Teoria dos Grafos Aula 23
|
|
|
- Tiago Barreto Coelho
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica
2 Distância em Grafos Problema: Dado G, com pesos nas arestas, qual é o menor caminho entre dois vértices? dado uma métrica para distância (ex. soma dos pesos) Como resolver este problema? Problema: Menor caminho entre todos os pares de vértices? Dijkstra n vezes!
3 Pesos Negativos Problema: Dijkstra funciona apenas para grafos com pesos postivos nas arestas Contra-exemplo com pesos negativos? Por que Dijkstra falha? Problema: Considerar grafos com pesos negativos nas arestas Ex. aplicações financeiras Como resolver este problema?
4 Ciclos Negativos Ciclos com pesos negativos Peso do menor caminho entre 1 e 4? Indefinido! Caminho mais curto definido apenas quando não há ciclos negativos
5 Distância em Grafos Considerar grafo com pesos negativos, distânca é soma dos pesos Problema 1: calcular distância entre todos os pares de vértices Problema 2: calcular caminho mínimo entre todos os pares de vértices Problema 3: detectar ciclos negativos no final, assumir isto no momento Algoritmo (eficiente) para este problema?
6 Caminho Mínimo Considere um par de vértices i, j O que é a solução ótima? Caminho mais curto de i até j p = (i, v 1, v 2,..., j) v 1, v 2,... : vértices intermediários O que podemos dizer sobre p? Considere o último vértice do grafo, ou seja, n Ou n pertence a p ou n não pertence a p
7 Análise do Caminho Mínimo Se n não pertence a p O que podemos afirmar? p = (i, v 1, v 2,..., j) é caminho mínimo também para o grafo sem vértice n Se n pertence a p O que podemos afirmar? p = (i,..., n,..., j) é caminho mínimo p 1 = (i,..., n) e p 2 = (n,..., j) são caminhos mínimos
8 Análise do Caminho Mínimo Se p 1 = (i,..., n) e p 2 = (n,..., j) são caminhos mínimos O que podemos afirmar sobre distâncias? d(i, j) = distância entre i e j? d(i, j) = d(i, n) + d(n, j) Além disso: p 1 = (i,..., n) é mínimo usando como vértices intermediários 1,..., n-1 p 2 = (n,..., j) é mínimo é mínimo usando como vértices intermediários 1,..., n-1
9 Construindo uma Recursão p 1 = (i,..., n) e p 2 = (n,..., j) são caminhos mínimos sem utilizar n como intermediário Problema menor, com um vértice a menos! Como construir recursão? Usar variável para indicar quais vértices intermediários estão sendo considerados na construção do caminho mínimo d(i,j,n) : distância entre i e j quando consideramos os vértices 1,..., n como intermediários d(i,j,n) é ótimo (distância é o valor do caminho mais curto)
10 Construindo uma Recursão Se vértice n não pertence ao caminho mínimo, então temos d(i,j,n) = d(i,j,n-1) Se vértice n pertence ao caminho mínimo, então temos d(i,j,n) = d(i,n,n-1) + d(n,j,n-1) Qual caso devemos usar? Menor deles! d(i,j,n) = min ( d(i,j,n-1), d(i,n,n-1) + d(n,j,n-1) )
11 Generalizando Considere o conjunto de vértices intermediários 1,2,..., k. Considere o par de vértices i, j Considere a solução ótima (distância) usando apenas estes vértices Se vértice k não pertence ao ótimo, então temos d(i,j,k) = d(i,j,k-1) Se vértice k pertence ao ótimo, então temos d(i,j,k) = d(i,k,k-1) + d(k,j,k-1) Logo, temos d(i,j,k) = min ( d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1) )
12 Algoritmo Algoritmo para calcular distâncias? iterativo, não recursivo (mas utilizando recursão) Floyd Warshall(A) Array d[1,...,n ; 1,...,n; 0,...,n] d[i,j,0] = A[i,j]; // peso das arestas d[i,i,0] = 0; // peso zero for k = 1,..., n for i = 1,..., n for j = 1,..., n d[i,j,k] = min(d[i,j,k 1], d[i,k,k 1] + d[k,j,k 1] ) return d[*,*,n] Complexidade? Memória e tempo de execução?
