1 e s2 suportadas pelos vetores e e pelo segmeto cotido o plao e que itersecta s1 e s2. Pela codição de ortogoalidade do vetor diretor do plao, o triâgulo é retâgulo, permitido a obteção do âgulo procurado, dado por: 90º 5,2644º. (2) Os resultados dados pelas equações (1) e (2), permitem a obteção das demais razões trigoométricas para os âgulos α e por meio da relação fudametal se () cos ()
4 Na sequêcia, o segudo desafio foi obter a medida do comprimeto da cuha que deve ser somada aos 8 cetímetros do cilidro defiido iicialmete, coforme ilustra a Figura a. Cosiderado-se a icliação obtida e o diâmetro de 2 cm do cilidro, defiido iicialmete, é possível costruir o triâgulo retâgulo mostrado a Figura b. A partir da razão tg( ), desse triâgulo, obtemos a medida procurada dada por: 2 2 tg( ) () 4 Por fim, para obtermos o posicioameto eato da peça, de modo a possibilitar a cofecção por meio da impressora D, precisamos determiar a altura do cetro da peça com relação a horizotal. Esse processo se faz ecessário pois o software de modelagem toma como referêcia o seu cetro geométrico para posicioameto da peça, que este caso coicide com o cetro de cada um dos cilidros cosiderado o comprimeto total de cm. Figura : Esquema para determiação do tamaho da cuha e da altura da peça ( a ) 2 cm ( b ) 2 cm ( c ) ( d ) 8 c m 22 cm 2 cm h =? 4 cm h = 46 A Figura c mostra a obteção de um triâgulo retâgulo obtido pela projeção vertical do cetro do cilidros até o plao suporte e a projeção do cetro até o plao formado um âgulo. Da aplicação da razão se(), tomada o triâgulo mostrado a Figura d, obtémse a altura procurada que é dada por: h 6 se( ) h 4 (4) CONCLUSÕES A modelagem tridimesioal eige ampla aplicação de coceitos e cohecimetos matemáticos para a obteção de peças bem defiidas. Desse modo o cohecimeto matemático costitui-se como base do processo de modelagem tridimesioal precisa e de qualidade. Por meio desse Projetos Eperimetal deota-se atribuição de sigificados, o aprofudameto e cosolidação de coceitos e cohecimetos estudados teoricamete o curso
5 de Liceciatura em Matemática. Ao logo do desevolvimeto de Projetos Eperimetal de a apredizagem matemática se cosolida. A modelagem tridimesioal, além de possibilitar a cofecção de materiais didáticos iovadores, apreseta-se como uma proposta de iovação educacioal, sobretudo para o esio e apredizagem de ciêcias eatas. 5 - REFERÊNCIAS COBB, P.; CONFREY, J.; DISESSA, A.; LEHRER, R.; SCHAUBLE, L. Desig eperimets i educatioal research. Educatioal Researcher, Thousad Oaks, v. 2,. 1, p ja./fev REIS. E. O Processo de Costrução de Objetos de Apredizagem em Cálculo Diferecial e Itegral durate uma Atividade de Desig. Dissertação de Mestrado. Uiversidade Estadual Paulista UNESP. Rio Claro, SP
11 Aplicações da Integral
Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos
CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA
52 CPÍTULO VI MOMENTOS ESTÁTICOS, BRICENTROS E MOMENTOS DE INÉRCI I.MOMENTOS ESTÁTICOS Mometo Estático de um elemeto de superfície, em relação a um eio, situado o mesmo plao que a superfície cosiderada,
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.
MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto
GRUPO I Duração: 50 minutos
Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica
Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +
Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]
[Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação
As principais propriedades geométricas de figuras planas são:
Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,
PROTOTIPAGEM DE SUPERFÍCIES QUÁDRICAS
PROTOTIPAGEM DE SUPERFÍCIES QUÁDRICAS KINALSKI JUNIOR, V. 1 ; LUVISA, A. 2 ; BAVARESCO, D. 3 RESUMO Neste trabalho apresentamos resultados de um processo investigatório que definiu uma metodologia para
Mecânica dos Sólidos II
Curso de Egeharia Civil Uiversidade Estadual de Marigá Cetro de Tecologia Departameto de Egeharia Civil Mecâica dos Sólidos II Bibliografia: Beer, F. P.; Johsto, Jr. E. R.; DEWolf, J. T. Resistêcia dos
Experiência de Óptica Geométrica
1º Semestre 2003/2004 Istituto Superior Técico Experiêcia de Óptica Geométrica Liceciatura em Egeharia Física Tecológica Ricardo Figueira º53755 dré uha º53757 Tiago Marques º53775 LFX4 Professor Berardo
DERIVADAS DE FUNÇÕES11
DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos
Método alternativo para calcular a constante de Apéry
SCIENTIA PLENA VOL. 7, NUM. 4 0 www.scietiaplea.org.br Método alterativo para calcular a costate de Apéry S. R. Cruz; J. B. Oliveira; D. T. Feitosa; C. M. Silva Departameto de Matemática, Uiversidade de
Quantas pétalas tem a rosácea r = sin(nθ)?
http://dx.doi.org/10.4322/gepem.2015.009 Quatas pétalas tem a rosácea r = si(θ)? Nota de Aula 1 Elisadra Bar de Figueiredo Professora, Uiversidade do Estado de Sata Cataria- UDESC [email protected]
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
Duração: 90 minutos 5º Teste, Junho Nome Nº T:
Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões
A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES
A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES Guilherme de Martii Uiversidade Tecológica Federal do Paraá - Câmpus Toledo
Proposta de teste de avaliação
Matemática. N DE ESCLRIDDE Duração: (Cadero + Cadero ): 50 miutos. Tolerâcia: 0 miutos Data: MI 09 Cadero : 75 miutos. Tolerâcia:5 miutos (é permitido o uso de calculadora) Na resposta aos ites de escolha
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Cadero 1 + Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos:
Novo Espaço Matemática A 12.º ano Proposta de Teste Intermédio [Novembro 2015]
Novo Espaço Matemática A.º ao Proposta de Teste Itermédio [Novembro 05] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. Para
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdária Dr Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 90 mitos Fevereiro/ 06 Nome Nº T: ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta correta
GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010
GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.
