LINEARIZAÇÃO DE GRÁFICOS
|
|
|
- Thomas Aldeia Avelar
- 9 Há anos
- Visualizações:
Transcrição
1 LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR
2 Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em um reta. É encontrar uma relação entre duas variáveis, que satisfaça a equação da reta, ou seja, determinar os coeficientes angular e linear da reta ( ). y b + ax Por que linearizar? A análise de uma reta é mais simples que a análise de uma curva. O processo de linearização facilita a determinação das leis físicas que governam o experimento que gerou os dados.
3 Métodos de Linearização 1) Troca de variáveis A equação que governa o comportamento dos dados deve ser conhecida. A troca de variáveis permite converter uma equação de uma curva numa equação de reta. Exemplo: y ax + b y ax + b x x onde t t Obs: Nem todas as equações podem ser convertidas de forma útil.
4 ln y ln a + ln x y ln a + x y ax x x (mudança de variável) y ax Diferenças entre as retas: Os coef. e sua interpretação são diferentes (1) não passa pela origem () passa pela origem Qual o melhor? > quando se conhece o expoente, é melhor a mudança de variável.
5 y ax α ln y ln a + α ln x y ln a + α x α é o coeficiente angular y ax mudança de variável > NÃO + c ln y ln (ax + c ) NÃO x x (mudança de variável) y ax + c
6 y ax + bx + c ln y ln (ax + bx + c ) NÃO x x (mudança de variável) y ax + bx.5 + c Não é linear > polinômio completo não lineariza
7 Métodos de Linearização ) Uso de papéis especiais: mono-log e di-log Quando um gráfico em papel milimetrado fornece uma curva, ainda assim é possível obter, em casos específicos, gráficos lineares usando papéis mono e di-log. Este método se aplica quando a equação que governa o comportamento dos dados não é conhecida. Funciona por tentativa e erro. Os softwares matemáticos permitem a troca das escalas linear para logarítmica facilitando o processo.
8 Métodos de Linearização Tipos de Papéis: Escala logarítmica Escala logarítmica Escala logarítmica milimetrado mono-log di-log
9 1) Método das mudanças de variáveis: Exemplo 1 Y (cm) (a) (b) (c) (d) lineari zação Y (cm) c' d' X (cm) X' (cm ) Gráfico das funções do tipo: y(x) ax (a) :y(x) x (b): y(x) x (c): y(x) x + bx + c 1x + 1x + Mudança de variável x x ( c ) y(x) x + (d): y(x) x ( d ) y(x) x
10 Mudança de variáveis: Exemplo Y (cm) X (cm) lineari zação Y (cm) ,,,4,6,8 1, X' (cm -1 ) Gráfico das funções do tipo: Y (X) a / X Mudança de variável X 1 X Y (X) 1/ X Y (X ) 1X
11 Mudança de variáveis: Exemplo 3 PROPRIEDADES IMPORTANTES DAS ONDAS ELETROMAGNÉTICAS Independentes da forma que foram geradas: 4 1) Os campos elétrico ( E r ) e magnético( B r - - ) são perpendiculares a -4-4 direção de propagação. (onda transversal) ) O campo elétrico é perpendicular ao magnético. 3) O produto vetorial E r B r aponta no sentido da propagação X (cm) X' (cm da onda. 1/ ) 4) Os campos variam senoidalmente com a mesma freqüência e estão em fase. Gráfico da função: Gráfico linearizado Para uma onda que se propaga na direção x, os campos elétricos e magnéticos são funções senoidais da posição x e do tempo t : Y (cm 1/ ) Y X 1 Y X 1 E Emsen(kx ωt) Linearização B Bmsen(kxonde ωt) Y (cm 1/ ) X X
12 ) Uso de Papéis especiais: Monolog e Dilog Os papéis com escala logarítmica são utilizados para linearizar funções exponenciais.1) Papel monolog Y Ae BX (X,Y ) Y (cm) 1 Y (cm) 1 (X 1,Y 1 ) 5,,5 1, 1,5,,5 3, X (cm) 1,,5 1, 1,5,,5 3, X (cm) Papel milimetrado Papel monolog Y e,8x
13 Papel monolog (cont.) Para linearizar em papel milimetrado BX Y Ae ( ) ( BX ) BX ln Y ln Ae lna + lne ( Y) lna BX ln + Comparando com a equação da reta Y B + A X Y ln(y) B lna A B coef.linear coef.angular 5 3,5 Y (cm) ln(y) 3,,5, 1,5 1,,,5 1, 1,5,,5 3, X (cm),5,,5 1, 1,5,,5 3, X (cm)
