Algoritmos de Caminho Mínimo Parte 1
|
|
|
- Mario Santana Belo
- 8 Há anos
- Visualizações:
Transcrição
1 Algoritmos de Caminho Mínimo Parte 1 A journey of a thousand miles starts with a single step and if that step is the right step, it becomes the last step. Index 1. Introduction 2. Applications 3. Tree of Shortest Paths 4. Shortest Path Problems in Acyclic Networks 5. Dijkstra s Algorithm 6. Dial s Implementation 7. Heap Implementation 8. Radix Heap Implementation 1. Introduction Problemas de caminhos mínimos aparecem freqüentemente na prática, sempre que queremos transportar algum material entre dois pontos em uma rede o mais rápido e barato quanto for possível. Eles aparecem também como subproblemas na resolução de problemas de otimização de redes e combinatória. Vamos considerar uma rede direcionada G = (N, A), com custo de arco c ij associado com cada arco (i, j) pertencente a A. A rede possui um nó diferenciado s chamado source ou nó de partida. Seja A(i) a lista de arcos adjacentes do nó i e seja C = max{c ij : (i,j) em A}. Nós consideramos o tamanho do caminho direcionado como a soma dos custos de todos os arcos no caminho. Nós podemos interpretar o problema de caminho mínimo como o problema de enviar uma unidade de fluxo com o menor custo possível (com custo de fluxo nos arcos c ij ) do nó s para cada um dos nós em N {s} em uma rede sem capacidades. Com isso podemos estabelecer a seguinte formulação de programação linear para o problema de caminho mínimo: Minimizar (i,j) A c ij x ij n 1 para i = s Sujeito à {j (i,j) A} x ij - {j (j,i) A} x ji = 1 para todo i em N {s} Para o nosso estudo de problemas de caminho mínimo vamos assumir algumas propriedades: 1. Todos os custos dos arcos são inteiros. 2. A rede contém um caminho direcionado de s para todos os nós do grafo. 3. A rede não contém um ciclo negativo (i.e., um ciclo direcionado de tamanho negativo). 4. A rede é direcionada.
2 Os problemas de caminho mínimo podem ser, basicamente, de dois tipos: de ponto de partida único (encontrar o caminho mínimo de um nó a todos os outros) e de pares múltiplos (encontrar o caminho mínimo entre quaisquer pares de pontos da rede). Os algoritmos para resolução de problemas de caminhos mínimos são classificados em Label-Setting e Label-Correcting. O primeiro é aplicado para problemas de caminho mínimo definidos em redes acíclicas, com tamanhos arbitrários de arcos e maiores que zero. Algoritmos de Label-Setting convergem para a solução através da inserção de um arco ótimo ao caminho em cada iteração. Já os algoritmos de Label-Correcting são mais gerais e podem ser aplicados a todas as classes de problemas, inclusive aqueles com arcos negativos. Eles convergem para o caminho mínimo considerando todos os arcos como temporários até a última iteração, quando todos se tornam permanentes. Uma breve comparação entre os dois tipos de algoritmos mostra que os de Label-Setting são mais eficientes, mas oferecem menos flexibilidade e generalidade de operação. Nesse capítulo vamos focar na solução de algoritmos de Label-Setting. 2. Applications a. Approximating Piecewise Lienear Functions. Diversas aplicações em vários campos científicos usam funções particionadas. Entretanto, em algumas situações, essas funções apresentem um grande número de pontos de parada. Nesse caso, pode ser interessante o uso de uma aproximação da função com menos pontos de parada. Essa aproximação pode ocupar menos espaço de memória e reduzir o custo de aplicação da função. O preço que se paga é o erro da aproximação. Nosso desafio é identificar um subconjunto de pontos que definam a função de aproximação com o maior ganho de eficiência e armazenamento e o menor erro possível. Nós vamos formular esse problema como um problema de caminho mínimo em uma rede G com n nós, numerados de 1 a n. A rede contém um arco (i, j) para cada par de nós i e j com i < j. O arco (i, j) significa que nós aproximamos os segmentos da função original entre os pontos a i, a i+1,..., a j por um segmento linear ligando os pontos a i e a j. O custo c ij do arco (i, j) tem duas componentes: o custo de armazenamento e a penalização de aproximar todos os pontos entre i e j. No intervalo [x i, x j ], a função de aproximação é f 2 (x) = f 1 (x) + (x x i ) [f 1 (x j ) f 1 (x i )] / (x j x i ). Com isso, o custo total do intervalo será: j c ij = α + β (f 1 (x k ) f 2 (x k )) 2 k=i,onde f 1 (x) é a função original, f 2 (x) é a aproximação, α é o custo de armazenamento da função e β uma constante. Cada caminho direcionado partindo do nó 1 ao nó n corresponde à função f2(x) e o tamanho do caminho equivale ao custo total de armazenamento da função e para
3 aproximar a função original. Assim, o caminho mínimo entre os nós 1 e n especifica o conjunto ótimo de pontos necessários para definir a função de aproximação. b. Allocation Inspection Effort on a Production Line. O problema aqui é, dado uma linha de produção onde cada estágio i tem uma chance a i de produzir um defeito, encontrar o plano ótimo de inspeção que especifique em que estágios devemos inspecionar os itens de forma a minimizar o custo de produção e inspeção. Poucas estações de verificação de erros reduzem o custo de inspeção, mas aumentam o custo de produção, dado que precisamos realizar operações desnecessárias sobre produtos que já estão defeituosos. Suponha a existência dos seguintes dados de custo: P i, o custo de fabricação por unidade no estágio i. Fij, o custo fixo de realizar inspeções após o estágio j, dado que a última inspeção foi realizada no estágio i. Gij, o custo de inspecionar uma unidade após o estágio j, dado que a última inspeção foi no estágio i. Nós podemos formular esse problema como um problema de caminho mínimo em uma rede com (n + 1) nós, numerados de 0,1,..., n. A rede contém um arco (i, j) para cada par de nós i e j, com i < j. Por exemplo, o caminho implica que nós realizamos inspeções depois dos estágios 2 e 4. Tomando B(i) = B i k=1 (1 a k ) como o número de elementos não defeituosos no final do estágio i, nós associamos o seguinte custo c ij com qualquer arco (i, j) na rede: j cij = f ij + B(i)g ij + B(i) k=i +1 p k É fácil ver que o custo cij denota o custo total nos estágios i + 1, i + 2,..., j. Os primeiros dois termos da soma são os custos de inspeção e o terceiro é o custo de produção nesse estágio. 3. Tree of Shortest Paths
4 Vamos mostrar com as propriedades abaixo que os algoritmos de caminho mínimo que vamos estudar geram uma árvore direcionada de saída com a propriedade de que o único caminho saindo do nó de partida em direção a todos os outros nós é o caminho mínimo. O principal corolário dessa propriedade é que o espaço de armazenamento gasto para guardar o caminho mínimo entre quaisquer dois nós se resume ao espaço gasto para guardar a árvore de saída do algoritmo. Propriedade 4.3.1: Se o caminho s = i 1 i 2... i h = k é o caminho mínimo do nó s ao nó k, então para cada q = 2, 3,..., h 1, o sub-caminho s = i 1 i 2... i q é o caminho mínimo do nó s até o nó i q. Propriedade 4.3.2: Seja d um vetor representando as distâncias do caminho mínimo. Então, um caminho direcionado P saindo do nó de partida até o nó k é o caminho mínimo se e somente se d(j) = d(i) + c ij para cada arco (i, j) em P. 4. Shortest Path Problems in Acyclic Networks Em redes acíclicas temos um método para resolver o problema do caminho mínimo em O(m). O algoritmo é bem simples. Primeiro, nós setamos d(s) = 0 e os outros labels de distância para um valor muito grande. Então, nós examinamos os nós em uma ordem topológica, e para cada nó i sendo examinado, nós examinamos os arcos em A(i). Se para algum arco (i, j) em A(i), nós encontrarmos algum d(j) > d(i) + c ij, então nós setamos d(j) = d(i) + c ij. Quando o algoritmo terminar de examinar todos os nós uma vez nessa ordem, os marcadores de distância serão ótimos. 5. Dijkstra s Algorithm O algoritmo de Dijkstra mantém um marcador de distância d(i) para cada nó i, que é o limite superior do tamanho do caminho mínimo até o nó i. Em cada passo intermediário, o algoritmo divide os nós em dois grupos: aqueles que são designados como permanentemente marcados (ou permanentes) e os marcados temporariamente (ou temporários). O marcador de distância para cada nó permanente é o tamanho do caminho mínimo do nó source até aquele nó. Para cada nó temporário o marcador de distância é um limite superior do tamanho do caminho mínimo do nó de partida até aquele nó. A idéia básica do algoritmo é a cada iteração marcar um novo nó como permanente de acordo com a sua distância ao nó s e, em seguida, atualizar os custos dos nós adjacentes ao novo nó inserido no caminho. Quando todos os nós estiverem presentes no caminho, as distâncias entre o nó s e qualquer outro nó serão mínimas.
