Exercícios: Alg Gulosos. Eduardo Laber

Tamanho: px
Começar a partir da página:

Download "Exercícios: Alg Gulosos. Eduardo Laber"

Transcrição

1 Exercícios: Alg Gulosos Eduardo Laber

2 Cap 4-Exercício 2 a) Verdadeiro, já que trocando cada elemento pelo seu quadrado não altera a ordem das arestas. Portanto, o algoritmo de Kruskal constrói a mesma árvore. b) Falso. Considere o seguinte contraexemplo: V={s,a,b,t}, cost(s,a)=9, cost(a,t)=1, cost(s,b)=6, cost(b,t)=6

3 Estratégia: Cap 4- Exercício 4 Encontrar a primeira ocorrência do primeiro elemento de S em S. Seja i(1) o índice desta ocorrência em S. Depois, encontre a primeira ocorrência do segundo elemento de S em S que esteja a direita de i, e assim por diante.

4 Cap 4- Exercício 4 Sejam e (1),...,e (m) os eventos de S. Execute o seguinte algoritmo K 0 Para i=1...m Encontre a primeira ocorrência de e (i) em S que esteja depois da posição K Se nenhuma ocorrência for encontrada Retorne S não é subsequência de S Senão K posição em S aonde e (i) foi encontrado Fim Se Fim Para Retorne S é subsequência de S

5 Cap 4- Exercício 4

6 Cap 4- Exercício 4 Prova de corretude Se o algoritmo encontra a sequência ele funciona corretamente. Considere que o algoritmo não encontra a sequência mas tal sequência existe. Assuma que o algoritmo conseguiu encontrar k <m eventos nas posição P=i(1)< i(2)<...< i(k) Seja j(1),j(2),...,j(m) as posições da subsequência S em S que tem maior prefixo comum com P. Como k<m, a subsequência

7 Cap 4- Exercício 5 Execute o seguinte algoritmo: H conjunto com todas as casas Enquanto o conjunto H tem alguma casa Coloque uma base b 4 milhas à direita da casa mais à esquerda do conjunto H Remova todas as casas do conjunto H cuja distância até a base b é de no máximo 4 milhas Fim Enquanto

8 Cap 4- Exercício 5 Prova de Corretude. Assuma por contradição que a solução S do algoritmo não é ótima. Dentre as soluções ótimas, seja OPT={j 1,...,j k } a solução ótima cujo prefixo comum com S é máximo. Seja j 1,...,j r o prefixo comum entre as duas OPT: i 1 i 2 i r i r+1 i r+1 S: j 1 j 2 j r j r+1 j r+2 j r+3 O que acontece se trocarmos a base i r+1 com a base j r+1?

9 Cap 4- Exercício 5 Prova de Corretude. Assuma por contradição que a solução S do algoritmo não é ótima. Dentre as soluções ótimas, seja OPT={j 1,...,j k } a solução ótima cujo prefixo comum com S é máximo. Seja j 1,...,j r o prefixo comum entre as duas OPT*: i 1 i 2 i r j r+1 i r+1 S: j 1 j 2 j r j r+1 j r+2 j r+3 Trocando a base i r+1 com a base j r+1, obtemos uma outra solução ótima OPT* já que j r+1 e i r cobrem todas as casas cobertas por i r+1

10 Cap 4- Exercício 5 Prova de Corretude. Assuma por contradição que a solução S do algoritmo não é ótima. Dentre as soluções ótimas, seja OPT={j 1,...,j k } a solução ótima cujo prefixo comum com S é máximo. Seja j 1,...,j r o prefixo comum entre as duas OPT * : i 1 i 2 i r j r+1 i r+1 S: j 1 j 2 j r j r+1 j r+2 j r+3 OPT* é ótima e o prefixo comum entre S e OPT*é maior que o prefixo comum entre S e OPT. Essa contradição surge da hipótese que S não é ótima. Portanto, S é ótima

11 Cap 4-Exercício 7 Algoritmo: Obtenha um escalonamento S escalonando os jobs no supercomputador em ordem decrescente de f (tempo de processamento no PC) O que tiver maior f é escalonado antes

12 Cap 4-Exercício 7 Prova de corretude Assuma que o escalonamento S contém inversões existem jobs i e j tal que i é escalonado imediatamente antes de j e que f(j)>f(i). Seja P o tempo em que i começa a ser processado no super computador. Logo, i termina em P+p(i) + f(i) e j termina em P+p(i)+p(j)+f(j).