INFORMAÇÃO-PROVA PROVA DE AVALIAÇÃO DE CONHECIMENTOS E CAPACIDADES Componente Específica Matemática (Nível 2) Código da Prova /2015
INFORMAÇÃO-PROVA PROVA DE AVALIAÇÃO DE CONHECIMENTOS E CAPACIDADES Compoete Específica Matemática (Nível 2) Código da Prova 7000 2014/2015 O presete documeto divulga iformação relativa à Prova de Avaliação
2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO
EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA
Proposta de teste de avaliação
Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: Cadero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas,
FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS
145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo
Conteúdos Programáticos de Matemática A 12º ano 2017/2018
Coteúdos Programáticos de Matemática A 12º ao 2017/2018 CONTEÚDOS PROGRAMÁTICOS CALENDARIZAÇÃO Cálculo Combiatório (CC12) Propriedades das operações sobre cojutos - Propriedades comutativa, associativa,
4. Forças Distribuídas: Centróides de Centros de Gravidade
4. Forças Distribuídas: Cetróides de Cetros de Gravidade 4.1 Geeralidades A atracção da Terra sobre um determiado corpo é costituída por um sistema de forças distribuídas aplicadas em cada partícula do
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste (Cadero 1+ Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos: Cadero
Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.
Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,
TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A 11.º ANO PROPOSTA DE RESOLUÇÃO. (proposição verdadeira) (proposição verdadeira)
Matemática A o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A º ANO PROPOSTA DE RESOLUÇÃO A circuferêcia tem raio Tomado MN para base do triâgulo, tem-se: altura = 5 cos 6 5 base = si 6 A área do triâgulo é
Números Complexos. David zavaleta Villanueva 1
Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
Prova 3 Matemática ... GABARITO 4 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
EXPLORANDO OS NÚMEROS FIGURADOS POR MEIO DE ATIVIDADES INVESTIGATIVAS
EXPLORANDO OS NÚMEROS FIGURADOS POR MEIO DE ATIVIDADES INVESTIGATIVAS Vailde Bisogi - Uifra 1 Maria do Carmo Barbosa Trevisa - Uifra Resumo Esse trabalho tem por objetivo descrever os resultados de uma
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO
BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.
Whats: PROGRESSÃO GEOMÉTRICA
Questões Vídeos 1. As áreas dos quadrados a seguir estão em progressão geométrica de razão 2. Podemos afirmar que os lados dos quadrados estão em a) progressão aritmética de razão 2. b) progressão geométrica
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
( ) ( ) Novo Espaço Matemática A 11.º ano Proposta de Resolução [janeiro ] + = é tangente a uma esfera de centro ( 1, 0, 1)
Novo Espaço Matemática A º ao Proposta de Resolução [jaeiro - 08] Seja CA = a CADERNO (É permitido o uso de calculadora gráfica) CA AM = 7, 5 CA AM cos 0 = 7, 5 a a = a = 7, 5 89 ( ) Como a > 0, tem-se:
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cico ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções, das quais só uma está
Prova-Modelo de Matemática
Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate
ATIVIDADES INVESTIGATIVAS PARA O ENSINO E APRENDIZAGEM DOS CONCEITOS E PROPRIEDADES DE SUCESSÕES NUMÉRICAS
Mestrado Profissioalizate em Esio de Física e de Matemática ATIVIDADES INVESTIGATIVAS PARA O ENSINO E APRENDIZAGEM DOS CONCEITOS E PROPRIEDADES DE SUCESSÕES NUMÉRICAS Alua: Lucilee Oeig Saraiva Orietadora:
( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = <
Máimo do Aluo: Rumo ao Eame! Teste de avaliação A { R : ( ) } < A R : ta < A R : ta < Págs e A R : k, < A R : k, < A R : k, < A R : k, < A, 7 7 cos θ cos θ cos θ 6 cos θ cosθ cosθ No etato, θ,, pelo que
CPV O cursinho que mais aprova na FGV
O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia
Sumário. 2 Índice Remissivo 19
i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-44 Cálculo Diferecial e Itegral II (Escola Politécica) Terceira Lista de Exercícios - Professor: Equipe de Professores 0.1. Vide Lista,
Imersão Matemática PA e PG. c) 3 + d) 3 - e) 3-3. soma a1 + a2 + a3 + a4 + a5 é igual a a) 24 + b) c) d) e)
. (Uifesp) Em um eperimeto, uma população iicial de 00 bactérias dobra a cada horas. Sedo o úmero de bactérias após horas, segue que y y 00. c) + d) - e) - a) Depois de um certo úmero de horas a partir
Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada.
Dez cartões estão umeradas de 1 a 10. Depois de embaralhados, são formados dois cojuto de 5 cartões cada. Determie a probabilidade de que os úmeros 9 e 10 apareçam um mesmo cojuto. C, C,..., C 1 10 Espaço
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versões / Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