14 Uso de papéis especiais:.) Papel dilog Y AX B, 1,5 1,1 (X,Y ) Y (cm) 1,,5 Y (cm),1 1E-3 (X 1,Y 1 ), 1E-4,,,4,6,8 1, 1E-5,1,1 1 X (cm) X (cm) Papel milimetrado Papel dilog Y X,4
15 No Papel dilog: Y AX B Assim: log ( ) ( B ) ( ) ( B Y log AX log A + log X ) ( Y) log( A) Blog( X) log + Y log( Y) Y B + A X B log( A) X log( X) A B
16 Papel dilog (cont.) Para linearizar em papel milimetrado: Após a linearização: ( Y) log( A) Blog( X) log + Y B + A X Y log( Y) X B A log( X) log( A) B 1, 1,5-1 Y (cm) 1,,5 log (Y) - -3, -4,,,4,6,8 1, X (cm) -5 -, -1,5-1, -,5, log (X) Papel milimetrado Papel milimetrado
17 Exemplo de confecção de gráfico, linearização e ajuste de reta Dados obtidos: Objetivo: Determinar a aceleração a partir das medidas de V e X. X (cm) V (m/s),691 1,435 1,913,93,77 3,8 3,37
18 1) unificar as unidades para o mesmo sistema de unidades Por exemplo, no SI. X (m),15,3,45,6,75,9 V (m/s),691 1,435 1,913,93,77 3,8 3,37 ) Fazer o gráfico: V versus X 3,5 3,,5 V (m/s), 1,5 Não é reta!!! 1,,5,,,4,6,8 1, X (m)
19 3) Fazer a linearização: É necessário conhecer a equação que relaciona as variáveis V e X Análise: Este problema é um problema típico de cinemática, que envolve aceleração constante, ou seja, MRUV. As equações do MRUV são: X X V V + V + V t + at at A equação que relaciona V com X é: V V ax + como V + aδx ΔX X X X ΔX X
20 3) Fazer a linearização (cont): Comparar com a equação da reta e fazer a mudança de variável. V V + ax Assim: Y V Y B + AX X X coef. linear: B V V B coef. angular: A a a A
21 4) Montar uma tabela com as variáveis linearizadas V e X. X' X (m),15,3,45,6,75,9 YV (m/s),47748,593 3, ,5785 7, , , ) Fazer o gráfico linearizado, isto é, o gráfico de V versus X Y V Y (m /s ) 6 4,,,4,6,8 1, X (m)
22 6) Fazer o ajuste da melhor reta utilizando o MMQ X V X i Y i X i X i Y i,47748,,,15,593,5,3888,3 3,65957,9 1,9787,45 5,5785,5,3663,6 7,43653,36 4,4619,75 9,16878,565 6,87659,9 1,47817,81 9,4335 Σ 3,15 38,53761,475 4,54164 Calculando o coeficiente angular: A N X i.yi X i. Yi N X ( X ) i 7 4, ,15 38,53761 A 11,4813m/s 7,475 (3,15) i
23 6) Fazer o ajuste da melhor reta utilizando o MMQ (cont.) Calculando o coeficiente linear B: Y B + AX Y Yi N X X N i B Y AX 11,4813 (38, ,15) / 7 /s B,3671m Comparar os coeficientes e calcular a aceleração: a A / 11,4813/ calcular a velocidade inicial V : a 5,7147 m/s V B,3671 V,65 m/s
24 7) Desenhar a melhor reta no gráfico Escolher dois pontos X 1 e X e a partir da equação da melhor reta calcular Y 1 e Y Exemplo: X 1, Y, ,4813X Y 1, ,4813 (,) pontos da melhor reta: Gráfico com a melhor reta, Y, ,4813 X 8 Y (m /s ) 6 4 Pontos da melhor reta,,,4,6,8 1, X (m)
25 FIM
LINEARIZAÇÃO DE GRÁFICOS
LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma
Processo de Linearização de Gráficos
Aula Linearização de Gráficos 16 1 Processo de Linearização de Gráficos O que é linearização? Procedimento para tornar uma curva em uma reta. Permite determinar a relação entre duas variáveis (y e x),
F129 LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA. Prof. Jonhson Ordoñez VERSÃO 14
LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA Processos de Linearização de Gráficos O que é linearização? É o procedimento para tornar uma curva em uma reta cuja equação é y = ax +b. É encontrar uma relação
Aula IV. Representação gráfica e regressão linear. Prof. Paulo Vitor de Morais
Aula IV Representação gráfica e regressão linear Prof. Paulo Vitor de Morais Representação gráfica A representação gráfica é uma forma de representar um conjunto de dados de medidas que permite o estudo
Regressão, Interpolação e Extrapolação Numéricas
, e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de
- Papel milimetrado. Para o coeficiente linear: LEIA A COORDENADA DO PONTO no qual a reta cruza o eixo da função y para x = 0.