13 Cap 4-Exercício 7 Prova de corretude Seja S* o escalonamento obtido ao inverter i e j. Temos que: O tempo de término fica inalterado para todos os jobs diferentes de i e j. Para o job j a situação só pode melhorar. O job i passa a terminar em t (i)=p+p(j)+p(i)+f(i). Entretanto, temos t (i)<t(j) já que f(i)<f(j).portanto, S* é melhor ou igual a S.

14 Cap 4-Exercício 7 Prova de corretude Logo, sempre que um escalonamento S tiver inversões podemos obter um escalonamento S* tão bom quanto S mas com menos inversões que S. Portanto, existe um escalonamento ótimo sem inversões, o que implica que o algoritmo guloso obtém um escalonamento ótimo.

15 Cap 4- Exercício 8 Assuma que existam duas MST s T e T. Seja e uma aresta que está em T mas não está em T. Logo, T U e contém um ciclo. Como todas as arestas tem custo diferente, segue da propriedade do ciclo que a aresta mais cara deste ciclo não pode estar em uma MST, o que contradiz o fato de T e T serem MST s

16 Cap 4- Exercício 9 Exercício 9 a) Não. Considere um grafo G formado por um triângulo, onde um dos vértices está ligado a um caminho. (arestas tem custos distintos) Considere que a aresta de maior custo em G não pertence ao triângulo. Então existe apenas uma MST e toda árvore geradora é uma miminum bottleneck tree (MBT).

17 b) Sim. Cap 4- Exercício 9 Assuma que uma MST T não é uma MBT. Seja T* uma MBT para o grafo e seja f a aresta de maior custo de T. Temos que f não pertence a T* já que T não é uma MBT Logo, o subgrafo obtido pela união de T* com a aresta f contém um ciclo. A aresta mais cara deste ciclo é f e, portanto, pela propriedade do ciclo, f não pode pertencer a T. Contradição!

18 Cap 4 - Exercício 10 a) Se a aresta uv for inserida, teste se existe alguma aresta no caminho que liga u a v em T que é mais cara que uv. Se existir, T não é mais uma MST (propriedade do ciclo). Caso não exista, T é uma MST ( Algoritmo de Kruskal faria as mesmas escolhas). DFS, executa em O( V ) já que o número de arestas em T é V -1

19 Cap 4 Exercicio 10 (assumindo custos distintos) b) Encontrar um ciclo na árvore T+e e remover a aresta de custo máximo deste ciclo. As demais arestas do grafo não pertencem a MST antes e não passar a pertencer após adição de e já que elas são as arestas mais caras de algum ciclo

20 Cap 4 -Exercício 12 a) Falso J(1)=(1,1000), J(2)=(1000,1),r= 1 Para o segundo job não vale, mas escalonando J(1) depois J(2) a restrição é satisfeita.

21 Cap 4 -Exercício 12 b) Para i=1,...,n, seja r(i)=b(i)/t(i) Ordene os streams em ordem crescente de r(i). Para i=1,...,n, verifique se a soma dos b s para os i primeiros streams dividido pela soma dos t s para os i primeiros streams é menor que r. Se a condição for sempre satisfeita, um escalonamento viável foi encontrado. Caso contrário, não existe escalonamento viável

22 Cap 4 -Exercício 12 Prova de corretude. Dizemos que as streams i e j estão invertidas em um escalonamento S se i ocorre antes de j e r(i) > r(j) Seja S um escalonamento viável com inversões existem streams i e i+1 tal que r(i) >r(i+1) e i aparece imediatamente antes de i+1 em S.