5
Problema do Caminho Mais Curto. Problema do Caminho Mais Curto
Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago 650 600 700 Toronto 200 New
Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2
Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel [email protected] Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
Eduardo Camponogara. DAS-9003: Introdução a Algoritmos
Caminhos Mínimos Com Uma Fonte 1/74 Caminhos Mínimos Com Uma Fonte Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: a Algoritmos Caminhos Mínimos
Problema de seleção de atividades. Aula 14. Exemplo. Algoritmos Gulosos. Algoritmos Gulosos. Intervalo: par ordenado de números
Problema de seleção de atividades Aula 14 Algoritmos Gulosos Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Intervalo: par ordenado de números [s[i],f[i]): início e fim do intervalo
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
Grafos. Notas. Notas. Notas. Notas. Caminhos mais curtos de única origem. Subestrutura ótima. Propriedades de caminhos mais curtos
Grafos Caminhos mais curtos de única origem Conteúdo Subestrutura ótima Inicialização Propriedades de caminhos mais curtos Algoritmos Algoritmo de Bellman-Ford Caminhos mais curtos de única origem em gaos
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Teoria dos Grafos Aula 24
Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo
Algoritmos polinomiais para o problema de Fluxo Máximo
Algoritmos polinomiais para o problema de Fluxo Máximo Notas de aula para disciplina Fluxo em Redes Natã Goulart da Silva Aulas dias 8, 10 e 15 e 22/04 prova. Este documento são notas de aula tiradas do
Árvore Binária de Busca Ótima
MAC 5710 - Estruturas de Dados - 2008 Referência bibliográfica Os slides sobre este assunto são parcialmente baseados nas seções sobre árvore binária de busca ótima do capítulo 4 do livro N. Wirth. Algorithms
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias
Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.
Solução básica viável inicial Marina Andretta ICMC-USP 10 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
Aula 19: Lifting e matrizes ideais
Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Programação Dinâmica. Prof. Anderson Almeida Ferreira. Adaptado do material elaborado por Andrea Iabrudi Tavares
Programação Dinâmica Prof. Anderson Almeida Ferreira Adaptado do material elaborado por Andrea Iabrudi Tavares Programação Dinâmica 1950, Bellman Evitar recálculos dos subproblemas em comum Menor para
Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST) Alguns problemas de otimização combinatória podem ser formulados
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Teoria da Computação. Complexidade computacional classes de problemas
Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos
Lista de Exercícios Programação Inteira. x 2 0 e inteiros.
Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
Departamento de Engenharia de Produção UFPR 22
Departamento de Engenharia de Produção UFPR 22 Geralmente, temos três objetivos i. Redução de custos (custos variáveis) Redução de capital (investimento, custos fixos) i Melhoria do serviço (pode conflitar
Teoria dos Grafos Aula 23
Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação
Desafios de Programação TCC Turma A-1
Desafios de Programação TCC-00.254 Turma A-1 Conteúdo Grafos Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2015.1/tcc-00.254
INF 1010 Estruturas de Dados Avançadas
INF Estruturas de Dados Avançadas Grafos //8 DI, PUC-Rio Estruturas de Dados Avançadas. Primeiro uso conhecido 7 Euler: pontes de Königsberg //8 DI, PUC-Rio Estruturas de Dados Avançadas. Primeiro uso
Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana
problemas difíceis de programação linear através da relaxação Lagrangeana Ana Maria A.C. Rocha Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/arocha
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21 Três objetivos i. Redução de custos (custos variáveis) ii. iii. Redução de capital (investimento, custos fixos) Melhoria do serviço
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS. Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado
AULA 13 PROJETO E ANÁLISE DE ALGORITMOS Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado Roteiro Motivação Relaxamento Algoritmo de Dijkstra Motivação Suponha que você
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
Distâncias Mínimas. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/ / 27
Distâncias Mínimas Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Distâncias Mínimas 2014/2015 1 / 27 Distâncias Mínimas Uma das aplicações mais típicas em grafos é o cálculo de distâncias.
Regras para evitar ciclagem
Regras para evitar ciclagem Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 -
Pontos extremos, vértices e soluções básicas viáveis
Pontos extremos, vértices e soluções básicas viáveis Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta
Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (DPV 5; CLRS 4)
1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (DPV 5; CLRS 4) DECOM/UFOP 2013/1 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Comparação
ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.
PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
ANÁLISE DE ALGORITMOS (INF 1721)
PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 24 de novembro de 2015 Período: 2015.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464 / PCC174 Departamento de Computação - UFOP Breve Revisão Programação Linear vs Programação Inteira Modelagem
Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5)
1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5) DECOM/UFOP 2012/2 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Algoritmos Gulosos
Eduardo Camponogara. DAS-9003: Introdução a Algoritmos
Caminhos Mínimos entre Todos os Vértices 1/ 48 Caminhos Mínimos entre Todos os Vértices Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: Introdução
Pesquisa Operacional. Teoria dos Grafos
Pesquisa Operacional Teoria dos Grafos 1 Sumário Introdução Histórico Aplicações de modelos em grafos Conceitos e Notação Representações de um grafo G Tipos de grafos Algoritmos Algoritmo de Djisktra Algoritmo
Algoritmos e Estruturas de Dados II
Algoritmos e Estruturas de Dados II Grafos VI: Grafos Ponderados & Caminhos Mínimos (Bellman-Ford) Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis
Tecnicas Essencias Greedy e Dynamic
Tecnicas Essencias Greedy e Dynamic Paul Crocker RELEASE - Reliable and Secure Computation Group Universidade da Beira Interior, Portugal October 2010 1 / 27 Outline 1 Introdução 2 Exemplo Greedy I : Interval
Busca em Profundidade e em Largura
Busca em Profundidade e em Largura Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Mais sobre Caminhos TEOREMA: Se um grafo possui exatamente 2 vértices de
Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b
Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação
ANÁLISE DE ALGORITMOS (INF 1721)
PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 3 de dezembro de 2016 Período: 2016.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas
Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016
Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização
Método do Lagrangiano aumentado
Método do Lagrangiano aumentado Marina Andretta ICMC-USP 23 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 23 de novembro de 2010 1 / 17 Problema com restrições gerais Vamos
Métodos iterativos para sistemas lineares.
Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central
Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma
Grafos Árvores espalhadas mínimas Conteúdo Introdução Como construir uma árvore geradora miníma Algoritmos Referências Introdução Dado um grafo conectado não orientado G = (V, E) e uma função peso w :
Teoria dos Grafos Aula 26
Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade
Métodos para resolver problemas de otimização restrita
Métodos para resolver problemas de otimização restrita Marina Andretta ICMC-USP 22 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 22 de novembro de 2010 1 / 13 Problema
Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013
Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação
Combinando inequações lineares
Combinando inequações lineares A multiplicação por um número > 0 não altera uma inequação 2x x 5 4x 2x 10 1 2 1 2 A soma de duas inequações (com o mesmo sentido) produz uma inequação válida x 3x x 3 1
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 06 Busca em Profundidade e Busca em Largura Edirlei Soares de Lima Grafos (Revisão) G = (V, A) G: grafo; V: conjunto de vértices; A: conjunto
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Modelagem Computacional. Parte 8 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Lista 1. 8 de abril de Algorithms: Capítulo 0, exercícios 1 e 2. Tardos: Todos exercícios do cap 2 do livro texto, exceto 7 e 8 letra b.
Lista 1 8 de abril de 2013 1 Exercícios Básicos 1.1 Na bibliografia Algorithms: Capítulo 0, exercícios 1 e 2. Tardos: Todos exercícios do cap 2 do livro texto, exceto 7 e 8 letra b. 1.2 Outros 1. Projete
Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014
Cálculo Numérico Aula 6 Método das Secantes e Critérios de Parada 2014.1-22/04/2014 Prof. Rafael mesquita [email protected] Adpt. por Prof. Guilherme Amorim [email protected] Aula passada? Método Iterativo
Melhores momentos AULA 15
Melhores momentos AULA 5 Arborescência de caminhos mínimos Uma arborescência com raiz s é de caminhos mínimos (= shortest-paths tree = SPT) se para todo vértice t que pode ser alcançado a partir de s,
Pesquisa Operacional
Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins [email protected] Departamento de Produção
Investigação Operacional
Investigação Operacional Victor Lobo Sumário Introdução Programa da cadeira Bibliografia Horário de dúvidas e contactos Avaliação O que é Investigação Operacional? Investigar as operações da empresa, embora