Gráficos O método mais eficiente de obter a relação entre dois parâmetros é colocar as medidas experimentais envolvendo essas duas quantidades em um gráfico. Normalmente procura-se obter um gráfico no
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
PRÁTICA CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO MMQ 4.
PRÁTICA 4 4.1 - CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO 4.2 - MMQ 4.1 Objetivos: a. Realizar a linearização das funções. b. Construir gráficos em papel
Análise de Regressão. Notas de Aula
Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas
unidades das medidas para as seguintes unidades: km 2, hm 2, dam 2, m 2, dm 2,
Estudo Dirigido de Física Experimental 1 1ª FASE 1. A notação científica facilita a transformação de unidades. Faça as transformações lembrando de manter o mesmo número de algarismos significativos. a)
Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.
FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda
RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C
1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2
Prática 1: Movimento Retilíneo Uniforme
1.1 Objetivo: Estudar o Movimento Retilíneo Uniforme (MRU). Verificar experimentalmente as equações de movimento para a posição e para a velocidade em função do tempo. 1.2 Material Necessário: 01 Trilho
REGRESSÃO. Análise de Correlação
REGRESSÃO Linear, Não linear, simples e múltipla Análise de Correlação 2 Correlação Indica a força e a direção do relacionamento linear entre dois atributos Trata-se de uma medida da relação entre dois
Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.
Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
CINEMÁTICA DO PONTO MATERIAL
1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:
PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da
2.1 Movimento Retilíneo Uniforme e Uniformemente Acelerado
44 CAPÍTULO 2. SÉRIE A 2.1 Movimento Retilíneo Uniforme e Uniformemente Acelerado 2.1.1 Material Necessário 01 rolo para movimento retilíneo; 01 rampa com régua de milimetrada e rampa auxiliar; 01 placa
3.1 Manômetro de tubo aberto
58 3.1 Manômetro de tubo aberto 3.1.1 Material Necessário 01 painel em U graduado. 01 Tripé tipo estrela. 01 Seringa de plástico. 01 Mangueira de látex. 01 proveta de 250ml. 01 jogo de sondas. 01 régua
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA. Princípios e Fenômenos da Mecânica. Professor: Felipe
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Felipe MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO Discentes: Camila de Oliveira
FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT1 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH
FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH APOSTILA DO EXPERIMENTO - MEDIDOR VENTURI Esta apostila contém o roteiro da
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
UNESP - Faculdade de Engenharia de Guaratinguetá 1
ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração
AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA MATEMÁTICA B Curso de Artes Visuais ANO LECTIVO: 2015/2016 11º ANO 1º PERÍODO PLANIFICAÇÃO
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14
Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)
P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
Construção e Análise de Gráficos. CF Laboratório de Física Básica 1
Construção e Análise de Gráficos Por que fazer gráficos? Facilidade de visualização de conjuntos de dados Facilita a interpretação de dados. Exemplos: Engenharia Física Economia Biologia Estatística Por
MATEMÁTICA. Questões de 01 a 06
MATEMÁTICA Questões de 01 a 06 MAT PÁG. 1 01. O custo total da fabricação de determinado artigo depende do custo de produção, que é de R$ 45,00 por unidade fabricada, mais um custo fixo de R$ 2.000,00.