23 Cap 4 -Exercício 12 Prova de corretude. Seja T o tempo que i começa em S e B o número de bits transmitidos antes de i começar. Vamos mostrar que invertendo i e i+1 obtemos um escalonamento S* que é viável e tem menos inversões que S Basta analisar os instantes de tempo em que os streams i e i+1 estão sendo enviados já que os demais streams não são afetados pela inversão.

24 Cap 4 -Exercício 12 Prova de Corretude (cont) Seja t um número no intervalo [0, t(i+1)]. No instante T+t: O escalonamento S* já transmitiu B+t r(i+1) bits O escalonamento S transmitiu B+min{t,t(i))} r(i) + max{0,t-t(i)} r(i+1) Como r(i)>r(i+1), S* transmitiu menos bits e, portanto, ele é viável neste instante. Seja t um número no intervalo (0, t(i)]. No instante T+t(i+1)+t: O escalonamento S* transmitiu B+ t(i+1) r(i+1)+t r(i) bits O escalonamento S transmitiu B+ min{t(i),t(i+1)+t) r(i) + max{0,t(i+1)+t t(i) } r(i+1). Como r(i)>r(i+1), S* transmitiu menos bits e, portanto, ele é viável neste instante.

25 Cap 4 -Exercício 12 Prova de corretude. Portanto, o stream S* é viável e tem menos inversões que S Portanto, se existe um escalonamento viável, então existe um viável com 0 inversões.

26 Cap 4 - Exercício 13 Escalonar em ordem decrescente de w i / t i. Considerar solução ótima com número mínimo de inversões e argumentar que trocar a ordem de jobs invertidos consecutivos não piora a solução

27 Cap 4 - Exercício 15 S Todos estudantes; C vazio Enquanto S<>vazio Seja s o estudante de S, ainda não coberto por C, cujo shift termina primeiro. Inclua no comitê o estudante t cujo shift é o último a terminar dentre todos os estudantes de S cujo shift começa antes do término do shift de s. Remova de S o estudante t e todos os estudantes cujo shift termina antes do shift de t Coloque t em C Fim Enquanto

28 Cap 4 - Exercício 15 Prova de Corretude Utilizar técnica da soluçào ótima com o maior prefixo comum com aquela construída pelo Greedy.

29 Cap 4 -Exercício 19 Bottleneck tree Compute uma árvore geradora T de custo máximo ( Aplique Kruskal ordenado as arestas por ordem decresente de peso) Se existir um caminho P entre u e v em G tal que o bottleneck seja maior do que o dado por T então T U P tem um ciclo em que a aresta de menor custo pertence a T. Pela propriedade do ciclo isto contradiz o fato de T ser uma árvore geradora de custo máximo

30 Cap 4 - Exercício 21 Encontre um ciclo na Near tree e remova aresta mais cara (cycle property). Repita este procedimento 9 vezes

2 Relação entre soma dos graus e número de arestas

2 Relação entre soma dos graus e número de arestas Rio de Janeiro, 24 de Outubro de 2011. LISTA DE ESTRUTURAS DISCRETAS PROFESSOR: EDUARDO LABER OBSERVAÇÕES: Exercícios marcados com são mais complicados. 1 Isomorfismo 1. Seja G =(V,E) um grafo simples.

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

Escalonamento em uma máquina

Escalonamento em uma máquina Capítulo 4 Escalonamento em uma máquina Veremos neste capítulo vários problemas relacionados ao escalonamento em uma máquina. Estes problemas são importantes, pois além de fornecerem idéias para problemas

Leia mais

Coloração de intervalos

Coloração de intervalos Coloração de intervalos Problema: Dados intervalos de tempo [s 1,f 1 ),...,[s n,f n ), encontrar uma coloração dos intervalos com o menor número possível de cores em que dois intervalos de mesma cor sempre

