IFRN. Conexidade e Distância. Prof. Edmilson Campos
|
|
|
- Terezinha Castel-Branco Malheiro
- 9 Há anos
- Visualizações:
Transcrição
1 IFRN Conexidade e Distância Prof. Edmilson Campos
2 Conteúdo Grafo Conexo Componente Conexa e Algoritmos Grafo F-Conexo Componente F-Conexa Antecessor, Sucessor, Fecho Transitivo Algoritmo Grafo Reduzido Conceitos Vértice e Aresta de Corte Base, Anti-Base, Raiz, Anti-Raiz Distância
3 Grafo Conexo Um grafo G(V,A) é dito ser conexo, simplesmente conexo ou S-Conexo, se há pelo menos uma sequência de arestas ligando cada par de vértices do grafo Um grafo não conexo consiste de dois ou mais subgrafos conexos (componentes conexas) Conexo Não-Conexo v v v5 v4 v6 v7
4 Algoritmo: Conexidade Reduzir cada componente do grafo a um único vértice. Processo de redução seqüencial onde todos os vértices adjacentes a um dado vértice são fundidos com ele v v v4 +v4 v ++v4 v+++v4
5 Algoritmo: Conexidade Algoritmo (Goodman) P:[inicialização] H = G; c = ; P:[Gere a próxima componente conexa] Enquanto (H ) Selecione um vértice v pertencente a H Enquanto (v for adjacente a algum vértice u H) H = grafo resultante da fusão de u com v; Remova v, isto é, faça H = H - v; c = c + ; P2:[Teste de conexidade] Se (c>) G é não conexo senão G é conexo
6 Grafo F-Conexo Em dígrafos, o grafo G(V,A) é dito ser fortemente conexo ou F_Conexo, se todo par de vértices participa de um circuito (caminho fechado entre os vértices) Isto significa que cada vértice pode ser alcançável partindo-se de qualquer outro vértice de grafo. v v v4 v5 v6 v4 v5 v6
7 Componente Fortemente Conexa Um grafo G(V,A) que não é fortemente conexo é formado por pelo menos dois sub-grafos fortemente conexo Cada um desses grafos é dito ser uma componente fortemente conexa de G v v4 v5 v6 v7
8 Antecessor e Sucessor Antecessor de um vértice É todo vj que seja extremidade inicial de uma aresta que termina em vi Ex: Antecessores de = {v,, v4} Sucessor de um vértice É todo vj que seja extremidade final de uma aresta que inicia em vi Ex: Sucessores de v = {,, v4} v v4
9 Fecho Transitivo Direto Fecho Transitivo Direto (FTD) O FTD de um vértice v é o conjunto de todos os vértices que podem ser atingidos por algum caminho iniciando em v Ex: FTD(v5) = {v,,, v4, v5, v6} Note que o próprio vértice faz parte do FTD já que ele é alcançável partindo-se dele mesmo v v4 v5 v6 v7
10 Fecho Transitivo Inverso Fecho Transitivo Inverso (FTI) O FTI de um vértice v é o conjunto de todos os vértices a partir dos quais se pode atingir v por algum caminho Ex: FTI(v5) = {v,, v4, v5, v7} Note que o próprio vértice faz parte do FTI já que dele se pode alcançar ele mesmo v v4 v5 v6 v7
11 Algoritmo Algoritmo: Componentes F-Conexas P: Obter a matriz R = [rij], definida como: r ij, se o vértice vj podeser atingido a partir de v, caso contrário i P: Obter a matriz Q = RT P2: Obter o produto R Q, realizado elemento a elemento de cada matriz
12 Algoritmo: Componentes F-Conexas Exemplo v v4 R Q Q R
13 Grafo Reduzido Grafo Reduzido G*=(V*, A*) Grafo onde cada vértice corresponde a uma componente fortemente conexa do grafo original x* = {v, } x2* = {, v4} v x* x2* v4
14 Vértice de Corte Um vértice é dito ser um vértice de corte se sua remoção (juntamente com as arestas a ele conectadas) provoca uma redução na conexidade do grafo A conectividade do grafo é, pois removendo v5 desconectamos o grafo Ex: {, v4}, {v5}
15 Aresta de Corte Uma aresta é dita ser uma aresta de corte se sua remoção provoca uma redução na conexidade do grafo A conectividade de arestas do grafo é 2, pois removendo (,v5) e (v4,v5) desconectamos o grafo Ex: {(v,),(,),(v4,v5)} Ex: {(,v5),(v4,v5)}
16 Base Uma base de um grafo G(V,A) é um subconjunto B V, tal que: Dois vértices quaisquer de B não são ligados por nenhum caminho Todo vértice não pertencente a B pode ser atingido por um caminho partindo de B B 5 8 A
17 Anti-Base Uma anti-base de um grafo G(V,A) é um subconjunto A V, tal que: Dois vértices quaisquer de A não são ligados por nenhum caminho Todo vértice não pertencente a A pode atingir A por um caminho B 5 8 A
18 Raiz e Anti-Raiz Raiz Se a base de um grafo G(V,A) é um conjunto unitário Anti-Raiz Se a anti-base de um grafo G(V,A) é um conjunto unitário B 4 A
19 Distância Distância d(v,w) É o comprimento do menor caminho entre dois vértices v e w pertencentes ao grafo G(V,A) Se não houver caminho, a distância é infinita Propriedades d(u,v), com d(u,v)=, se e somente se, u = v d(u,v) = d(v,u) para grafos não orientados d(u,v) + d(v,w) d(u,w)
20 Exercício Obter as distâncias d(,8), d(,4), d(,3)
21 Referências Introdução à Teoria dos Grafos Márcia Aguiar Rabuske Editora da UFSC Estrutura de Dados e Algoritmos em Java Goodrich e Tamassia Bookman Materiais Didáticos Prof. André L. Maitelli UFRN Prof. Robinson L. S. Alves IFRN Prof. Gilbert Azevedo - IFRN
Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos
Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.
IFRN. Introdução à Teoria dos Grafos. Prof. Edmilson Campos
IFRN Introdução à Teoria dos Grafos Prof. Edmilson Campos Conteúdo Histórico Aplicações Definições Grafo Dígrafo Ordem, adjacência e grau Laço Tipos de grafos Representação de Grafos Matriz de adjacências
Conceito Básicos da Teoria de Grafos
1 Conceito Básicos da Teoria de Grafos GRAFO Um grafo G(V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w),
Conceitos Básicos da Teoria de Grafos
Conceitos Básicos da Teoria de Grafos Universidade Federal do Pampa - UNIPAMPA Engenharia da Computação Estrutura de Dados Profª Sandra Piovesan Grafos Uma noção simples, abstrata e intuitiva. Representa
PCC173 - Otimização em Redes
PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 27 de abril de 2016 Marco Antonio M. Carvalho
Grafos Orientados (digrafos)
Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado
Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado
Árvores Árvores Grafo Acíclico: não possui ciclos Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo acíclico Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo
Definições Básicas para Grafos
Definições Básicas para rafos RAFO Um grafo (V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w), v e w V:
3.3 Qual o menor caminho até a Escola? 28 CAPÍTULO 3. CICLOS E CAMINHOS
2 CAPÍTULO. CICLOS E CAMINHOS solução para um problema tem se modificado. Em vez de procurarmos um número, uma resposta (o que em muitos casos é necessário), procuramos um algoritmo, isto é, uma série
Teoria dos Grafos Aula 7 - Conceitos Básicos
Teoria dos Grafos Aula 7 - Conceitos Básicos Profª. Alessandra Martins Coelho março/2013 Distância entre vértices Caminho de menor comprimento capaz de ligar 2 vértces. Índice de Wiener Uma das mais tradicionais
Cap. 2 Conceitos Básicos em Teoria dos Grafos
Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
Matemática Discreta. Leandro Colombi Resendo. Matemática Discreta Bacharel em Sistemas de Informações
Matemática Discreta Leandro Colombi Resendo Grafos e Árvores Grafos e Suas Representações Árvores e suas Representações Árvores de Decisão Códigos de Huffman Definição: Uma árvore é um grafo conexo acíclico
ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron
Percursos em um grafo
Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
Subconjuntos Especiais
Subconjuntos Especiais Cobertura de vértices ^ C uma cobertura de vértices de um grafo é um conjunto de vértices tal que cada aresta do grafo é incidente a, pelo menos, um vértice do conjunto. É um conjunto
Parte B Teoria dos Grafos
45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função
Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho
Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;
Grafos: componentes fortemente conexos, árvores geradoras mínimas
Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente
Pesquisa Operacional II. Professor João Soares de Mello
Pesquisa Operacional II Professor João Soares de Mello http://www.uff.br/decisao/notas.htm Ementa Teoria dos grafos (pré-requisitos: PO I, Álgebra Linear) Programação não linear (pré-requisitos: PO I,
Árvores Parte 1. Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos
Árvores Parte 1 Aleardo Manacero Jr. DCCE/UNESP Grupo de Sistemas Paralelos e Distribuídos Árvores uma introdução As listas apresentadas na aula anterior formam um conjunto de TADs extremamente importante
Grafos: árvores geradoras mínimas. Graça Nunes
Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
Grafos IFRN. Prof.Robinson Alves
Grafos IFRN Prof.Robinson Alves Caminhos É uma seqüência de arestas onde o vértice final de uma aresta é o vértice inicial da próxima v c c3 c1 c6 c4 {c1,c,c4,c5,c6} {c,c3,c4,c5} {,v,,,v5} {v,,,v5,} c5
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas
MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47
1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado
Teoria dos Grafos Aula 9
Teoria dos Grafos Aula 9 Aula passada Grafos direcionados Busca em grafos direcionados Ordenação topológica Aula de hoje Grafos com pesos Dijkstra Implementação Fila de prioridades e Heap Dijkstra (o próprio)
Circuitos Hamiltorianos
Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.
Características das Figuras Geométricas Espaciais
Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,
UM ESTUDO SOBRE CONFIABILIDADE DE REDES
UM ESTUDO SOBRE CONFIABILIDADE DE REDES Taíse Ferraz Lyra Escola Nacional de Ciências e Estatísticas ENCE/IBGE Rua André Cavalcanti, 106 Centro - RJ [email protected] Carla Silva Oliveira Escola Nacional
GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira
Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO
TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas
Teoria dos Grafos. Edson Prestes
Edson Prestes Dígrafos Dado um dígrafo G, podemos definir uma função multívoca vértices de G entre os Se G possui os arcos (x,y) e (x,w), então sabemos que G possui duas arestas que saem de x e alcançam
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Grandeza é tudo aquilo que pode variar quantitativamente. Algumas vezes necessitamos mais que um número e uma unidade para representar
CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:
Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
GRAFOS E ALGORITMOS TEORIA DE GRAFOS
GRAFOS E ALGORITMOS TEORIA DE GRAFOS 1a. PARTE Prof. Ronaldo R. Goldschmidt [email protected] [email protected] ROTEIRO 1. INTRODUÇÃO E MOTIVAÇÃO 2. FUNDAMENTOS 3. CONECTIVIDADE 4.
Matemática Aplicada às Ciências Sociais- 11º ano
Matemática Aplicada às Ciências Sociais- 11º ano Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel Branco Texto Editores Sugestão: Adquira também
Projeção ortográfica e perspectiva isométrica
Projeção ortográfica e perspectiva isométrica Introdução Para quem vai ler e interpretar desenhos técnicos, é muito importante saber fazer a correspondência entre as vistas ortográficas e o modelo representado
Teoria dos Grafos AULA 3
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado
Relações. Antonio Alfredo Ferreira Loureiro. [email protected] http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1
Relações Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades
Teoria dos Grafos. Edson Prestes
Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).
Teoria dos grafos. FATEC Carapicuíba Augusto de Toledo Cruz Junior
Teoria dos grafos FATEC Carapicuíba Augusto de Toledo Cruz Junior Teoria dos grafos HISTÓRICO 2 Origem O artigo do matemático e físico suiço Leonhard Euler, publicado em 1736, sobre o problema das Sete
Oalgoritmo de Dijkstra
Dijkstra Oalgoritmo de Dijkstra O algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Dijkstra em 1956 e publicado em 1959, soluciona o problema do caminho mais curto num grafo
Grafos IFRN. Robinson Alves
Grafos IFRN Robinson Alves Introdução Problema das Pontes de Königsberg No século 18 havia na cidade de Königsberg(antiga Prússia) um conjunto de sete pontes (identificadas pelas letras de a até f nas
GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira
Ciência da Computação GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Árvore Geradora (spanning tree) É um subconjunto de um grafo G que possui todos os vértices
x y Grafo Euleriano Figura 1
Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém
GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado.
Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 2005 GRAFOS ORIENTAOS Resumo Existem ocasiões onde grafos não são apropriados para descrever certas situações. Por exemplo, um
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8
ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução
GRAFOS: UMA INTRODUÇÃO
GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Teoria dos Grafos. Profa. Alessandra Martins Coelho
Teoria dos Grafos Profa. Alessandra Martins Coelho fev/2014 Avaliação 2 Provas 30 pontos cada; 3 Implementações 10 pontos cada; 1 Seminário 10 pontos; Listas de exercícios Listas não valem nota, entretanto...
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades
Otimização em Grafos
Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).
Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:
Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar
Metodologias de Programação
Metodologias de Programação Bloco 1 José Paulo 1 Formador José António Paulo E-mail: [email protected] Telemóvel: 96 347 80 25 Objectivos Iniciar o desenvolvimento de raciocínios algorítmicos Linguagem
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Representação de Relações Definição: Uma relação binária de um conjunto A num conjunto
Capítulo 4. Retas e Planos. 4.1 A reta
Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam
Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013
Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação
Teoria dos Grafos AULA 2
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] AULA 2 Subgrafos, Operações com Grafos Preparado a partir
CAPÍTULO 2. Grafos e Redes
CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,
Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.
Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Conceitos básicos Classes de de Complexidade P NP Redução Problemas NPC NP-Completude Introdução Existem alguns problemas computacionais que são
Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá
Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um
Problemas de Fluxo em Redes
CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação
MESTRADO EM ENSINO DAS CIÊNCIAS NA EDUCAÇÃO BÁSICA. Prof. Dr. Abel Rodolfo Garcia Lozano Profª. Drª. Jacqueline de Cássia Pinheiro Lima
MESTRADO EM ENSINO DAS CIÊNCIAS NA EDUCAÇÃO BÁSICA Modelagem matemática Orientadores: Mestrandos Prof. Dr. Abel Rodolfo Garcia Lozano Profª. Drª. Jacqueline de Cássia Pinheiro Lima Gessé Pereira Ferreira
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze
Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA
Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo
