Teoria dos Grafos Aula 24
|
|
|
- Alícia Bonilha Oliveira
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo distribuído
2 Ciclos Negativos Ciclos com pesos negativos Peso do menor caminho entre 1 e 4? Indefinido! Em grafos não-direcionados? aresta negativa induz ciclo negativo sempre indefinido!
3 Caminho Mínimo Dado grafo direcionado G, com pesos negativos e vértice qualquer t Problema: Calcular caminho mínimo e distância de todos os vértices de G até t Ex. caminho mais curto até 5 Árvore geradora induzida
4 Algoritmo p/ Caminho Mínimo Abordagem via programação dinâmica caminho mínino entre um par de vértices Como definir a solução ótima? Custo do caminho mínimo (ótimo) P P = (v 1, v 2,..., t) Que variáveis usar para definir subproblemas? encontrar P através de soluções ótimas para subproblemas menores Vértice de origem v, número de arestas que podem ser usadas no caminho, i = 0,..., n-1
5 Solução Ótima OPT(v, i) : custo do caminho mínimop entre v e t com no máximo i arestas Ex. t = 5 OPT(2, 1) =? OPT(2, 2) =? OPT(2, 3) =? OPT(3, 1) =? OPT(1, 1) =? OPT(1, 2) =?
6 Analisando Solução Ótima Maior comprimento possível (em arestas) do caminho mínimo P entre v e t? n-1 arestas (caminho simples) O que podemos dizer sobre o caminho mais curto P entre v e t? 1) Ou possui exatamente n-1 arestas 2) Ou possui menos arestas
7 Analisando Solução Ótima Se P possui menos do que n-1 arestas Custo da solução ótima com n-2 arestas será o mesmo OPT(n-1, v) = OPT(n-2, v) Se P possui exatamente n-1 arestas Custo da solução ótima será a menor entre todos os caminhos com n-2 arestas, com w sendo vértice inicial, vizinho de v OPT(n-1, v) = min w (OPT(n-2, w) + c vw )
8 Analisando Solução Ótima Graficamente 1 aresta c vw w n-2 arestas v t Qual vizinho w de v, P (com exatamente n- 2 arestas) irá ter? o de menor custo
9 Generalizando Supor P caminho ótimo de v para t com exatamente i arestas Caminho ótimo P é dado pelo mínimo entre os dois casos P possuir exatamente i arestas ou P possuir menos de i arestas OPT(i, v) = min ( OPT(i-1, v), min w (OPT(i-1, w) + c vw ) )
10 Algoritmo de Bellman-Ford Algoritmo para calcular OPT(n-1, *)? iterativo, não recursivo (mas utilizando recursão) Shortest Path(G, t) Array M[0,...,n 1 ; 1,...,n] M[0, v] = oo ; para todo v M[0, t] = 0; For i = 1,..., n 1 For v = 1,..., n M[i, v] = M[i 1, v]; Para cada vizinho w de v M[i, v] = min (M[i, v], M[i 1, w] + c vw ) Retorna M[n 1, *] M retorna distância
11 Complexidade Tempo de execução do algoritmo? Cada elemento da matriz M tempo proporcional ao grau do vértice Soma dos graus: O(m) Complexidade O(m n) se grafo for denso: O(n 3 ) Memória? Matriz M, O(n 2 )
12 Melhorias Práticas (1) Redução na quantidade de memória Manter vetor M[v], ao invés de matriz M Não precisamos de caminhos com menos arestas M[v] : custo do caminho mais curto entre v e t que conhecemos até agora Custo: O(m + n) pois precisamos representar o grafo
13 Melhorias Práticas (2) Redução no tempo de execução Atualizar M[v] apenas quando M[w] for atualizado no passo anterior Terminar algoritmo quando nenhum M[v] for atualizado Nada mais irá mudar! Não reduz complexidade de pior caso mas faz diferença prática, pois caminhos mais curtos tem muito menos do que n-1 arestas
14 Algoritmo de Roteamento Cada vértice é um roteador (ou uma rede) Arestas representam enlaces (links) entre roteadores (ou entre redes) Enlaces possuem custos (ex. tempo de propagação) Problema: cada roteador deve encontrar melhor rota para todos os outros roteadores da rede
15 Algoritmo de Roteamento Soluções? 1) Centralizada Cada roteador obtém visão global da rede (ex, todos roteadores, links e pesos) Executa Dijkstra (árvore geradora define para qual vizinho enviar) 2) Distribuída Cada roteador conhece apenas seus vizinhos Descobre caminho através dos vizinhos Como? Algoritmo anterior (Bellman-Ford)
16 Algoritmo de Roteamento Vetor M[] do algoritmo anterior está distribuído entre os roteadores cada roteador v é responsável por manter M[v] Ordem de execução do loop no algoritmo anterior não é importante Roteador v informa aos vizinhos sempre que M[v] diminuir vizinhos atualizam M[] e então informam aos seus vizinhos Opções de melhor caminho se propagam pela rede
17 Distance Vector Protocols Classe de algortimo de roteamento algoritmos distribuídos Cada roteador v, mantém M[v] para cada destino da rede (outros rotedores) Mantém melhor caminho via cada vizinho Propaga melhor caminho quando atualizado Algoritmos de roteamento utilizado na Internet BGP é variação desta idéia
18 Distance Vector Protocols Exemplo Cada vértice mantém tabela Para cada destino da rede (linhas) Para cada vizinho (colunas) Custo do melhor caminho Informa vizinhos do melhor caminho quando custo é atualizado
Teoria dos Grafos Aula 23
Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação
Algoritmos de roteamento
Algoritmos de roteamento Determinam o caminho que os pacotes percorrem entre o remetente e o destino Grafo usado para formular problemas de roteamento G = (N, E) N nós roteadores E arestas enlaces Cada
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias
Algoritmos e Estruturas de Dados II
Algoritmos e Estruturas de Dados II Grafos VI: Grafos Ponderados & Caminhos Mínimos (Bellman-Ford) Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Programação Dinâmica. Prof. Anderson Almeida Ferreira. Adaptado do material elaborado por Andrea Iabrudi Tavares
Programação Dinâmica Prof. Anderson Almeida Ferreira Adaptado do material elaborado por Andrea Iabrudi Tavares Programação Dinâmica 1950, Bellman Evitar recálculos dos subproblemas em comum Menor para
Problema do Caminho Mais Curto. Problema do Caminho Mais Curto
Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago 650 600 700 Toronto 200 New
Algoritmo baseado em vetor de distâncias
Algoritmo baseado em vetor de distâncias Distance-vector-based (DV) Equação de Bellman-Ford (programação dinâmica) Define d x (y) := custo do caminho de menor custo de x para y Então d x (y) = min v {c(x,v)
Teoria dos Grafos Aula 14
Teoria dos Grafos Aula 14 Aula passada MST Aula de hoje Construção de algoritmos Paradigma guloso Escalonando tarefas no tempo (interval scheduling) Projetando Algoritmos Dado um problema P, como projetar
GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira
Ciência da Computação GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira Algoritmo de Bellman-Ford Arestas com valores negativos podem parecer inúteis, mas elas podem
Algoritmos em Grafos: Caminho Mínimo
Algoritmos em Grafos: Caminho Mínimo Letícia Rodrigues Bueno UFABC Problema 2: Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual o menor caminho entre
Redes de Computadores e Aplicações. Aula 35 Estratégias de Roteamento IP Unicast Parte 2
Redes de Computadores Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do N Campus Currais Novos Redes de Computadores e Aplicações Aula 35 Estratégias de Roteamento IP Unicast Parte 2
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I [email protected] Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT
Aula 20 Roteamento em Redes de Dados Eytan Modiano MIT 1 Roteamento Deve escolher rotas para vários pares origem, destino (pares O/D) ou para várias sessões. Roteamento datagrama: a rota é escolhida para
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Teoria dos Grafos Aula 8
Teoria dos Grafos Aula 8 Aula passada Grafos com pesos, caminhos e distâncias Ideia e algoritmo de Dijkstra Dijkstra o próprio Aula de hoje Corretude de Dijkstra Fila de prioridades e Heap Dijkstra eficiente
3º Semestre. Aula 02 Introdução Roteamento
Disciplina: Dispositivos de Redes I Professor: Jéferson Mendonça de Limas 3º Semestre Aula 02 Introdução Roteamento 2014/1 Roteiro de Aula O que é Roteamento? IP X Protocolos de Roteamento Roteamento Direto
Eduardo Camponogara. DAS-9003: Introdução a Algoritmos
Caminhos Mínimos Com Uma Fonte 1/74 Caminhos Mínimos Com Uma Fonte Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: a Algoritmos Caminhos Mínimos
Roteamento e Roteadores. Conceitos Diversos
e Roteadores Conceitos Diversos Um roteador é um dispositivo que provê a comunicação entre duas ou mais LAN s, gerencia o tráfego de uma rede local e controla o acesso aos seus dados, de acordo com as
# $ % & ' ( ) * ' ( ) *! " " Orientador +, -
#$ %&'()* '()*!"" Orientador +,- ."%&/0#12 3"/%'0)/))&/ )4506 7" %/0)/))&/ 8906 8)) :"'/0)/))&/ '% '); Um roteador recebe em alguma de suas interfaces um pacote vindo da rede local ou da rede externa.