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 12 Prof. Dr. Sylvio Barbon Junior Sumário - Árvore Geradora Mínima - Teorema pare reconhecer arestas seguras; - Algoritmo de Prim; - Algoritmo

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo

Leia mais

O grau de saída d + (v) de um vértice v é o número de arcos que tem

O grau de saída d + (v) de um vértice v é o número de arcos que tem Grafos Direcionados Definição (Grau de Entrada) O grau de entrada d (v) de um vértice v é o número de arcos que tem v como cabeça. Definição (Grau de Saída) O grau de saída d + (v) de um vértice v é o

Leia mais

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32 Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de

Leia mais

Teoria dos Grafos AULA 2

Teoria dos Grafos AULA 2 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 2 Subgrafos, Operações com Grafos Preparado a partir

Leia mais

Grafos: componentes fortemente conexos, árvores geradoras mínimas

Grafos: componentes fortemente conexos, árvores geradoras mínimas Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40 Algoritmos Greedy Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/2015 1 / 40 Algoritmos Greedy Vamos falar de algoritmos greedy. Em português são conhecidos como: Algoritmos

Leia mais

Estruturas Discretas

Estruturas Discretas Estruturas Discretas 2017.2 Marco Molinaro > Conceitos Básicos Quantificadores Exercícios 1/27 Conteúdo 1 Conceitos Básicos Teorema Lema e Corolário Proposição Axiomas e Definições 2 Quantificadores 3

Leia mais

Códigos Corretores de Erros e Cliques de Grafos

Códigos Corretores de Erros e Cliques de Grafos Códigos Corretores de Erros e Cliques de Grafos Natália Pedroza Jayme Szwarcfiter Paulo Eustáquio UFRJ/UERJ 2016 Natália Pedroza (UFRJ/UERJ) Códigos Corretores 2016 1 / 32 Apresentação Códigos corretores

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó

Leia mais

Matemática Discreta Capítulo 3 Versão preliminar

Matemática Discreta Capítulo 3 Versão preliminar Matemática Discreta Capítulo 3 Versão preliminar Henri Anciaux e Derek Hacon October 25, 2007 1 Generalidades sobre grafos Um grafo G é simplesmente um par de dois conjuntos V e A, o segundo sendo constituído

Leia mais

Grafos Msc. Daniele Carvalho Oliveira. Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1

Grafos Msc. Daniele Carvalho Oliveira. Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1 Grafos Msc. Daniele Carvalho Oliveira Doutoranda em Computação UFU Mestre em Computação - UFU Bacharel em Computação - UFJF 1 Árvore Geradora Mínima 2 Porque é um problema interessante Suponha que queremos

Leia mais

Ciclos hamiltonianos e o problema do caixeiro viajante

Ciclos hamiltonianos e o problema do caixeiro viajante Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.

Leia mais

Teoria dos Grafos Aula 5

Teoria dos Grafos Aula 5 Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema

Leia mais

Árvore Binária de Busca Ótima

Árvore Binária de Busca Ótima MAC 5710 - Estruturas de Dados - 2008 Referência bibliográfica Os slides sobre este assunto são parcialmente baseados nas seções sobre árvore binária de busca ótima do capítulo 4 do livro N. Wirth. Algorithms

Leia mais

Teoria dos Grafos Aula 8

Teoria dos Grafos Aula 8 Teoria dos Grafos Aula 8 Aula passada Classe de funções e notação Propriedades da notação Funções usuais Aula de hoje Grafos direcionados Busca em grafos direcionados Ordenação topológica Tempo de execução

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17)

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA

O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Nível Intermediário O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Muitos problemas atraentes de matemática elementar exploram relações entre conjuntos finitos, expressas em linguagem coloquial.

