Teoria dos Grafos Aula 9
|
|
|
- Henrique Guterres Fartaria
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria dos Grafos Aula 9 Aula passada Grafos direcionados Busca em grafos direcionados Ordenação topológica Aula de hoje Grafos com pesos Dijkstra Implementação Fila de prioridades e Heap Dijkstra (o próprio)
2 Relacionamentos de Peso Relacionamentos entre objetos nem sempre são idênticos (mesma intensidade) Exemplos? Amizade mais ou menos amigo (Orktut) Distância física perto ou longe Tempo de translado mais ou menos tempo Como representar tais relacionamentos?
3 Grafos com Pesos Anotar arestas do grafo com intensidade do relacionamento peso da aresta (weight) função w(e) retorna peso da aresta e Ex. w : E R Graficamente log() 5 5 w((,6)) = 7 w((5,6)) = log() w((,4)) = 0
4 Distância com Pesos Comprimento de um caminho soma dos pesos das arestas que definem o caminho Distância comprimento do menor caminho simples de entre dois vértices Graficamente log() 7 5 Comprimento do caminho 1,,6,7? Comprimento do caminho 1,3,4,7? Comprimento do caminho 1,4,7? Distância entre 1 e 7? Distância entre 3 e 5?
5 Grafos Direcionados com Peso Relacionamentos assimétricos com pesos (diferentes intensidades) Exemplo? Mesma idéia: anotar arestas do grafo com intensidade do relacionamento peso da aresta (weight) função w(e) retorna peso da aresta e aresta direcionada, pesos potenciamente diferentes
6 Viagem entre Cidades Cidades brasileiras Estradas entre cidades Problema 1: Como saber se duas cidades estão conectadas por estradas? Problema : Qual é o menor (melhor) caminho entre duas cidades?
7 Viagem entre Cidades Abstração via grafos com pesos Brasía 1015Km Sampa 7Km Santos 716Km BH 586Km 434Km 49Km Rio Problema 1: Como saber se duas cidades estão conectadas por estradas? Resolvido! Problema : Qual é o menor (melhor) caminho entre duas cidades?
8 Distância em Grafos com Peso Calcular caminho mais curto entre cidades é calcular a distância em grafos com peso pesos sempre maior que zero Dado G, com pesos Qual é a distância do vértice s ao d? Como resolver este problema? Como resolvemos o problema sem pesos? Podemos adaptar algumas idéias?
9 Distância em Grafos com Peso Idéia Partindo de s, expandir os caminhos, incluindo vértices Mas em que ordem? Na ordem em que caminhos mínimos sejam garantidos! Expandir caminhos mínimos até chegar em d de maneira gulosa!
10 Distância em Grafos com Peso a Exemplo: distância de a à g? 1 b 4 e 4 d 3 Começar em a, expandir Qual próximo vértice? 1 c f 3 Algoritmo de Dijkstra! Qual vértice nos dá caminho mínimo garantido? g
11 Algoritmo de Dijkstra Como tornar a idéia em algoritmo? adicionar o vértice para o qual temos o menor caminho Idéias: Manter dois conjuntos de vértices Manter comprimento do menor caminho conhecido até o momento para cada vértice Adicionar o vértice de menor caminho Atualizar distâncias
12 Algoritmo de Dijkstra 1.Dijkstra(G, s).para cada vértice v 3. dist[v] = infinito 4.Define conjunto S = 0 // vazio 5.dist[s] = 0 6.Enquanto S!= V 7. Selecione u em V-S, tal que dist[u] é mínima 8. Adicione u em S 9. Para cada vizinho v de u faça 10. Se dist[v] > dist[u] + w((u,v)) então 11. dist[v] = dist[u] + w((u,v)) Como o algoritmo executa?
13 Executando o Algoritmo a 1 b 4 e 4 d 3 c 1 f 3 g Manter tabela com passos e distâncias Conjunto S d(a) d(b) d(c) d(d) d(e) d(f) d(g) {} 0 inf inf inf inf inf inf {a} 1 inf 4 inf inf {a,b} 5 3 inf inf {a,b,e} inf {a,b,e,d} 4 5 inf {a,b,e,d,c} 5 6 {a,b,e,d,c,f} 6 {a,b,e,d,c,f,g}
14 Analizando o Algoritmo Provar que algoritmo sempre produz resultado correto caminho mínimo entre dois vértices Teorema: Considere um vértice u pertencente ao conjunto S em qualquer ponto do algoritmo. Temos que dist[u] é a distância entre s e u.