Teoria dos Grafos Aula 26
Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade
Protocolos de Roteamento link-state
CCNA Exploration (Protocolos e Conceitos de Roteamento) Protocolos de Roteamento link-state Cronograma Introdução Introdução ao algoritmo SPF Processo de roteamento link-state Criação de um B.D. link-state
ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.
PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
Caminho Mínimo de Fonte Única em Grafos sem Pesos Negativos
Caminho Mínimo de Fonte Única em Grafos sem Pesos Negativos Letícia Rodrigues Bueno UFABC Problema : Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual
Algoritmo Floyd-Warshall. Problema dos caminhos mínimos entre todos os pares. Programação dinâmica
Algoritmo Floyd-Warshall S. Problema dos caminhos mínimos entre todos os pares Problema: Dado um digrafo com custo nos arcos, determinar, para cada par de vértices s, t o custo de um caminho mínimo de
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
GRAFOS BUSCAS E MENOR CAMINHO. Prof. André Backes
8//6 GRAFOS BUSCAS E MENOR CAMINHO Prof. André Backes Busca em grafos Definição Consiste em explorar o grafo de uma maneira bem específica. Trata-se de um processo sistemático de como caminhar por seus
Capítulo 3 - Sumário. Tipos de Rotas (Diretas, Estáticas e Dinâmicas) Protocolos de Roteamento (RIP, OSPF e BGP)
1 Capítulo 3 - Sumário - Conceitos Tipos de Rotas (Diretas, Estáticas e Dinâmicas) Rotas Default Sumarização de Rotas Algoritmos de Roteamento Protocolos de Roteamento (RIP, OSPF e BGP) 2 ROTA é um caminho
ROUTER. Alberto Felipe Friderichs Barros
ROUTER Alberto Felipe Friderichs Barros Router Um roteador é um dispositivo que provê a comunicação entre duas ou mais LAN s, gerencia o tráfego de uma rede local e controla o acesso aos seus dados, de
Curso de extensão em Administração de sistemas GNU/Linux: redes e serviços
Curso de extensão em Administração de sistemas GNU/Linux: redes e serviços - [email protected] Gestores da Rede Acadêmica de Computação Departamento de Ciência da Computação Universidade Federal da Bahia,
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS. Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado Roteiro Motivação Relaxamento Algoritmo de Dijkstra Motivação Suponha que você
Open Shortest Path First (OSPF)
Open Shortest Path First (OSPF) Carlos Gustavo A. da Rocha Introdução Protocolo de roteamento baseado em estado de enlace, padronizado na RFC 2328 Criado para solucionar as deficiências do RIP Roteadores
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS. Conceitos básicos e representação de grafos Karina Valdivia Delgado
AULA 11 PROJETO E ANÁLISE DE ALGORITMOS Conceitos básicos e representação de grafos Karina Valdivia Delgado Roteiro Motivação Conceitos básicos Representação Motivação Um grafo é uma abstração que permite
Grafos Caminhos mais Curtos
ALGORITMOS E ESTRUTURAS DE DADOS II Grafos Caminhos mais Curtos Profa. Elaine Parros Machado de Sousa adaptações: Cris.na Dutra de Aguiar Ciferri Material baseado em aulas dos professores: Gustavo Basta,
Grafos: caminhos mínimos
Grafos: caminhos mínimos SCE-8 Algoritmos e Estruturas de Dados Thiago A. S. Pardo Maria Cristina Gustavo Batista O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
Algoritmo de Dijkstra Estudo e Implementação
Teoria dos Grafos 0/0 Algoritmo de Dijkstra Estudo e Implementação Professora: Claudia Boeres Alunos: José Alexandre Macedo Maycon Maia Vitali Problema do Caminho Mínimo Qual o caminho mínimo entre um
Redes de Computadores I - Princípios de Roteamento. por Helcio Wagner da Silva
Redes de Computadores I - Princípios de Roteamento por Helcio Wagner da Silva Classificação dos Algoritmos Globais x scentraliados Globais Algoritmo considera com dados de cálculo a conectividade entre
Aula 21: Roteamento em Redes de Dados
Aula : Roteamento em Redes de Dados Slide Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC Rede de Pacotes PC PC PC PC Buffer Pacote Comutado Slide Roteamento
Desafios de Programação TCC Turma A-1
Desafios de Programação TCC-00.254 Turma A-1 Conteúdo Grafos Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2015.1/tcc-00.254
Grafos Parte 1. Aleardo Manacero Jr.
Grafos Parte 1 Aleardo Manacero Jr. Uma breve introdução Grafos são estruturas bastante versáteis para a representação de diversas formas de sistemas e/ou problemas Na realidade, árvores e listas podem
Caminho Mínimo de Fonte Única em Grafos com Pesos Negativos Letícia Rodrigues Bueno
Caminho Mínimo de Fonte Única em Grafos com Pesos Negativos Letícia Rodrigues Bueno UFABC Problemas de Caminho Mínimo Caminho mínimo de fonte única: algoritmo de Dijsktra; Problemas de Caminho Mínimo Caminho
Problemas de otimização
Problemas de otimização Problemas de decisão: Existe uma solução satisfazendo certa propriedade? Resultado: sim ou não Problemas de otimização: Entre todas as soluções satisfazendo determinada propriedade,
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Algoritmo de Dijkstra
lgoritmo de Dijkstra Caminhos mínimos em Grafos Considere um grafo orientado ponderado G = (V,E) em que cada aresta possui um rótulo não negativo associado que define o custo da aresta, e um dos vértices
Algoritmo de Dijkstra (um para todos ; arestas de peso não negativo ; guloso)
Algoritmo de Dijkstra (um para todos ; arestas de peso não negativo ; guloso) 1º passo: iniciam-se os valores: para todo v V[G] d[v] π[v] -1 d[s] 0 V[G] é o conjunto de vértices(v) que formam o Grafo G.
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria
Algoritmos de Caminho Mínimo Parte 1
Algoritmos de Caminho Mínimo Parte 1 A journey of a thousand miles starts with a single step and if that step is the right step, it becomes the last step. Index 1. Introduction 2. Applications 3. Tree
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
Redes de Computadores
Introdução Inst tituto de Info ormátic ca - UF FRGS Redes de Computadores Introdução ao roteamento Aula 20 Inter-rede TCP/IP (Internet) é composta por um conjunto de redes interligadas por roteadores Roteador
Busca em Largura. Adaptado de Humberto C. B. Oliveira
Busca em Largura Adaptado de Humberto C. B. Oliveira Últimas aulas Introdução: História Aplicações Conceitos Básicos: Grafo simples Grafo completo/vazio Grafo não orientado: Arestas laço Arestas paralelas
Análise de Complexidade para algoritmos iterativos e recursivos
Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Análise de Complexidade para algoritmos iterativos e recursivos Algoritmos iterativos - complexidade expressa através de somatórios. Algoritmos
Análise e Síntese de Algoritmos. Programação Dinâmica CLRS, Cap. 15
Análise e Síntese de Algoritmos Programação Dinâmica CLRS, Cap. 15 Contexto Revisões [CLRS, Cap. 1-10] Algoritmos em Grafos [CLRS, Cap. 22-26] Algoritmos elementares Árvores abrangentes Caminhos mais curtos
RIP OSPF. Características do OSPF. Características do OSPF. Funcionamento do OSPF. Funcionamento do OSPF
OSPF & mospf Visão Geral do Protocolo Escopo da Apresentação Introdução - Protocolos de roteamento - Tipos de protocolos - Histórico do protocolos de roteamento (RIP e suas características) OSPF MOSPF
GRAFOS Aula 10 Fluxo em Redes Max Pereira
Ciência da Computação GRAFOS Aula 10 Max Pereira É a transferência de algum tipo de recurso quantificável e sujeito a restrições de equilíbrio, de um local (origem) para outro (destino) através de uma
Programação dinâmica
Programação dinâmica CLRS 15.2 15.3 = recursão com tabela = transformação inteligente de recursão em iteração Algoritmos p. 1 Multiplicação iterada de matrizes Se A é p q e B é q r então AB é p r. (AB)[i,j]
Teoria dos Grafos Aula 18
Teoria dos Grafos Aula 18 Aula passada Coloração Algoritmo guloso Número cromático Teorema das 4 cores Aula de hoje Clusterização (ou agrupamento) Algoritmo Variação Clusterização Coleção de objetos Agrupar
Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho
Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;
Grafos: Busca. SCE-183 Algoritmos e Estruturas de Dados 2. Thiago A. S. Pardo Maria Cristina
Grafos: Busca SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é um problema fundamental Deve-se ter uma forma sistemática
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
QUESTÕES DE PROVAS ANTIGAS
CT-24 QUESTÕES DE PROVAS ANTIGAS ) Preencha a tabela abaixo com Î ou Ï: ω(log n) Θ(n) O(n log n) Ω(n 2 ) o(n ) 6n + 2n 2 + 2.log n + 4n + n.log n + log n 2) Dada a árvore binária abaixo, escreva os seus