Leia mais

Corte Máximo em Grafos Notas de aula de MAC-5727

Corte Máximo em Grafos Notas de aula de MAC-5727 Corte Máximo em Grafos Notas de aula de MAC-577 (Material Extra do Capítulo ) Prof. a Yoshiko Wakabayashi Versão pós-aula feita por Bruno Takahashi C. de Oliveira em 09/03/09 15 de agosto de 016 1 Definições

Leia mais

Grafos: algoritmos de busca

Grafos: algoritmos de busca busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que

Leia mais

Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2

Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel phrg@ufu.br Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo

Leia mais

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo Notas de aula da disciplina IME - ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) Troco mínimo Dados os tipos de moedas de um país, determinar o número mínimo

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

CI065 CI755 Algoritmos e Teoria dos Grafos

CI065 CI755 Algoritmos e Teoria dos Grafos CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices

Leia mais

Teoria dos Grafos Aula 18

Teoria dos Grafos Aula 18 Teoria dos Grafos Aula 18 Aula passada Coloração Algoritmo guloso Número cromático Teorema das 4 cores Aula de hoje Clusterização (ou agrupamento) Algoritmo Variação Clusterização Coleção de objetos Agrupar

Leia mais

Técnicas de Desenho de Algoritmos

Técnicas de Desenho de Algoritmos Técnicas de Desenho de Algoritmos Mudança de ênfase: da implementação de algoritmos para o desenho de algoritmos A ver: 5 tipos de algoritmos abordagem ao problema exemplos complexidade em tempo e espaço

Leia mais

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II 01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze

Leia mais

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas Teoria dos Grafos - BCC204 Planaridade Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 29 de maio de 2011 1 / 23 Oferta de Serviços Gás Luz Água Podemos oferecer os demais serviços para

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

AULA 22. Algoritmos p.793/823

AULA 22. Algoritmos p.793/823 AULA 22 Algoritmos p.793/823 Conjuntos disjuntos dinâmicos CLR 22 CLRS 21 Algoritmos p.794/823 Conjuntos disjuntos Seja S = {S 1, S 2,..., S n } uma coleção de conjuntos disjuntos, ou seja, S i S j = para

Leia mais

05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II

05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II 05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.

Leia mais

Teoria dos Grafos Aula 24

Teoria dos Grafos Aula 24 Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

Problema de escalonamento

Problema de escalonamento Problema de escalonamento Considere n tarefas indicadas pelos números 1,...,n Algoritmos p. 1 Problema de escalonamento Considere n tarefas indicadas pelos números 1,...,n t i : duração da tarefa i d i

Leia mais

OBMEP NA ESCOLA Soluções

OBMEP NA ESCOLA Soluções OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

Teoria dos Grafos. Conjuntos de Corte e Conectividade

Teoria dos Grafos. Conjuntos de Corte e Conectividade Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Conjuntos de

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Idéias básicas Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada. Verifica se ele é viável - vindo a fazer parte da solução ou não. Após uma seqüência de

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Teobaldo L. Bulhões Júnior a a Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil

Leia mais

Compressão Sem Perdas: Codificações Huffman e Aritmética. Adelar da Silva Queiróz Marcelo Teixeira Thiago da Silva Sodré

Compressão Sem Perdas: Codificações Huffman e Aritmética. Adelar da Silva Queiróz Marcelo Teixeira Thiago da Silva Sodré Compressão Sem Perdas: Codificações Huffman e Aritmética Adelar da Silva Queiróz Marcelo Teixeira Thiago da Silva Sodré Compressão Sem Perdas (Lossless Data Compression) Refere-se a métodos de compressão

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. 1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa

Leia mais

Online Survivable Network Design

Online Survivable Network Design Fonte: Artigo de Gupta, Krishnaswamy e Ravi. 06 de abril de 2011, IC-Unicamp. Problema de Survivable Network Design Problema de construir uma rede com tolerância a falhas. Podemos considerar falhas nos

Leia mais

Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno

Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno Estruturas de Dados para Conjuntos Disjuntos: Union-find Letícia Rodrigues Bueno UFABC Estruturas de Dados para Conjuntos Disjuntos: Introdução Estruturas de Dados para Conjuntos Disjuntos: Introdução

Leia mais

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO mmmoala@fafica.br Breve Histórico Leonhard Euler (Matemático Suíço) - Pai da Teoria dos Grafos Nascimento de abril de 77 / 8 de setembro