13 Algoritmo de Floyd-Warshall Descoberto por Floyd e Warshall em 1962 de maneira independente Determina distância mínima entre todos os pares de vértices de um grafo Complexidade (n 3 ) Impressionante, uma vez que grafo pode ter (n 2 ) arestas e todos os caminhos são considerados entre todos os (n 2 ) pares de vértices Poder de fogo da programação dinâmica
14 Algoritmo Melhorado Como reduzir uso de memória (n 3 )? Manter apenas 1 matriz de distâncias, atualizar na própria matriz Floyd Warshall(A) Array d[1,...,n; 1,...,n] d[0,i,j] = A[i,j]; // peso das arestas d[0,i,i] = 0; // peso zero for k = 1,..., n for i = 1,..., n for j = 1,..., n d[i,j] = min(d[i,j], d[i,k]+d[k,j] ) return d; Convencer que está correto!
15 Detectando Ciclos Negativos Como detectar ciclos negativos? Idéia: se grafo tem ciclo negativo, custo para ir do vértice a ele mesmo é menor do que zero! Algoritmo atualiza todas as distâncias, inclusive entre o par de vértices i, i d(i,i) é considerada a cada passo k atualizada somente se d(i,k) + d(k,i) < 0, possível apenas se grafo tem ciclo negativo! Ao final do algoritmo, se d(i,i) < 0 para algum i, então temos ao menos um ciclo negativo!
16 Mantendo Menor Caminho Como obter o menor caminho? Idéia: manter sequencia de pais para cada par de vértices i,j parecido com Dijkstra pred(i, j) : pai do vértice j no caminho mínimo de i para j Atualizar pred(i, j) toda vez que distância entre i e j for atualizado passando por vértice k pred(i, j) =? No final, usar recursão para imprimir caminho mínimo
Teoria dos Grafos Aula 24
Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo
GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira
Ciência da Computação GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira Algoritmo de Bellman-Ford Arestas com valores negativos podem parecer inúteis, mas elas podem
Teoria dos Grafos Aula 14
Teoria dos Grafos Aula 14 Aula passada MST Aula de hoje Construção de algoritmos Paradigma guloso Escalonando tarefas no tempo (interval scheduling) Projetando Algoritmos Dado um problema P, como projetar
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
Programação Dinâmica. Prof. Anderson Almeida Ferreira. Adaptado do material elaborado por Andrea Iabrudi Tavares
Programação Dinâmica Prof. Anderson Almeida Ferreira Adaptado do material elaborado por Andrea Iabrudi Tavares Programação Dinâmica 1950, Bellman Evitar recálculos dos subproblemas em comum Menor para
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos 2018.2 Classes P e NP P São os problemas que podem ser resolvidos em tempo polinomial por uma Máquina de Turing Determinística. NP São os problemas que podem ser decididos
GRAFOS BUSCAS E MENOR CAMINHO. Prof. André Backes
8//6 GRAFOS BUSCAS E MENOR CAMINHO Prof. André Backes Busca em grafos Definição Consiste em explorar o grafo de uma maneira bem específica. Trata-se de um processo sistemático de como caminhar por seus
Eduardo Camponogara. DAS-9003: Introdução a Algoritmos
Caminhos Mínimos entre Todos os Vértices 1/ 48 Caminhos Mínimos entre Todos os Vértices Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: Introdução
Distâncias Mínimas. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/ / 27
Distâncias Mínimas Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/2015 1 / 27 Distâncias Mínimas Uma das aplicações mais típicas em grafos é o cálculo de distâncias.
