Teoria dos Grafos Aula 18
|
|
|
- Gabriela Arantes Barreiro
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria dos Grafos Aula 18 Aula passada Coloração Algoritmo guloso Número cromático Teorema das 4 cores Aula de hoje Clusterização (ou agrupamento) Algoritmo Variação
2 Clusterização Coleção de objetos Agrupar os objetos em conjuntos Objetos similares no mesmo conjunto Problema: Como agrupar os objetos da melhor maneira possível? Problema fundamental (muitas aplicações)
3 Exemplos Fotografias agrupamento de fotografias Biologia agrupamento de espécies Web agrupamento de páginas Redes sociais agrupamento em comunidades Estrelas agrupamento em galáxias Etc...
4 Medindo Similaridade Problema: como medir similaridade entre objetos? Definir uma função de distância entre os objetos valor da função é inversamente proporcional a similaridade (menor valor, mais similar) d(o i, o j ) : distância entre objetos o i e o j d(o i, o j ) > 0 se i!= j d(o i, o i ) = 0 d(o i, o j ) = d(o j, o i ) (simétrica)
5 Medindo Similaridade Função de distância depende do domínio Distância entre fotografias ex. número de pixels cuja diferença de cor é maior do que D Distância entre espécies ex. percentagem de gens do DNA que são diferentes Distância entre documentos Etc. ex. fração de palavras que são diferentes
6 Medindo a Clusterização K: número de conjuntos a serem produzidos Problema: como agrupar n objetos em K conjuntos? Existem muitas maneiras de agrupar n objetos em K conjuntos número exponencial Qual delas é a melhor maneira? Definir uma métrica para a qualidade da clusterização
7 Exemplo 16 objetos K = 3 (dividir em 3 conjuntos) C 1 C 2 C 3 Qual é a melhor clusterização? Depende!
8 Espaçamento de uma Clusterização Dado K conjuntos e as alocações C 1, C 2,..., C K Espaçamento: menor distância entre quaisquer dois objetos de grupos diferentes Melhor agrupamento é aquele que tem maior espaçamento Objetivo: produzir um agrupamento ótimo (maximizar o espaçamento)
9 Abstração e Algoritmo Abstração via grafos Vértices: objetos Pesos nas arestas: distância entre objetos Grafo completo com n vértices (objetos) Idéias para algoritmo? Guloso: agrupar objetos mais próximos primeiro Grupos são as componentes conexas
10 Algoritmo Começar com grafo totalmente desconexo Adicionar arestas em ordem crescente de peso mais próximo primeiro Parar quando tivermos exatamente k componentes conexos Cada passo (cada aresta) ou uni dois componentes conexos ou adiciona aresta dentro de um componente conexo
11 Conexão com MST Similaridade com o MST? Algoritmo de Kruskal Mesmo algoritmo, mas paramos antes Antes de adicionar as últimas k-1 arestas que Kruskal adicionaria Algoritmo equivalente: obter a MST e remover as K-1 mais pesadas MST to the rescue!
12 Análise do Algoritmo Complexidade? Obter a MST (em um grafo completo) + remover K-1 arestas Complexidade da MST Algoritmo produz agrupamento ótimo Componentes conexos obtidos pela remoção das K-1 arestas da MST constituem uma clusterização com K grupos com espaçamento máximo
13 Outra Métrica de Qualidade Dado K conjuntos e as alocações C 1, C 2,..., C K Muitas métricas para definir a qualidade da clusterização Outra métrica: maior distância entre dois objetos de um mesmo grupo Mede diâmetro de cada grupo Objetivo: produzir agrupamento ótimo (minimizar a métrica)
14 Dificuldade da Clusterização Métrica 1 Grupos cujos objetos diferentes estão distantes Maximizar espaçamento entre grupos Métrica 2 Grupos cujos objetos estão próximos Minimizar espaçamento intra grupos Métrica 1: algortimo polinomial (via MST) Métrica 2: não se conhece algoritmo polinomial (surpreendente!) Muitas heurísticas (ex. Algoritmo k-means)
Teoria dos Grafos Aula 14
Teoria dos Grafos Aula 14 Aula passada MST Aula de hoje Construção de algoritmos Paradigma guloso Escalonando tarefas no tempo (interval scheduling) Projetando Algoritmos Dado um problema P, como projetar
Grafos: conceitos básicos e métricas
Grafos: conceitos básicos e métricas Principais Propriedades em Redes Complexas Definição de termos básicos em um grafo qualquer, nos quais as propriedades estruturais de redes complexas são baseadas Rede
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
Teoria dos Grafos Aula 26
Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade
Redes Complexas Aula 2
Redes Complexas Aula 2 Aula passada Logística Redes e Grafos Exemplos Redes Complexas Aula de hoje Redes e classes Estrutura e características Grau, distância, clusterização Rede (ou Grafo) Abstração que
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO
MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro; Jorge Figueiredo e Judith Gersting Árvore
Redes Complexas Aula 14
Redes Complexas Aula 14 Aula passada Busca em redes Explorando estrutura Navegação em redes Algoritmo eficiente e estrutura Aula de hoje Resilience ( robustez ) Tipo de falhas Influência da estrutura Análise
GRAFOS Aula 09 Coloração de Grafos Max Pereira
Ciência da Computação GRAFOS Aula 09 Coloração de Grafos Max Pereira O problema da coloração de grafos trata-se de atribuir cores a determinados elementos de um grafo, sob certas restrições. A coloração
Redes Complexas Aula 2
Redes Complexas Aula 2 Aula passada Logística e regras Redes por todos os lados Redes Complexas Aula de hoje Representando redes Falando sobre redes Grau, distância, clusterização Rede Abstração que permite
Grafos Parte 1. Aleardo Manacero Jr.
Grafos Parte 1 Aleardo Manacero Jr. Uma breve introdução Grafos são estruturas bastante versáteis para a representação de diversas formas de sistemas e/ou problemas Na realidade, árvores e listas podem
Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses
1 7 Teoria dos grafos Caminho euleriano e Hamiltoniano Grafo Euleriano Grafo onde é possível achar um caminho fechado (ciclo), passando em cada aresta uma única vez Quais são os grafos de Euler? Teorema:
Teoria dos Grafos Aula 8
Teoria dos Grafos Aula 8 Aula passada Grafos com pesos, caminhos e distâncias Ideia e algoritmo de Dijkstra Dijkstra o próprio Aula de hoje Corretude de Dijkstra Fila de prioridades e Heap Dijkstra eficiente
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Teoria da Computação. Clique de um Grafo. Alexandre Renato Rodrigues de Souza 1
Teoria da Computação Clique de um Grafo Alexandre Renato Rodrigues de Souza 1 O que é um grafo? Definição 1: grafo é uma estruturas utilizada para representar relações entre elementos de um dado conjunto.
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá
Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
Noções da Teoria dos Grafos
Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo
Teoria dos Grafos Aula 24
Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo
Algoritmos de aproximação - Problema do caixeiro viajante
Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ
Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ Suponha que temos um grupo de pessoas (funcionário de uma empresa) que serão submetidos a um treinamento. Queremos identificar os grupos de
Teoria da Computação. Complexidade computacional classes de problemas
Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos
Teoria dos Grafos Aula 23
Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:
12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze
Definição e Conceitos Básicos
Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;
GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira
Ciência da Computação GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Árvore Geradora (spanning tree) É um subconjunto de um grafo G que possui todos os vértices
04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II
04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I
Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I [email protected] Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 20: Decomposições de Arestas Preparado a partir da ref.: J.M. Aldous, R. Wilson,
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
Aula 14. Aula de hoje. Aula passada
Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema
O Problema da 3- Coloração de Grafos
Otimização Combinatória O Problema da - Coloração de Grafos Guilherme Zanardo Borduchi Hugo Armando Gualdron Colmenares Tiago Moreira Trocoli da Cunha Prof.ª Marina Andretta Introdução ao Problema Problema
Teoria dos Grafos. Edson Prestes
Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de
Algoritmos de Aproximação para o Problema do Caixeiro Viajante
TSP p.1/19 Algoritmos de Aproximação para o Problema do Caixeiro Viajante 24 de agosto de 2004 TSP p.2/19 Problema do Caixeiro Viajante Dados grafo comprimento da aresta ( ) TSP p.2/19 Problema do Caixeiro
GRAFOS BUSCAS E MENOR CAMINHO. Prof. André Backes
8//6 GRAFOS BUSCAS E MENOR CAMINHO Prof. André Backes Busca em grafos Definição Consiste em explorar o grafo de uma maneira bem específica. Trata-se de um processo sistemático de como caminhar por seus
Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno
Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno UFABC Estruturas de Dados para Conjuntos Disjuntos: Introdução Estruturas de Dados para Conjuntos Disjuntos: Introdução
Projeto e Análise de Algoritmos
Projeto e Algoritmos Pontifícia Universidade Católica de Minas Gerais [email protected] 26 de Maio de 2017 Sumário A complexidade no desempenho de Quando utilizamos uma máquina boa, ela tende a ter
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Algoritmos de aproximação - Problema de cobertura por conjuntos
Algoritmos de aproximação - Problema de cobertura por conjuntos Marina Andretta ICMC-USP 22 de setembro de 205 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M.
Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes.
Thiago Jabur Bittar Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes. Problema: Queremos dividir um grupo em subgrupos que contêm somente elementos
Teoria dos Grafos Aula 22
Teoria dos Grafos Aula 22 Aula passada Aula de hoje Algoritmo de Ford- Aplicações do Fulkerson fluxo máximo Análise do Emparelhamento algoritmo Caminhos Melhorando distintos algoritmo inicial Corte mínimo
14 Coloração de vértices Considere cada um dos grafos abaixo:
14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
Teoria dos Grafos. Conjuntos de Corte e Conectividade
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Conjuntos de
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria