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA (1) Determine o valor da tensão na saída V o. LISTA DE EXERCICIOS
CONTEÚDO CIÊNCIAS REVISÃO 1 REVISÃO 2 REVISÃO 3 E HABILIDADES. Conteúdo: - Movimento, velocidade e aceleração - Força, ótica e som
CIÊNCIAS Conteúdo: - Movimento, velocidade e aceleração - Força, ótica e som Habilidades: - Relembrar os conceitos de movimento, velocidade e aceleração, bem como sua exemplificação no dia a dia. - Destacar
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)
PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos
OS ELEMENTOS BÁSICOS E OS FASORES
CAPITULO 14 OS ELEMENTOS BÁSICOS E OS FASORES Como foi definido anteriormente a derivada dx/dt como sendo a taxa de variação de x em relação ao tempo. Se não houver variação de x em um instante particular,
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
Os Fundamentos da Física Vol 1- Mecânica
Os Fundamentos da Física Vol 1- Mecânica - Livro de Fisica - Ensino Médio 1ª série - 8ª Edição - Autor Ramalho - Nicolau - Toledo - ISBN 85-16-03698-7 - Editora Moderna INTRODUÇÃO GERAL Capítulo 1 - Introdução
Ondas Eletromagnéticas. Cap. 33
Ondas Eletromagnéticas. Cap. 33 33.1 Introdução As ondas eletromagnéticas estão presentes no nosso dia a dia. Por meio destas ondas, informações do mundo são recebidas (tv, Internet, telefonia, rádio,
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Numérico 3/55 Introdução Em geral, experimentos geram uma gama de dados que devem
Ajuste de dados pelo Métodos dos Mínimos Quadrados
Ajuste de dados pelo Métodos dos Mínimos Quadrados Prof. Santos Alberto Enriquez Remigio Famat-Ufu Problema Após serem efetuadas medições num gerador de corrente contínua, foram obtidos os valores indicados
BC 0208 Fenômenos Mecânicos. Experimento 2 - Roteiro
BC 0208 Fenômenos Mecânicos Experimento 2 - Roteiro Movimento Retilíneo Uniformemente Variado (MRUV) Professor: Turma: Data: / /2015 Introdução e Objetivos No Experimento 1 estudamos o Movimento Retilíneo
Aula II. Representação gráfica e regressão linear. Prof. Paulo Vitor de Morais
Aula II Representação gráfica e regressão linear Prof. Paulo Vitor de Morais Representação gráfica A representação gráfica é uma forma de representar um conjunto de dados de medidas que permite o estudo
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09
Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08
VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA
GERAL DOS PROFESSORES DO CURSO POSITIVO VESTIBULAR UFPR 009 (ª FASE) PROVA DE MATEMÁTICA Estamos diante de um exemplo de prova! A afirmação acima, feita pelo prof. Adilson, sintetiza a nossa impressão
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
Sinais, sistemas, e processamento de sinais; Classificação de sinais; O conceito de freqüência em sinais de tempo contínuo e discreto
Sinais, sistemas, e processamento de sinais; Classificação de sinais; O conceito de freqüência em sinais de tempo contínuo e discreto Sinais, sistemas, e processamento de sinais U sinal é definido como
Introdução às medidas físicas ( ) Aula 6 e 7 Queda livre. Qual é o método que usará para atingir seu objetivo?
Introdução às medidas físicas (430015) Aula 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS
LOGO FQA COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS Propagação de um sinal Energia e velocidade de propagação (modelo ondulatório) Transmissão de sinais Sinal - é qualquer espécie de perturbação que
CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA
CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA SISTEMAS ANALÓGICOS Prática: 4 Assunto: Amplificador Operacional - Parte IV Objetivos: Montar e testar as configurações de comparadores. Material
Funções reais de variável real
Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.
FIGURAS DE LISSAJOUS
FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados
-----------------------------------------------------------------------------------------------------------
CINEMÁTICA DO MOVIMENTO CIRCULAR www.nilsong.com.br I) RESUMO DE FÓRMULS DO MOVIMENTO CIRCULAR ( circular uniforme e uniformente variado) -----------------------------------------------------------------------------------------------
Aula 3 Função do 1º Grau
1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Função Exponencial. Função exponencial Gráfico da função exponencial Equações exponenciais Função exponencial de base e
Função Exponencial Função exponencial Gráfico da função exponencial Equações exponenciais Função exponencial de base e Função Exponencial Suponha que atualmente a dívida de certo município seja de milhão
Métodos Quantitativos Aplicados a Custos Análise Estatística como um auxiliar valioso nas decisões
Métodos Quantitativos Aplicados a Custos Análise Estatística como um auxiliar valioso nas decisões Que métodos estatísticos podem auxiliar as análises de custos? Qual a relação entre regressão e correlação?
Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é
Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa
1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar
Capítulo II. Elementos de Circuitos
Capítulo II Elementos de Circuitos.1 Introdução O objetivo da engenharia é projetar e produzir dispositivos que atendam às necessidades humanas. Para tanto, é necessário que se conheçam os componentes
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16
A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de usar modelos simples como protótipos de certos comportamentos básicos
3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos
Pontifícia Universidade Católica do RS Faculdade de Engenharia
Pontifícia Universidade Católica do RS Faculdade de Engenharia LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA Experiência nº 9 Retificador Trifásico de Três pulsos a Tiristor OBJETIVO: Verificar o comportamento
2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.
2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.7 Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. Derivadas e Taxas de Variação
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
A partir do gráfico, e usando a definição de resistência elétrica, tem-se:
Física Unidade V Eletricidade Série 3 - Lei de Ohm 01 A partir do gráfico, e usando a definição de resistência elétrica, tem-se: U 10 = = = 50 Ω i 0, esposta: E 1 Física Unidade V Eletricidade Série 3
Campo Magnético Girante de Máquinas CA
Apostila 3 Disciplina de Conversão de Energia B 1. Introdução Campo Magnético Girante de Máquinas CA Nesta apostila são descritas de forma sucinta as equações e os princípios relativos ao campo magnético
1088 - INSTRUMENTAÇÃO INDUSTRIAL. Cópia das transparências sobre: TRANSDUTORES DE VELOCIDADE E VAZÃO
1088 - INSTRUMENTAÇÃO INDUSTRIAL Cópia das transparências sobre: TRANSDUTORES DE VELOCIDADE E VAZÃO Prof. Demarchi Capítulo 5 TRANSDUTORES DE VELOCIDADE E VAZÃO 5.1 Tacômetros São dínamos de corrente contínua
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos
Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da luz
Aplicações de integração. Cálculo 2 Prof. Aline Paliga
Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar
Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação
Dependência 1ª série 2016 Conteúdo programático 1- Cinemática 1.1 Movimento Uniforme 1.2 - Movimento Uniformemente Variado 1.3 Cinemática Vetorial 2 Dinâmica 2.1 Princípios Fundamentais da dinâmica 2.2
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
68 9.3 Experiência 3: Lançamento Horizontal, Conservação da Energia e da Quantidade de Movimento 9.3.1 Objetivos Identificar corretamente a grandeza alcance em um lançamento horizontal de projétil a partir
O Plano. Equação Geral do Plano:
O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor
1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I
Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,
Francisco Magalhães Gomes IMECC UNICAMP. Matemática básica. Volume 1 Operações, equações, funções e sequências
Francisco Magalhães Gomes IMECC UNICAMP Matemática básica Volume 1 Operações, equações, funções e sequências 2016 Sumário Prefácio vii Capítulo 1 Números reais 1 1.1 Conjuntos de números..............................
UNIMONTE, Engenharia Laboratório de Física Mecânica
Física Mecânica Roteiros de Experiências 7 UNIMONTE, Engenharia Laboratório de Física Mecânica Estudo Teórico Sobre Gráficos Monologarítmicos Turma: Data: : Nota: Nome: RA: Papeis logarítmicos: São convenientes
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma
Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa
Introdução ao Projeto de Aeronaves Aula 9 Análise Aerodinâmica da Asa Tópicos Abordados Asas de Envergadura Finita. Forma Geométrica e Localização da Asa na Fuselagem. Alongamento e Relação de Afilamento.
Fenômenos de Transporte
Objetivos Fenômenos de Transporte II - Conceitos Fundamentais Caracterizar o campo de velocidade. Descrever os diversos tipos de escoamento e as diferentes formas de representá-los graficamente. Prof.
GEOMETRIA ANALÍTICA II
Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
Resolução Numérica de Equações Parte I
Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
SERVIÇO PÚBLICO FEDERAL CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE PELOTAS DIRETORIA DE RECURSOS HUMANOS ANEXO
SERVIÇO PÚBLICO FEDERAL CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE PELOTAS DIRETORIA DE RECURSOS HUMANOS ANEXO Este Anexo integra o Edital Nº 40/2007, que disciplina o Concurso Público destinado ao provimento
Regressão linear múltipla. Prof. Tatiele Lacerda
Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,
1.2 Roteiro para obter um gráfico de qualidade
CAPÍTULO 1 Análise Gráfica de Resultados Experimentais Prof. Cláudio Graça, Dep. Física UFSM 1.1 Objetivos encontrar uma função que represente um modelo físico a partir de medidas feitas em laboratório;
Seja a função: y = x 2 2x 3. O vértice V e o conjunto imagem da função são dados, respectivamente, por: d) V = (1, 4), Im = {y y 4}.
MATEMÁTICA b Seja a função: y = x 2 2x. O vértice V e o conjunto imagem da função são dados, respectivamente, por: a) V = (, 4), Im = {y y 4}. b) V = (, 4), Im = {y y 4}. c) V = (, 4), Im = {y y 4}. d)
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO 1. (Epcar (Afa) 016) Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa
Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis
Teorema de Pitágoras- Unidade 2 1.ºP Tema Calendarização Domínio N.º de aulas de 45 minutos Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Planificação Curricular a Longo Prazo Matemática