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

O que é uma prova? Paulo Feofiloff

O que é uma prova? Paulo Feofiloff O que é uma prova? Paulo Feofiloff http://www.ime.usp.br/~pf/amostra-de-prova/ Em matemática, uma prova é uma argumentação precisa que procura convencer o leitor de que uma certa proposição, previamente

Leia mais

Alguns Exercícios de Inteligência Artificial

Alguns Exercícios de Inteligência Artificial Alguns Exercícios de Inteligência Artificial Ana Paula Tomás Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {apt,nam}@ncc.up.pt 1997 1. Números

Leia mais

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2013.1 OBS: Todas as alternativas corretas são as letras A. 1) Para ter ao menos uma solução devemos escalonar para ver

Leia mais

MC102 - Algoritmos e programação de computadores. Aula 16: Busca e Ordenação em vetores

MC102 - Algoritmos e programação de computadores. Aula 16: Busca e Ordenação em vetores MC102 - Algoritmos e programação de computadores Aula 16: Busca e Ordenação em vetores Busca Dada uma coleção de n elementos, pretende-se saber se um determinado elemento valor está presente nessa coleção.

Leia mais

Paradigmas de Projetos de Algoritmos

Paradigmas de Projetos de Algoritmos Paradigmas de Projetos de Algoritmos Luciana Assis 9 de junho de 2016 Luciana Assis (UFVJM) 9 de junho de 2016 1 / 36 1 Introdução 2 Força Bruta 3 Abordagem Incremental ou Construtiva 4 Recursão 5 Divisão

Leia mais

SM - Sistemas Multimédia CODIFICAÇÃO DE FONTE (parte 2) 4.º / 6.º semestre LEIC (verão 2016/2017)

SM - Sistemas Multimédia CODIFICAÇÃO DE FONTE (parte 2) 4.º / 6.º semestre LEIC (verão 2016/2017) SM - Sistemas Multimédia CODIFICAÇÃO DE FONTE (parte 2) 4.º / 6.º semestre LEIC (verão 2016/2017) Tópicos Propriedades dos códigos de fonte Código ótimo e código ideal Singularidade, descodificação única,

Leia mais

Grafos: aplicações. Grafos: árvore geradora mínima

Grafos: aplicações. Grafos: árvore geradora mínima árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades

Leia mais

Teoria dos Grafos Aula 6

Teoria dos Grafos Aula 6 Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes

Leia mais

Grafos. Notas. Notas. Notas. Notas. Caminhos mais curtos de única origem. Subestrutura ótima. Propriedades de caminhos mais curtos

Grafos. Notas. Notas. Notas. Notas. Caminhos mais curtos de única origem. Subestrutura ótima. Propriedades de caminhos mais curtos Grafos Caminhos mais curtos de única origem Conteúdo Subestrutura ótima Inicialização Propriedades de caminhos mais curtos Algoritmos Algoritmo de Bellman-Ford Caminhos mais curtos de única origem em gaos

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

2. ALGORITMOS. Unesp Campus de Guaratinguetá

2. ALGORITMOS. Unesp Campus de Guaratinguetá 2. ALGORITMOS Unesp Campus de Guaratinguetá Curso de Programação Computadores Prof. Aníbal Tavares Profa. Cassilda Ribeiro Ministrado por: Prof. André Amarante Problemas: Unesp-Campus de Guaratinguetá

Leia mais

Árvores Binárias e Busca. Jeane Melo

Árvores Binárias e Busca. Jeane Melo Árvores Binárias e Busca Jeane Melo Roteiro Parte 1 Árvores Relação hierárquica Definição Formal Terminologia Caminhamento em Árvores Binárias Exemplos Parte 2 Busca seqüencial Busca Binária Grafos Conjunto

Leia mais

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma Grafos Árvores espalhadas mínimas Conteúdo Introdução Como construir uma árvore geradora miníma Algoritmos Referências Introdução Dado um grafo conectado não orientado G = (V, E) e uma função peso w :

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO

INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO ANTONIO CARLOS GOMES BASILIO EVANDRO DAS VIRGENS SCARPATI MARCOS AURÉLIO MELO DIAS RENAN COSMO PROBLEMA DO CAMINHO MÍNIMO

Leia mais

Exercícios: Árvores. Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C

Exercícios: Árvores. Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C Exercícios: Árvores 1. Utilizando os conceitos de grafos, defina uma árvore.