Algoritmos em Grafos: Caminho Mínimo
Algoritmos em Grafos: Caminho Mínimo Letícia Rodrigues Bueno UFABC Problema 2: Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual o menor caminho entre
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Caminho Mínimo de Fonte Única em Grafos sem Pesos Negativos
Caminho Mínimo de Fonte Única em Grafos sem Pesos Negativos Letícia Rodrigues Bueno UFABC Problema : Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Análise e Síntese de Algoritmos. Programação Dinâmica CLRS, Cap. 15
Análise e Síntese de Algoritmos Programação Dinâmica CLRS, Cap. 15 Contexto Revisões [CLRS, Cap. 1-10] Algoritmos em Grafos [CLRS, Cap. 22-26] Algoritmos elementares Árvores abrangentes Caminhos mais curtos
Algoritmos e Estruturas de Dados II
Algoritmos e Estruturas de Dados II Grafos VI: Grafos Ponderados & Caminhos Mínimos (Bellman-Ford) Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis
Programação Dinâmica I SCC0210 Algoritmos Avançados (2/2011) Lucas Schmidt Cavalcante
Programação Dinâmica I SCC0210 Algoritmos Avançados (2/2011) Lucas Schmidt Cavalcante Introdução Soma máxima de uma subsequência contígua Problema do troco Quantidade de formas de dar troco Problema da
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
Análise de Complexidade para algoritmos iterativos e recursivos
Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Análise de Complexidade para algoritmos iterativos e recursivos Algoritmos iterativos - complexidade expressa através de somatórios. Algoritmos
Teoria dos Grafos Aula 26
Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade
Problema do Caminho Mais Curto. Problema do Caminho Mais Curto
Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago 650 600 700 Toronto 200 New
Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013
Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação
Redes Complexas Aula 14
Redes Complexas Aula 14 Aula passada Busca em redes Explorando estrutura Navegação em redes Algoritmo eficiente e estrutura Aula de hoje Resilience ( robustez ) Tipo de falhas Influência da estrutura Análise
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS. Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado Roteiro Motivação Relaxamento Algoritmo de Dijkstra Motivação Suponha que você
Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho
Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21 Três objetivos i. Redução de custos (custos variáveis) ii. iii. Redução de capital (investimento, custos fixos) Melhoria do serviço
Acessibilidade e Fecho Transitivo de Grafos Dirigidos
1 Acessibilidade e Fecho Transitivo de Grafos Dirigidos 1. Fecho transitivo 2. Multiplicação de matrizes booleanas 3. Algoritmo de Warshall 4. Equivalência em termos de complexidade computacional com o
Teoria dos Grafos Aula 18
Teoria dos Grafos Aula 18 Aula passada Coloração Algoritmo guloso Número cromático Teorema das 4 cores Aula de hoje Clusterização (ou agrupamento) Algoritmo Variação Clusterização Coleção de objetos Agrupar
Grafos Caminhos mais Curtos
ALGORITMOS E ESTRUTURAS DE DADOS II Grafos Caminhos mais Curtos Profa. Elaine Parros Machado de Sousa adaptações: Cris.na Dutra de Aguiar Ciferri Material baseado em aulas dos professores: Gustavo Basta,
Grafos: caminhos mínimos
Grafos: caminhos mínimos SCE-8 Algoritmos e Estruturas de Dados Thiago A. S. Pardo Maria Cristina Gustavo Batista O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível
Aula 14. Aula de hoje. Aula passada
Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema
Complexidade de Algoritmos. Edson Prestes
Edson Prestes Programação Dinâmica A programação dinâmica costuma ser aplicada a problemas de otimização resultando, em geral, em algoritmos mais eficientes que os mais diretos. Esse método é útil quando
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016
MC102 Aula 26 Recursão Instituto de Computação Unicamp 17 de Novembro de 2016 Roteiro 1 Recursão Indução 2 Recursão 3 Fatorial 4 O que acontece na memória 5 Recursão Iteração 6 Soma em um Vetor 7 Números
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
Algoritmo Floyd-Warshall. Problema dos caminhos mínimos entre todos os pares. Programação dinâmica
Algoritmo Floyd-Warshall S. Problema dos caminhos mínimos entre todos os pares Problema: Dado um digrafo com custo nos arcos, determinar, para cada par de vértices s, t o custo de um caminho mínimo de
Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2
Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel [email protected] Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo
Algoritmo de Dijkstra (um para todos ; arestas de peso não negativo ; guloso)
Algoritmo de Dijkstra (um para todos ; arestas de peso não negativo ; guloso) 1º passo: iniciam-se os valores: para todo v V[G] d[v] π[v] -1 d[s] 0 V[G] é o conjunto de vértices(v) que formam o Grafo G.
Oalgoritmo de Dijkstra
Dijkstra Oalgoritmo de Dijkstra O algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Dijkstra em 1956 e publicado em 1959, soluciona o problema do caminho mais curto num grafo
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
MÓDULO 2 - OTIMIZAÇÃO DE REDES
MÓUL - TIMIZÇÃ RS s problemas de otimização de redes podem ocorrer em várias áreas, mas geralmente são encontrados nas áreas de transportes e comunicações. Um problema típico de transporte consiste em
Programação dinâmica
Programação dinâmica CLRS 15.2 15.3 = recursão com tabela = transformação inteligente de recursão em iteração Algoritmos p. 1 Multiplicação iterada de matrizes Se A é p q e B é q r então AB é p r. (AB)[i,j]
Recursividade. Prof. Jesus José de Oliveira Neto
Recursividade Prof. Jesus José de Oliveira Neto Algoritmos podem ser definidos de duas formas: Forma iterativa ou não recursiva: utiliza laços de repetição (while, for, do/while) Forma recursiva: métodos
# Estrutura de Dados # Aula 08 Recursão (conceito, utilização, exemplos) Prof. Leinylson Fontinele Pereira
# Estrutura de Dados # Aula 08 Recursão (conceito, utilização, exemplos) Prof. Leinylson Fontinele Pereira Na aula anterior... Alocação Dinâmica de Memória Introdução 3 O que vamos aprender? Recursividade
Departamento de Engenharia de Produção UFPR 22
Departamento de Engenharia de Produção UFPR 22 Geralmente, temos três objetivos i. Redução de custos (custos variáveis) Redução de capital (investimento, custos fixos) i Melhoria do serviço (pode conflitar
Teoria da Computação. Complexidade computacional classes de problemas
Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos
Algoritmos de Caminho Mínimo Parte 1
Algoritmos de Caminho Mínimo Parte 1 A journey of a thousand miles starts with a single step and if that step is the right step, it becomes the last step. Index 1. Introduction 2. Applications 3. Tree
Aprendizado de Máquina
Aprendizado de Máquina Template Matching Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net October 25, 2012 Luiz S. Oliveira (UFPR) Aprendizado
Desafios de Programação TCC Turma A-1
Desafios de Programação TCC-00.254 Turma A-1 Conteúdo Grafos Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2015.1/tcc-00.254
Resolvendo algebricamente um PPL
Capítulo 6 Resolvendo algebricamente um PPL 6.1 O método algébrico para solução de um modelo linear A solução de problemas de programação linear com mais de duas variáveis, não pode ser obtida utilizando-se
Otimização por Colônia de Formigas (ACO)
Otimização por Colônia de Formigas (ACO) Inspiração Biológica Proposto por Dorigo e Gambardella em 1997 ACO (Ant Colony Optimization) Principal aplicação no PCV Programação do algoritmo Inspiração Biológica
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca
ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização
AVALIAÇÃO DE CONHECIMENTO ESPECÍFICO
AVALIAÇÃO DE CONHECIMENTO ESPECÍFICO PROGRAMA DE PÓS- GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 01. Toda arvore binária possui as seguintes propriedades: I. Todos os nós de uma sub- árvore direita são maiores
Redes Complexas Aula 2
Redes Complexas Aula 2 Aula passada Logística Redes e Grafos Exemplos Redes Complexas Aula de hoje Redes e classes Estrutura e características Grau, distância, clusterização Rede (ou Grafo) Abstração que
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Universidade Federal do ABC Programação Estruturada Fabrício Olivetti França Lista de Exercícios 02
1 Objetivos da lista Universidade Federal do ABC Programação Estruturada Fabrício Olivetti França Lista de Exercícios 02 Esta lista de exercícios tem como objetivo introduzir funções na linguagem C. Como
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.
PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze
Análise de Algoritmos Parte 4
Análise de Algoritmos Parte 4 Túlio Toffolo [email protected] www.toffolo.com.br BCC202 Aula 07 Algoritmos e Estruturas de Dados I Como escolher o algoritmo mais adequado para uma situação? (continuação)
OBI2012 Caderno de soluções
OBI2012 Caderno de soluções Modalidade Programação Nível 2, Fase 2 12 de maio de 2012 Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2012 1 Álbum de fotos Dado um retângulo X Y e dois retângulos
Grafos IFRN. Prof.Robinson Alves
Grafos IFRN Prof.Robinson Alves Caminhos É uma seqüência de arestas onde o vértice final de uma aresta é o vértice inicial da próxima v c c3 c1 c6 c4 {c1,c,c4,c5,c6} {c,c3,c4,c5} {,v,,,v5} {v,,,v5,} c5
ANÁLISE DE ALGORITMOS
ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria
Complexidade de Algoritmos. Edson Prestes
Edson Prestes Exemplos Exemplos A complexidade no pior caso é linear e igual a n, ou seja, é O(n) A complexidade média é linear e igual a (1+n)/2, ou seja, é O(n) Exemplos Considere o produto C de uma