15 Prova Prova por indução no tamanho de S Caso base: S = 1 S = {s}, dist[s] = 0, devido inicialização Hipótese: S = k Para S = k, assuma que dist[u] é igual a distância entre s e u Caso geral: S = k + 1 k+1 adiciona v à S, dando origem a P v seja (u,v) última aresta no caminho P v Pela hipótese, P u é caminho mínimo s-u
16 Prova Considere outro caminho s-v, P, que não passa por u Precisamos provar que P é maior (ou igual) a P v P passa pela aresta (x,y), com x em S e y fora de S (para algum x e y qualquer) Situação: s S u x y v No passo k+1, algortimo escolhe v para adicionar a S (e não y) Então, caminho s y é maior ou igual a P v Como dist(y,v) >=0, caminho P será maior ou igual a P v Logo, P v é caminho mínimo e dist[v] será distância até v
17 Complexidade Qual é a complexidade do algoritmo? 1.Dijkstra(G, s).para cada vértice v 3. dist[v] = infinito 4.Define conjunto S = 0 // vazio 5.dist[s] = 0 6.Enquanto S!= V 7. Selecione u em V-S, tal que dist[u] é mínima 8. Adicione u em S 9. Para cada vizinho v de u faça 10. Se dist[v] > dist[u] + w((u,v)) então 11. dist[v] = dist[u] + w((u,v)) Depende do tempo para selecionar u tal que dist[u] seja mínima!
18 Algoritmo simples Complexidade Percorre vértices e encontra dist[u] mínimo Complexidade? O(n ) Outra idéia? Fila de prioridades muito usada em grafos! Chave: distâncias Extrair o mínimo (vértice com menor distância) Atualizar chaves (distâncias)
19 Fila de Prioridade Estrutura de dados poderosa (priority queue) Mantém um conjunto de elementos S Cada elemento possui uma chave (número de prioridade) Permite inserir, remover e modificar elementos de S através de sua chave Permite remover menor chave (maior prioridade) Complexidade para inserir ou modificar elemento: O(log n)
20 Heap Como implementar Fila de Prioridade? Heap! O que é um heap? Estrutura de dados em árvore Armazena conjunto de elementos, todos associados a uma chave Chave dos elementos define árvore Heap order: chave(u) <= chave (v), quando u é pai de v
21 Heap - Exemplo Chaves podem inseridas, removidas ou mudar de valor Heap precisa ser reajustado heapify custo O(log n) Manter árvore balanceada
22 Usando um heap? Complexidade 1.Dijkstra(G, s).para cada vértice v 3. dist[v] = infinito 4.Define conjunto S = 0 // vazio 5.dist[s] = 0 6.Enquanto S!= V 7. Selecione u em V-S, tal que dist[u] é mínima 8. Adicione u em S 9. Para cada vizinho v de u faça 10. Se dist[v] > dist[u] + w((u,v)) então 11. dist[v] = dist[u] + w((u,v)) Cada operação no heap: O(log n) n operações de remoção m operações de atualização Complexidade: O((n+m)log n) = O(m log n)
23 Dijkstra, o Próprio Edsger Wybe Dijkstra Professor e pesquisador na área de Ciência da Computação Recebeu Turing Award 197 mais renomado prêmio da Computação Contribuições fundamentais em ling. de programação e verificação formal Algoritmo de Dijkstra utilizado em vários sistemas (redes, GPS, etc) 11/5/1930 6/8/00
Teoria dos Grafos Aula 8
Teoria dos Grafos Aula 8 Aula passada Grafos com pesos, caminhos e distâncias Ideia e algoritmo de Dijkstra Dijkstra o próprio Aula de hoje Corretude de Dijkstra Fila de prioridades e Heap Dijkstra eficiente
Problema da Árvore Geradora Mínima
Problema da Árvore Geradora Mínima The Minimum Spanning Tree Problem Fernando Nogueira Árvore Geradora Mínima 1 O Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem) Considere uma rede
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
Árvores Parte 1. Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos
Árvores Parte 1 Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos Árvores uma introdução As listas apresentadas na aula anterior formam um conjunto de TADs extremamente importante
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
INF 1010 Estruturas de Dados Avançadas
11.2 INF 1010 Estruturas de Dados Avançadas Listas de Prioridades e Heaps 1 Listas de Prioridades Em muitas aplicações, dados de uma coleção são acessados por ordem de prioridade A prioridade associada
GGI026 - Árvore balanceada
GGI06 - Árvore balanceada Marcelo K. Albertini 11 de Setembro de 013 /1 Trabalho 1 implementar programa para resolver o problema entregue programa deve funcionar conforme pedido na descrição 3 fazer apresentação
Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado
Árvores Árvores Grafo Acíclico: não possui ciclos Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo acíclico Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo
Árvores de Decisão Matemática Discreta
Bruno Duarte Eduardo Germano Isolino Ferreira Vagner Gon Árvores de Decisão Matemática Discreta 28/04/2011 Serra IFES Definição de Árvores de Decisão: Arvore de Decisão é uma árvore em que seus nós internos
Teoria dos Grafos Aula 7 - Conceitos Básicos
Teoria dos Grafos Aula 7 - Conceitos Básicos Profª. Alessandra Martins Coelho março/2013 Distância entre vértices Caminho de menor comprimento capaz de ligar 2 vértces. Índice de Wiener Uma das mais tradicionais
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
3.3 Qual o menor caminho até a Escola? 28 CAPÍTULO 3. CICLOS E CAMINHOS
2 CAPÍTULO. CICLOS E CAMINHOS solução para um problema tem se modificado. Em vez de procurarmos um número, uma resposta (o que em muitos casos é necessário), procuramos um algoritmo, isto é, uma série
Distâncias Mínimas. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/ / 27
Distâncias Mínimas Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/2015 1 / 27 Distâncias Mínimas Uma das aplicações mais típicas em grafos é o cálculo de distâncias.
Estruturas de Repetição
Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados
Teoria dos Grafos Aula 24
Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. [email protected], [email protected].
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.
Metodologias de Programação
Metodologias de Programação Bloco 1 José Paulo 1 Formador José António Paulo E-mail: [email protected] Telemóvel: 96 347 80 25 Objectivos Iniciar o desenvolvimento de raciocínios algorítmicos Linguagem
O que é Microsoft Excel? Microsoft Excel. Inicialização do Excel. Ambiente de trabalho
O que é Microsoft Excel? Microsoft Excel O Microsoft Excel é um programa para manipulação de planilhas eletrônicas. Oito em cada dez pessoas utilizam o Microsoft Excel pra trabalhar com cálculos e sistemas
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Comandos de Desvio 1
Programação de Computadores I UFOP DECOM 2014 1 Aula prática 3 Comandos de Desvio 1 Sumário Resumo Nesta aula você irá resolver problemas que requerem uma decisão com base em um teste, ou condição. Para
A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4
A UA UL LA A raiz quadrada Introdução Qual é o número positivo que elevado ao quadrado dá 16? Basta pensar um pouco para descobrir que esse número é 4. 4 2 = 4 4 = 16 O número 4 é então chamado raiz quadrada
Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações
Matemática Discreta Leandro Colombi Resendo Grafos e Árvores Grafos e Suas Representações Árvores e suas Representações Árvores de Decisão Códigos de Huffman Definição: Uma árvore é um grafo conexo acíclico
CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional
CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima
Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira
Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras
OBSERVAÇÕES: EXERCÍCIOS
OBSERVAÇÕES: 1. Esta lista de exercícios poderá ser resolvida individualmente ou em grupos de 2 pessoas. 2. A lista possui 25 exercícios, destes você deve responder os 5 primeiros exercícios e os outros
Relações. Antonio Alfredo Ferreira Loureiro. [email protected] http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1
Relações Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
Matemática Aplicada às Ciências Sociais- 11º ano
Matemática Aplicada às Ciências Sociais- 11º ano Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel Branco Texto Editores Sugestão: Adquira também
GRAFOS Aula 06 Algoritmo de Caminho Mínimo: Dijkstra Max Pereira
Ciência da Computação GRAFOS Aula 06 Algoritmo de Caminho Mínimo: Dijkstra Max Pereira Publicado em 1959, o algoritmo resolve o problema do caminho mínimo em grafos orientados ou não, sob uma restrição:
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 04 Busca Heurística Edirlei Soares de Lima Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido.
UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO
UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO SAD Sistemas de Apoio à Decisão 2011/02 Aula Cinco [email protected] Modelos de decisão Sistemas de
Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo
Algoritmos e Estruturas de Dados I Recursividade Pedro O.S. Vaz de Melo Problema Implemente uma função que classifique os elementos de um vetor em ordem crescente usando o algoritmo quicksort: 1. Seja
GRAFOS BUSCAS E MENOR CAMINHO. Prof. André Backes
8//6 GRAFOS BUSCAS E MENOR CAMINHO Prof. André Backes Busca em grafos Definição Consiste em explorar o grafo de uma maneira bem específica. Trata-se de um processo sistemático de como caminhar por seus
PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.
Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
IFRN. Conexidade e Distância. Prof. Edmilson Campos
IFRN Conexidade e Distância Prof. Edmilson Campos Conteúdo Grafo Conexo Componente Conexa e Algoritmos Grafo F-Conexo Componente F-Conexa Antecessor, Sucessor, Fecho Transitivo Algoritmo Grafo Reduzido
1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =
1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)
Lista de Exercícios Critérios de Divisibilidade
Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
Algoritmos e Estruturas de Dados I. Variáveis Indexadas. Pedro O.S. Vaz de Melo
Algoritmos e Estruturas de Dados I Variáveis Indexadas Pedro O.S. Vaz de Melo Por que índices são importantes? Como uma loja de sapatos artesanais deve guardar os seus produtos? 1 2 3 4 Tamanhos entre
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
PUC-Rio Desafio em Matemática 23 de outubro de 2010
PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
Aula 8 Segmentos Proporcionais
MODULO 1 - UL 8 ula 8 Segmentos Proporcionais Nas aulas anteriores, aprendemos uma formação geométrica básica, através da Geometria Plana de Posição. prendemos que: 1. soma das medidas dos ângulos internos
Ciclo com Contador : instrução for. for de variável := expressão to. expressão do instrução
Métodos de Programação I 2. 27 Ciclo com Contador : instrução for identificador downto for de variável := expressão to expressão do instrução UMA INSTRUÇÃO (SIMPLES OU COMPOSTA) Neste caso o ciclo é repetido
Algoritmos em Grafos: Caminho Mínimo
Algoritmos em Grafos: Caminho Mínimo Letícia Rodrigues Bueno UFABC Problema 2: Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual o menor caminho entre
Avaliação e Desempenho Aula 1 - Simulação
Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo
Isomorfismos de Grafos, Grafos Planares e Árvores
p. 1/25 Isomorfismos de Grafos, Grafos Planares e Árvores Esdras Medeiros p. 2/25 Isomorfismo de Grafos Os isomorfismos preservam adjacências entre vértices. p. 3/25 Isomorfismo de Grafos Definição 1 Dois
- Campus Salto. Disciplina: Sistemas de Arquivos Docente: Fernando Santorsula E-mail: [email protected]
Disciplina: Sistemas de Arquivos Docente: Fernando Santorsula E-mail: [email protected] Sistemas de Arquivos- Parte 2 Pontos importantes de um sistema de arquivos Vários problemas importantes devem
Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160
Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três
Subconjuntos Especiais
Subconjuntos Especiais Cobertura de vértices ^ C uma cobertura de vértices de um grafo é um conjunto de vértices tal que cada aresta do grafo é incidente a, pelo menos, um vértice do conjunto. É um conjunto
Inteligência Artificial IA I. MÉTODOS DE BUSCA
Inteligência Artificial IA Prof. João Luís Garcia Rosa I. MÉTODOS DE BUSCA 2004 V1.4 Sistema de Produção Sistema de Produção: Base de dados global Regras de produção Estratégia de controle Exemplo: tabuleiro
Calculando seno(x)/x com o interpretador Hall.
Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0
Árvores de Suporte de Custo Mínimo
Árvores de Suporte de Custo Mínimo Pedro Ribeiro DCC/FCUP 2016/2017 Pedro Ribeiro (DCC/FCUP) Árvores de Suporte de Custo Mínimo 2016/2017 1 / 28 Árvore de Suporte Uma árvore de suporte ou árvore de extensão
ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012
OSASCO, DE DE 01 NOME: PROF. 8º ANO ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/01 1. Deseja-se fixar o comprimento e a largura de uma sala de modo que a sua área seja 36 m. a) Se a largura
Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002
Teoria de Jogos Algoritmo Minimax e Alfa-Beta AED - 2002 Conceptualização do Problema Jogar pode ser visto como uma generalização do problema de procura em espaço de estados, em que existem agentes hostis
Aplicações das derivadas ao estudo do gráfico de funções
Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
Exercícios de Fixação Aulas 05 e 06
Disciplina: TCC-0.0 Prog. de Computadores III Professor: Leandro Augusto Frata Fernandes Turma: E- Data: / / Exercícios de Fixação Aulas 0 e 0. Construa um algoritmo (pseudocódigo e fluxograma) que determine
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Teoria dos Grafos Aula 26
Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade
Apontamentos de matemática 5.º ano - Múltiplos e divisores
Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,
2 Casamento Inexato, Alinhamento de Sequências e Programação DRAFT
Biologia Computacional - 2004/2 09/11/04 Aula 1: Casamento Inexato, Alinhamento de Sequências e Programação Dinâmica Instrutor: Berilhes Borges Garcia Escriba: André C. M. Costa DRAFT 1 Pesquisando Banco
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos
Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:
Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela
Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento
Algoritmo de Dijkstra Estudo e Implementação
Teoria dos Grafos 0/0 Algoritmo de Dijkstra Estudo e Implementação Professora: Claudia Boeres Alunos: José Alexandre Macedo Maycon Maia Vitali Problema do Caminho Mínimo Qual o caminho mínimo entre um
FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()
FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.
Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA
Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas
2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média.
1) Inicializar um vetor de inteiros com números de 0 a 99 2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média 3)
números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo
A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos
Capítulo 5: Repetições
Capítulo 5: Repetições INF1004 e INF1005 Programação 1 Pontifícia Universidade Católica Departamento de Informática Construção de Laços Repetição: Diversos problemas de difícil solução podem ser resolvidos
Orientação a Objetos
Orientação a Objetos 1. Manipulando Atributos Podemos alterar ou acessar os valores guardados nos atributos de um objeto se tivermos a referência a esse objeto. Os atributos são acessados pelo nome. No
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Tecnicas Essencias Greedy e Dynamic
Tecnicas Essencias Greedy e Dynamic Paul Crocker RELEASE - Reliable and Secure Computation Group Universidade da Beira Interior, Portugal October 2010 1 / 27 Outline 1 Introdução 2 Exemplo Greedy I : Interval
Procedimento para Restaurar Sistema operacional no VPU desde Acronis.
Procedimento para Restaurar Sistema operacional no VPU desde Acronis. Operating Manual MA VPU V 7.81_1 2.4.2 Iniciar Acronis nos VPUs com números de série até # 86 VPUs com números de série abaixo de 86
Algoritmo da raiz quadrada
Algoritmo da raiz quadrada Existem várias formas de nos aproximarmos do valor da raiz quadrada de um número. Uma delas, a equação de Pell, permite encontrar a parte inteira para de uma raiz quadrada de
INF 1010 Estruturas de Dados Avançadas. Indexação em Espaços Multidimensionais. 2012 DI, PUC-Rio Estruturas de Dados Avançadas 2012.
INF 1010 Estruturas de Dados Avançadas Indexação em Espaços Multidimensionais Tópicos Motivação Indexação de pontos em espaços multidimensionais Curvas de preenchimento Hash Particionado Grade Regular
números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo
A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos
BC-0506: Comunicação e Redes Introdução aos Grafos
BC-0506: Comunicação e Redes Introdução aos Grafos Santo André, 2Q2011 1 Roteiro da Aula Motivação: Pontes de Königsberg Definições, Propriedades e Exemplos Aplicações de Grafos Caixeiro viajante Caminho
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7
Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela
