TORNEIRO MECÂNICO TECNOLOGIA
|
|
|
- Renata Santarém Melgaço
- 9 Há anos
- Visualizações:
Transcrição
1 TORNEIRO MECÂNICO TECNOLOGIA CÁLCULO ÂNGULO INCL. CARRO SUP. TORNEAR CÔNICO DEFINIÇÃO: É indicar o ângulo de inclinação para desviar em graus na base do carro superior de acordo com a conicidade da peça (fig.1). Ese sisema é largamene aplicado para ornear peças cônicas, curas, exernas e inernas, em qualquer conicidade. 1- O número de graus para desviar o carro, superior de α (fig.2), é dado pela fórmula: g α. = D - d c OBSERVAÇÃO: Nese sisema, o comprimeno oal da peça não influi no cálculo. UD TMT 006/0 1/08
2 EXEMPLOS: a) A peça da fig.2 em D = 43mm d = 27mm e C = 65mm. Calcular o ângulo de inclinação. g = α. = D - d. = = 16. = 0, c 2 x Consulando a abela das angenes, o valor 0,123 corresponde a 7. b) Calcular o desvio em graus do carro superior para ornear o cone inerno da fig.3, dados: D = 17,78; d = 14,53; C = 65,1 g = α. = D - d. = 17,78-14,53. = 3,25. = 0, c 2 x 65,1 130,2 Consulando a abela das angenes, 0,0249 corresponde aproximadamene ao desvio de 1 30'. 2- Calculo do ângulo de inclinação do carro superior, para valores aé 10 no máximo sem o uso da abela de angenes. Como a maioria dos cones usuais é de pouca conicidade, exigindo menos de 10 para inclinação do carro superior, convém o conhecimeno da fórmula práica aproximada. Sua aplicação dá resulado em graus e frações decimais do grau. A fórmula é a seguine, quando se conhecem D, d, C: ângulo α = 57,3 x D - D.. 2 x C UD TMT 006/0 2/08
3 EXEMPLOS: a) Dados D = 43mm, d = 27mm e C = 65mm, emos: α = 57,3 x = 57,3 x 0,123 = 7,04 2 x 65 Vê-se que 7 graus e 4 cenésimos é um resulado muio aproximado do que se enconrou empregando a abela de angenes. b) Dados: D = 76mm; d = 39,5mm; e C = 125mm, emos: α = 57,3 x 76-39,5. = 57,3 x 0,146 = 8,36. 2 x 125 Para comparação, segue-se a conversão da pare decimal em minuos. Tem-se 0,36 = 0,36 x 60' = 21,60 minuos ou 22' aproximadamene. O valor achado, pela aplicação da abela de angenes, foi α = 8 22'. 3- Caso em que é dada apenas a conicidade em porcenagem. Aplica-se a fórmula: α = 57,3 x (conicidade ö 2). EXEMPLO: Deerminar o ângulo de inclinação α para ornear um cone de 25% de conicidade. Tem-se 25% = 0,25 Resula: α = 57,3 x (0,25 ö 2) = 57,3 x 0,125 = 7,16 ou converendo os decimais 0,16 x 60' = 9,6; α = 7 10' aproximadamene. UD TMT 006/0 3/08
4 VELOCIDADE DE CORTE DEFINIÇÃO: Para efeuar-se o core de um maerial por meio de uma ferramena, é necessário que o maerial ou a ferramena se movimene, um em relação ao ouro (figs. 1 e 2), com cera rapidez. A medida usada para deerminar ou comparar a rapidez de movimenos é a velocidade (v) e a fórmula uilizada é v = e., sendo e o espaço percorrido pelo móvel e o empo gaso para percorrê-lo. Analogamene, a medida usada para deerminar a rapidez do movimeno do maerial ou da ferramena no core dos maeriais é denominada Velocidade de Core, ambém represenada pelo símbolo v. UNIDADES: Para uso nas máquinas-ferramenas, a velocidade de core é geralmene indicada dos seguines modos: 1- Referindo o número de meros na unidade de empo (minuo ou segundo). EXEMPLOS: 25 m/min. (vine e cinco meros por minuo). 30 m/seg. (rina meros por segundo). 2- Referindo o número de roações, na unidade de empo (minuo), com que deve girar o maerial ou a ferramena. UD TMT 006/0 4/08
5 EXEMPLO: 300 rpm (rezenas roações por minuo). Aplicações da velocidade de core em m/min. Nas máquinas-ferramenas em que o maerial é submeido a um movimeno circular, como é o caso do orno, a velocidade core é represenada pela circunferência do maerial a ser corado (d) muliplicada pelo número de roações (n) por minuo, com que o maerial esá girando, iso porque: v = e. em uma roação, v = π d. (fig.3); em n roações v = π d n. (fig.4). Como o número de roações é referido em 1 minuo, resula: v = π d n. 1 min. ou seja v = π dn. Ocorre que, em geral, o diâmero do maerial é dado em milímeros. Enão, para ober-se a velocidade em meros por minuo, eremos que converer o diâmero em meros, resulando a fórmula: v = π x d x n. ou 1000 v = π d n. m/min UD TMT 006/0 5/08
6 O mesmo raciocínio é aplicável às máquinas-ferramenas em que a ferramena gira, ais como: A fresadora, a furadeira, a reificadora (figs. 5, 6 e 7) e ouras. No caso, o diâmero (d) a ser considerado, obviamene, é o da ferramena. Nas máquinas-ferramenas em que o maerial, ou a ferramena, esá submeido a um movimeno reilíneo-alernaivo, a velocidade de core é represenada pelo dobro do curso (c) que faz o maerial ou a ferramena (fig.8), muliplicado pelo número de golpes (n) efeuados durane um minuo, ou seja: v = S. em 1 golpe, v = 2 c ; em 1 golpes p/min v = 2 c. ; n golpes 1 min. p/min., v = 2 c n. v = 2. c. n. 1 min. 1 min. Fig. 8 O comprimeno do curso é, geralmene, apresenado em milímeros. Por isso, para ober-se a velocidade em meros por minuo, deve-se converer o curso em meros, resulando a fórmula: v = 2 x c x n. v = 2 c n. m/min UD TMT 006/0 6/08
7 EXEMPLOS DE CÁLCULO DA VELOCIDADE DE CORTE 1º) Qual é a velocidade de core em m/min. uilizada, quando se orneia um maerial de 60mm de diâmero, girando com 300 rpm? CÁLCULO: v = e. v = π d n v = 3,14 x 60 x 300. v = 56,52 m/min º) Quando se aplaina com 20 golpes/minuo e um curso de 300mm, qual é a velocidade de core em m/min. uilizada? v = e. v = 2 c n. v = 2 x 300 x v = 12 m/min. O core dos maeriais deve ser feio observando-se velocidades de core préesabelecidas de acordo com várias experiência, visando a oferecer uma referência para condições ideais de rabalho. Desse modo, a parir, dessas velocidades, deve o operador calcular as roações ou golpes por minuo para que se efeue denro das velocidades recomendadas. EXEMPLOS: 1) Quanas roações por minuo (rpm) devemos empregar para desbasar aço de 0,45%C de 50mm de diâmero com ferramena de aço rápido. A velocidade de core indicada em abela é de 15 m/min. CÁLCULO: V = π d n x v = π dn n = 1000 x v π x d n = 1000 x 15. n = 95,5 ou seja 96 rpm. 3,14 x 50 UD TMT 006/0 7/08
8 2) Calcular o número de roações por minuo para desbasar, com ferramena de aço rápido, ferro fundido duro de 200 mm de diâmero. A velocidade de core indicada em abela é de 10 m/min. CÁLCULO: V = π d n. n = 1000 x v. n = 1000 x π x d 3,14 x 200 UD TMT 006/0 8/08
Física. Física Módulo 1
Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação
Economia da Usinagem
UDESC Universidade do Esado de Sana Caarina FEJ Faculdade de Engenharia de Joinville Economia da Usinagem Prof. Régis Scalice DEPS Deparameno de Engenharia de Produção e Sisemas Processo de definição econômica
Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL
Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença
AULA 02 MOVIMENTO. 1. Introdução
AULA 02 MOVIMENTO 1. Inrodução Esudaremos a seguir os movimenos uniforme e uniformemene variado. Veremos suas definições, equações, represenações gráficas e aplicações. Faremos o esudo de cada movimeno
AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM
AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e
TORNEIRO MECÂNICO TECNOLOGIA
DEFINIÇÃO: TORNEIRO MECÂNICO TECNOLOGIA MACHOS DE ROSCAR São ferramentas de corte construídas de aço especial, com rosca similar a um parafuso, com três ou quatro ranhuras longitudinais. Um dos seus extremos
O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas.
1 PRÁTICA DE OFICINA AULA 02 2015-1 - SERRA MECÂNICA - Introdução O corte de metais é uma operação mecânica que consiste em se obter seções com dimensões determinadas. A serra alternativa horizontal ou
Metrologia Professor: Leonardo Leódido
Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições
Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)
Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um
CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa
CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade
Engrenagens IV. Para grandes problemas, grandes soluções. Cálculo para engrenagem cônica
A UU L AL A Engrenagens IV Para grandes problemas, grandes soluções. Por exemplo: qual a saída para o setor de projeto e construção de uma empresa em que o setor de usinagem necessita fazer a manutenção
Fresando engrenagens cônicas com dentes retos
A U A UL LA Fresando engrenagens cônicas com dentes retos Na aula passada, você aprendeu a fresar engrenagens cilíndricas com dentes helicoidais, utilizando a grade de engrenagens. Nesta aula você vai
Voo Nivelado - Avião a Hélice
- Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor
4 Análise de Sensibilidade
4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de
Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL
Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o
MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO
. INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
Atividade experimental
Nome: n o Série/Classe: Daa: / / Aividade experimenal ermomeria, calorimeria e ransferência de calor Componenes da equipe: Nome Nu m. Série/Cla sse Daa 1 Daa 2 Conrole dos equipamenos uilizados Equipamenos
Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação
Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Aula - 2 Movimento em uma dimensão
Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica
Engrenagens VI. O supervisor da área de controle de qualidade. Conceituação
A UU L AL A Engrenagens VI O supervisor da área de controle de qualidade e projetos de uma empresa observou que algumas peças, fabricadas no setor de usinagem, apresentavam problemas. Isso significava
Cap.7 IMPULSO, TRABALHO E ENERGIA
Impulso: Resula de uma força que acua num corpo durane um curo período de empo. Exemplos de impulsos: Colisão ou impaco de corpos. Quedas acidenais (podem provocar danos em pessoas idosas, acima dos 65
Exercícios Sobre Oscilações, Bifurcações e Caos
Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo
TORNEIRO MECÂNICO OPERAÇÃO
DEFINIÇÃO: TORNEIRO MECÂNICO OPERAÇÃO ABRIR ROSCA MÚLTIPLA (EXTERNA E INTERNA) É abrir rosca na superfície externa ou interna do material, através de um sistema de divisões de avanço da ferramenta, que
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gestão Desportiva
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gesão Desporiva Tarefa 3 Módulo 1 A 1. Na figura esá represenada uma função afim f. Sabe-se que: A imagem de -1 é 5; O zero
FIGURAS DE LISSAJOUS
FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados
:: Portfólio 03 LIVRO TEXTO REFÊRENCIA: - Slaides de aulas; - Exercícios em sala de aula; - Tabelas no próprio Portifólio 2.
Disciplina PROCESSOS INDUSTRIAIS Portfólio N 03 :: Portfólio 03 OBJETIVO Analise e síntese de textos técnicos ORIENTAÇÕES Leia o texto com calma, grife as principais informações e faça um resumo. O livro
ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase
ROEIRO DE CÁLCULO Ese roeiro de cálculo se aplica ao projeo de rocadores de calor casco e ubos, sem mudança de fase . Deerminar qual fluido passa pelo ubo e qual passa pelo casco. Diferença de emperauras
Estrada de Rodagem Superlargura e superelevação
Porf. odrigo de Alvarenga osa 3/03/01 Estrada de odagem e superelevação Prof. r. odrigo de Alvarenga osa [email protected] (7) 9941-3300 1 Um veículo tipo pode ser considerado como um retângulo
Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 21/1/217 Aenção: Leia as recomendações anes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do carão de resposas. 2- Leia os enunciados com aenção. 3- Analise sua resposa.
Experiência IV (aulas 06 e 07) Queda livre
Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de
Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
Função Logarítmica - Questões Extras
Função Logarímica - uesões Exras Exercícios 1. (Unifor 01) Após acionar um flash de uma câmera, a baeria imediaamene começa a recarregar o capacior do flash, o qual armazena uma carga elérica dada por
Profa. Janaina Fracaro Engenharia Mecânica JUNHO/2014
Profa. Janaina Fracaro Engenharia Mecânica JUNHO/2014 Introdução Medir a grandeza de uma peça por comparação é determinar a diferença da grandeza existente entre ela e um padrão de dimensão predeterminado.
Matemática e suas Tecnologias
Maemáica A. c Seja x o valor pago pelas 79 cabeças de gado. Assim cada uma das 7 cabeças foi vendida por Maemáica e suas Tecnologias Resoluções ENEM x. Meses depois o 7 valor ganho com as 9 cabeças resanes
TORNEIRO MECÂNICO TECNOLOGIA
TORNEIRO MECÂNICO TECNOLOGIA FERRAMENTAS DE CORTE P/ TORNO (PERFIS E APLICAÇÕES) DEFINIÇÃO: São ferramentas de aço rápido ou de carboneto metálico, empregadas nas operações de torneamento, para cortar
SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius
SEM 0534 Proessos de Fabriação Meânia Professor: Renao Goular Jasineviius SEM 0534 Proessos de Fabriação Meânia Eonomia da Usinagem Condições eonômias de ore CÁLCULO DA VELOCIDADE DE MÁXIMA PRODUÇÃO (Vmxp)
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática Sinopse: Nesta disciplina são abordados conceitos básicos da teoria dos erros, funções e gráficos, derivadas,
RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA
CONCURSO DE ADMISSÃO 2014/2015 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CM-BH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS
De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.
8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração
Curso de Modulação Digital de Sinais (parte 1)
Curso de Modulação Digial de Sinais (pare ) Márcio Anônio Mahias Auguso Carlos Pavão IMT Insiuo Mauá de Tecnologia. O que é modulação O processo de modulação pode ser definido como a ransformação de um
Seleção de módulos do Sistema de Ensino Ser 2014
ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de
Capítulo Cálculo com funções vetoriais
Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos
Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso
Unidade 13 Introdução à Dinâmica Impulsiva Introdução Quantidade de Movimento Impulso Teorema do Impulso Introdução Em um acidente automobilístico, nem sempre é fácil descobrir quem foi o culpado. Por
Circuitos Elétricos I EEL420
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com
Problema Inversor CMOS
Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo
FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.
FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica
Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um
Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi
Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta
Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.
Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.
25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes
3 Metodologia do Estudo 3.1. Tipo de Pesquisa
42 3 Meodologia do Esudo 3.1. Tipo de Pesquisa A pesquisa nese rabalho pode ser classificada de acordo com 3 visões diferenes. Sob o pono de visa de seus objeivos, sob o pono de visa de abordagem do problema
Valor do Trabalho Realizado 16.
Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]
Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica
AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO
Noas de aula de PME 3361 Processos de Transferência de Calor 57 AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO Inrodução Quando um corpo ou sisema a uma dada emperaura é bruscamene
Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.
Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido
Capítulo 2: Proposta de um Novo Retificador Trifásico
30 Capíulo 2: Proposa de um Novo Reificador Trifásico O mecanismo do descobrimeno não é lógico e inelecual. É uma iluminação suberrânea, quase um êxase. Em seguida, é cero, a ineligência analisa e a experiência
MÓDULO V. Certamente nesse módulo vamos trabalhar com temas imprescindíveis para quem tem como objetivo participar de seleções de concursos públicos.
1 MÓDULO V Certamente nesse módulo vamos trabalhar com temas imprescindíveis para quem tem como objetivo participar de seleções de concursos públicos. Problemas envolvendo grandezas proporcionais, regra
CONTEÚDO Efetuadores Projeto 01 Motor de Passo
EFETUADORES Introdução; Definição e Objetivo; Acionamento; Medição; Classificação. CONTEÚDO Efetuadores Projeto 01 Motor de Passo INTRODUÇÃO O objetivo dos robôs manipuladores é interagir com seu meio
Folga Axial Diâmetro do fuso (mm) ɸ14,0 ~ ɸ28,0 ɸ30 ~ ɸ32,0 ɸ36 ~ ɸ45,0 ɸ50 Folga axial máxima (mm) 0,10 0,14 0,17 0,20
Fusos de Esferas 1 - Folga Axial: É a medida entre o fuso e a castanha no sentido longitudinal ao eixo. Radial: É a folga entre o fuso e a castanha perpendicular ao eixo do fuso. Folga Axial Diâmetro do
PRÁTICA DE OFICINA AULA 04-2015-1 3.3 Filetar (abrir roscas no torno) ABERTURA DE ROSCAS parte 2 3.3.1 Introdução
1 PRÁTICA DE OFICINA AULA 04-2015-1 3.3 Filetar (abrir roscas no torno) ABERTURA DE ROSCAS parte 2 3.3.1 Introdução (a) (b) Fig. 3.7 Roscas com ferramenta de filetar (a) externa (b) interna. Para filetar
Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas
Engrenagens Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas alavancas. Classificação das Engrenagens As engrenagens
DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1
coneões com a maemáica banco De quesões Capíulo Funções rigonoméricas banco De quesões capíulo. (FEI-SP) O gráfico da função 5 f() 5 senh H no inervalo [, ] é: Funções rigonoméricas Grau de dificuldade
ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA
ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA Objetivos Conteúdos Habilidades Reconhecer números inteiros, e as diferentes formas de representá-los e relacioná-los, apropriando-se deles. Números inteiros:
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos
Geometria Espacial. Revisão geral
Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
Dobra/Corte por cisalhamento
Dobra/Corte por cisalhamento Esta publicação aborda o dobramento a frio, e também o corte da chapa antidesgaste Hardox e da chapa de aço estrutural Weldox. Nestes tipos de aços, combinamos elevada resistência
Acesse: http://fuvestibular.com.br/
Vai uma raspadinha aí? Na aula anterior você aprendeu que existem operações de usinagem na indústria mecânica que, pela quantidade de material a ser retirado, têm que ser necessariamente feitas com o auxílio
Cálculo da Combustão
Cálculo da Combusão Cálculo da Combusão Os cálculos da combusão baseiam-se nas reações esequioméricas dos elemenos combusíveis Elemenos aivos no combusível Reaem com Oxiênio Cbono C CO Hidroênio H H O
Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk
Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;
Circuitos Elétricos- módulo F4
Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões
=...= 1,0 = 1,00 = 1,000...
OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira
Calculando o comprimento de peças dobradas ou curvadas
Calculando o comprimento de peças dobradas ou curvadas A UU L AL A Vamos supor que você seja dono de uma pequena empresa mecânica e alguém lhe encomende 10.000 peças de fixação, que deverão ser fabricadas
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
TEORIA DE ERROS INTRODUÇÃO
TEORIA DE ERROS ITRODUÇÃO O ato de medir é, em essência, um ato de comparar, e essa comparação envolve erros de diversas origens (dos instrumentos, do operador, do processo de medida etc.). Pretende-se
3 Formulação do Problema da Dinâmica de Risers Empregando-se o Método dos Elementos Finitos 3.1. Fenomenologia do Comportamento Estrutural de Risers
43 3 Formulação do Problema da Dinâmica de Risers Empregando-se o Méodo dos Elemenos Finios 3.1. Fenomenologia do Comporameno Esruural de Risers O comporameno não linear de esruuras pode ser de origem
Capítulo 11. Corrente alternada
Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele