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

5. Expressões aritméticas

5. Expressões aritméticas 5. Expressões aritméticas 5.1. Conceito de Expressão O conceito de expressão em termos computacionais está intimamente ligado ao conceito de expressão (ou fórmula) matemática, onde um conjunto de variáveis

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Cortes em grafos G: grafo (não orientado) sem laços, possivelmente com

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA Nome Nota ANÁLISE COMBINATÓRIA 1) De quantas maneiras diferentes 11 homens e 8 mulheres podem se sentar em uma fila se os homens sentam juntos e as mulheres também? 2!*11!*8! 2) O controle de qualidade

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

O Problema da 3- Coloração de Grafos

O Problema da 3- Coloração de Grafos Otimização Combinatória O Problema da - Coloração de Grafos Guilherme Zanardo Borduchi Hugo Armando Gualdron Colmenares Tiago Moreira Trocoli da Cunha Prof.ª Marina Andretta Introdução ao Problema Problema

Leia mais

Tecnicas Essencias Greedy e Dynamic

Tecnicas Essencias Greedy e Dynamic Tecnicas Essencias Greedy e Dynamic Paul Crocker RELEASE - Reliable and Secure Computation Group Universidade da Beira Interior, Portugal October 2010 1 / 27 Outline 1 Introdução 2 Exemplo Greedy I : Interval

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1 3.2 SISTEMA LINEAR Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a 3,..., a n são números reais, que recebem o nome de coeficientes

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

CIC 110 Análise e Projeto de Algoritmos I

CIC 110 Análise e Projeto de Algoritmos I CIC 110 Análise e Projeto de Algoritmos I Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá Algoritmos Gulosos AULA 06 Algoritmos Gulosos Um algoritmo guloso constrói uma solução para

Leia mais

Caminho Mínimo de Fonte Única em Grafos com Pesos Negativos Letícia Rodrigues Bueno

Caminho Mínimo de Fonte Única em Grafos com Pesos Negativos Letícia Rodrigues Bueno Caminho Mínimo de Fonte Única em Grafos com Pesos Negativos Letícia Rodrigues Bueno UFABC Problemas de Caminho Mínimo Caminho mínimo de fonte única: algoritmo de Dijsktra; Problemas de Caminho Mínimo Caminho

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

Introdução à Inteligência Artificial MAC MAC 415. Exercício Programa 1 Busca

Introdução à Inteligência Artificial MAC MAC 415. Exercício Programa 1 Busca Introdução à Inteligência Artificial MAC 5739 - MAC 415 006 Exercício Programa 1 Busca Data de Divulgação: 6 de agosto Data de Entrega: 6 de setembro 1 Objetivo Implementar os algoritmos de busca em Inteligência

Leia mais

2. Determine A B, quando :

2. Determine A B, quando : COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES CAMAÇARI BA ENSINO MÉDIO ANO: 2017 NOME 1ª SÉRIE Turno: PROPESSOR: HENRIQUE LISTA 2 Intervalos e Funções I UNIDADE Se você esperar pelas condições perfeitas, nunca

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos Caminhos Mínimos entre Todos os Vértices 1/ 48 Caminhos Mínimos entre Todos os Vértices Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: Introdução

Leia mais

Geometria Computacional: Triangulação

Geometria Computacional: Triangulação Geometria Computacional: INF2604 Geometria Computacional Prof. Hélio Lopes lopes@inf.puc-rio.br sala 408 RDC Considere S um conjunto de pontos no plano. O que é uma triangulação de S? Uma para um conjunto

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais