INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE"

Transcrição

1 INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/ o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo valor das variáveis x 1, x 2 e x 3 para o programa linear utilizando o algoritmo Simplex. max x 1 + 2x 2 + 3x 3 s.a. x 1 + x 2 + 2x 3 8 3x 1 + 2x 2 + 4x 3 20 x 1,x 2,x 3 0 x 1 = 0, x 2 = 8, x 3 = 0, função objectivo= 16. 1/12

2 2) Calcule o valor óptimo da função objectivo e o respectivo valor das variáveis x 1, x 2 e x 3 para o programa linear utilizando o algoritmo Simplex. max x 1 + x 2 + x 3 s.a. x 1 + x 2 + 2x 3 = 8 x 1 + 2x 2 + x 3 3 x 1,x 2,x 3 0 Não exequível. 2/12

3 3) As análises de um paciente demonstram a falta dos nutrientes N a,n b,n c. No entanto, estes nutrientes podem ser encontrados em diferentes alimentos. Considere a seguinte tabela que indica a quantidade de cada nutriente N a,n b,n c por cada quilograma dos diversos alimentos A 1,A 2,A 3. N a N b N c A A A O problema de saúde do paciente pode ser resolvido se consumir 30 unidades de cada um dos três nutrientes. No entanto, o preço por quilograma dos alimentos difere da seguinte forma: preco(a 1 ) = 1, preco(a 2 ) = 3, preco(a 3 ) = 2. Indique a formulação de programação linear que ajude o paciente na compra dos alimentos. Pretende-se comprar uma certa quantidade de cada alimento de tal forma a que o paciente consuma a quantidade de nutrientes que precisa, mas minimizando o custo total. Seja x i a quantidade do alimento A i a comprar pelo paciente. minimizar x 1 + 3x 2 + 2x 3 s.a. 3x 1 + 8x x x 1 + 4x 2 + 5x x 1 + 7x 2 + 2x 3 30 x 1,x 2,x 3 0 3/12

4 II. (1,5+2,0+1,5 = 5,0 val.) 1) Considere que são dados 2 veículos e um conjunto de N cidades, todas ligadas entre si, e ordenadas previamente de 1 a N. O objectivo é determinar o percurso de cada um dos dois veículos de tal forma que a distância total percorrida por eles seja mínima. todas as cidades têm que ser visitadas por um e um só veículo. cada percurso deve respeitar a ordem estabelecida para visitar as cidades. cada veículo pode começar em qualquer cidade e pode terminar em qualquer cidade (não tem que voltar ao início). as distâncias entre cidades d[i, j] são todas positivas, mas podem não respeitar a desigualdade triangular. Escreva a fórmula da recursão para a resolução deste problema em termos de programação dinâmica. Basta considerar os casos i < j. c[0, 1] = 0 c[i, j] = c[i, j 1] + d[ j 1, j], i < j 1 (o segundo carro teve de vir de j 1) min (c[k, j 2] + d[k, j]) k=0,..., j 2, caso contrário (segundo carro não utilizado ou vindo de 1,..., j 2) V Opt (N) = min k=1,...,n 1 c(k,n) 4/12

5 2) Considere a seguinte instância do problema da mochila não fraccionário com 5 objectos: M = 13 p = 2,3,7,5,11 v = 4,20,28,30,46 M é o peso máximo da mochila, p i é o peso do objecto i e v i é o valor do objecto i. Calcule os valores máximos conseguidos utilizando: uma estratégia greedy com base na ordenação dos valores v i /p i. um algoritmo baseado em programação dinâmica Greedy Prog. Dinâmica /12

6 3) Considere o problema de compressão de dados de um ficheiro usando a codificação de Huffman. Para cada caracter, indique o código livre de prefixo óptimo para um ficheiro com as seguintes ocorrências: f (a) = 28, f (b) = 20, f (c) = 28, f (d) = 18, f (e) = 25, f ( f ) = 26, f (g) = 28, f (h) = 12. Qualquer solução com um código de 3 bits para cada caracter, desde que diferentes entre si. 6/12

7 III. (1,5+1,5+2,0 = 5,0 val.) 1) Considere o algoritmo de Knuth-Morris-Pratt. Calcule a função de prefixo π para o padrão aabcaabccacbcaabcaba. P a a b c a a b c c a c b c a a b c a b a i π P a a b c a a b c c a c b c a a b c a b a i π /12

8 2) Considere o algoritmo baseado em autómatos para o emparelhamento de cadeias de caracteres. Seja n N e P o padrão ab n ab n 1 ab n 2...ab 2 aba tal que a b e a,b Σ. Calcule o número de transições para estados diferentes do inicial em função de n e Σ. a. (n 2 + 3n) Σ b. n Σ c. (n + 2)(n + 1) + 2 d. (n + 2)(n + 1)/2 + 1 e. n 2 + 3n + 2 f. nenhuma das alíneas anteriores e 8/12

9 3) Indique qual das frases seguintes está incorrecta. a. P NP. b. Seja X NPC, é possível verificar respostas para instâncias positivas de X em tempo polinomial. c. Se existe X P NPC, então P = NP. d. Basta que exista um algoritmo com complexidade linear que resolva X NP para que NPC P. e. Dado X NP-difícil, qualquer Y NPC verifica Y p X. f. P NP conp. g. Se existem X NPC e Y NP tais que X p Y, então Y NP-difícil. d 9/12

10 IV. (2,0+2,0 = 4,0 val.) 1) O problema cobertura de conjuntos, SET-COVER, consiste em determinar se, dada uma colecção de conjuntos S 1,...,S n, cuja união é o conjunto U, existe um subconjunto de k desses conjuntos cuja união seja U. Formalmente: Dados: n conjuntos S 1,...,S n e um k N Questão: existe C {1,...,n} tal que C k e S i C S i = S n i=1 S i? Prove que o problema SET-COVER é NP-Completo. Pista: provou-se nas aulas que o problema cobertura de vértices num grafo, VERTEX-COVER, é NP-Completo. Provar que está em NP: dado um conjunto C {1,...,n}, provar que S i C S i contém todos os elementos de U pode ser feito em tempo linear em termos do número de elementos que pertencem a todos os S i, com i C. Verificar que a cardinalidade de C é igual ou inferior a k é trivial. Provar que é NP-difícil: redução de VERTEX-COVER a SET-COVER. Formar por cada vértice um conjunto diferente formado com os arcos cobertos por esse vértice. Dada uma instância de VERTEX-COVER, G(V,E),k, criar uma instância de SET-COVER S 1,...,S n,k, em que n = V e S i = {e E : e incidente em v i }. Claramente, esta redução é realizada em tempo polinomial, O(V E). Seja C V V uma cobertura de vértices de tamanho k ou menor. Então C S = {i : v i C V } é uma cobertura de conjuntos de tamanho k ou menor ( C S = C V ). Notar que U = S n i=1 S i = E, e todos arcos estão cobertos pelos vértices em C V. Seja C S {1,...,n} uma cobertura de conjuntos, com C S k. Portanto, S n i=1 S i = E. Nesse caso, C V = {v i : i C S } cobre todos os arcos com C V = C S k. 10/12

11 2) Dado um grafo G(V,E), pesado, ligado e não dirigido, e um conjunto de vértices U V, chamados terminais, a Árvore de Steiner consiste num conjunto de arcos S E com peso total mínimo que interliguem todos os vértices em U (nota: os caminhos que ligam os vértices em U podem incluir vértices que não pertencem a U). Por exemplo, para o grafo da figura seguinte, com U = {A,B,C}, a Árvore de Steiner {(A,D),(B,D),(C,D)} tem peso 3 e utiliza o vértice D como vértice intermédio. A B D 1 2 C Considere pesos positivos e que se verifica a desigualdade triangular. Este problema da Árvore de Steiner está provado ser NP-difícil. a. Considere que se calculam os caminhos mais curtos entre todos os pares de vértices de G e se constrói um grafo completo G (V,E ) em que V = U e cada arco em E tem o peso do caminho mais curto entre os pares de vértices a que está ligado. Calcule a relação entre o peso de uma MST em G e o custo da Árvore de Steiner em G. (pista: utilize uma abordagem semelhante à do caixeiro viajante estudada nas aulas: calcule o custo de um circuito que visita os vértices de U por uma ordem definida por uma pesquisa sobre a Árvore de Steiner). 11/12

12 b. Proponha um algoritmo de aproximação com limite da razão de aproximação igual a 2 para este problema. a. Seja C o custo da Árvore de Steiner. Definir um circuito H que percorre a Árvore de Steiner visitando os vértices pela ordem definida por uma pesquisa em profundidade primeiro. Este circuito percorre cada arco duas vezes logo o seu custo será C(H) = 2C. Retirando do circuito todos os nós não-terminais e os nós terminais quando aparecem pela segunda vez, obtém-se um circuito H que passa só por nós terminais, uma e uma só vez, e que terá um custo C(H ) 2C (pela desigualdade triangular, retirar um nó intermédio reduz ou mantém o comprimento total). Retirar um qualquer arco a este circuito resulta numa árvore abrangente T em G, e C(T ) < C(H ). Por definição, C(MST ) C(T ) logo C(MST ) 2C. b. (a) calcular G, e guardar f (u,v): nós de G no caminho mais curto entre os nós terminais u e v (b) calcular MST sobre G (c) calcular árvore T formada pela S (u,v) MST f (u,v) T é uma árvore que liga todos os nós em U. Pela alínea a), esta árvore terá um custo inferior a duas vezes a Árvore de Steiner. Cada um dos passos do algoritmo é realizado em tempo polinomial, logo temos um algoritmo também ele polinomial. 12/12

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Análise e Síntese de Algoritmos Algoritmos de Aproximação CLRS, Cap. 35 Resumo Algoritmos de aproximação Algoritmos, com complexidade polinomial, que calculam soluções aproximadas para problemas de optimização

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA RESPESCAGEM DO 2 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA RESPESCAGEM DO 2 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DA RESPESCAGEM DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo

Leia mais

Lista de Exercícios Programação Inteira. x 2 0 e inteiros.

Lista de Exercícios Programação Inteira. x 2 0 e inteiros. Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y

Leia mais

Lista de Exercícios Programação Inteira. x 2 0 e inteiros.

Lista de Exercícios Programação Inteira. x 2 0 e inteiros. Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +

Leia mais

Optimização em Redes e Não Linear

Optimização em Redes e Não Linear Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia

Leia mais

Quinta-feira, 11 de abril

Quinta-feira, 11 de abril 15.053 Quinta-feira, 11 de abril Mais alguns exemplos de programação inteira Técnicas de planos de corte para obter melhores limitações Entregar: Observações de Aula 1 Exemplo: Localização do corpo de

Leia mais

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização

Leia mais

Teoria dos Grafos Aula 6

Teoria dos Grafos Aula 6 Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes

Leia mais

Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana

Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana problemas difíceis de programação linear através da relaxação Lagrangeana Ana Maria A.C. Rocha Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho arocha@dps.uminho.pt http://www.norg.uminho.pt/arocha

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Tempo polinomial Verificação de tempo polinomial Diane Castonguay diane@inf.ufg.br Instituto de Informática Universidade Federal de Goiás Tempo polinomial Um algoritmo é

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns

Leia mais

Tecnicas Essencias Greedy e Dynamic

Tecnicas Essencias Greedy e Dynamic Tecnicas Essencias Greedy e Dynamic Paul Crocker RELEASE - Reliable and Secure Computation Group Universidade da Beira Interior, Portugal October 2010 1 / 27 Outline 1 Introdução 2 Exemplo Greedy I : Interval

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

Grafos: algoritmos de busca

Grafos: algoritmos de busca busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 31 de maio de 2017 Marco Antonio M. Carvalho

Leia mais

Teoria dos Grafos Aula 24

Teoria dos Grafos Aula 24 Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo

Leia mais

Uma forma de classificação

Uma forma de classificação Uma forma de classificação L. Não-RE ou f. nãocomputáveis LRE ou MT ou f. comput. L. Indecidíveis ou Procedimentos L. Recursivas ou Decidíveis ou Algoritmos Outra forma de classificação Problemas Indecidíveis

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Conceitos básicos Classes de de Complexidade P NP Redução Problemas NPC NP-Completude Introdução Existem alguns problemas computacionais que são

Leia mais

Análise e Síntese de Algoritmos. Emparelhamento de Cadeias de Caracteres CLRS, Cap. 32

Análise e Síntese de Algoritmos. Emparelhamento de Cadeias de Caracteres CLRS, Cap. 32 Análise e Síntese de Algoritmos Emparelhamento de Cadeias de Caracteres CLRS, Cap. 32 Contexto Revisão Algoritmos em Grafos Programação Linear Programação Dinâmica Algoritmos Greedy Emparelhamento de Cadeias

Leia mais

Algoritmos 2 - Introdução

Algoritmos 2 - Introdução DAINF - Departamento de Informática Algoritmos 2 - Introdução Prof. Alex Kutzke (http://alex.kutzke.com.br/courses) 19 de Agosto de 2015 Slides adaptados do material produzido pelo Prof. Rodrigo Minetto

Leia mais

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

Resolução do problema do caixeiro viajante assimétrico (e uma variante) através da relaxação Lagrangeana

Resolução do problema do caixeiro viajante assimétrico (e uma variante) através da relaxação Lagrangeana Resolução do problema do caixeiro viajante assimétrico (e uma variante) através da relaxação Ana Maria A.C. Rocha e João Luís C. Soares Departamento de Produção e Sistemas Escola de Engenharia Universidade

Leia mais

Grafos: componentes fortemente conexos, árvores geradoras mínimas

Grafos: componentes fortemente conexos, árvores geradoras mínimas Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente

Leia mais

Análise e Projeto de Algoritmos

Análise e Projeto de Algoritmos Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br eduardo.barrere@ice.ufjf.br www.barrere.ufjf.br A Classe de Problemas P A classe de algoritmos P é formada pelos procedimentos

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - ula 2 1. Vetores. 2. Distâncias. 3. Módulo de um vetor. Roteiro 1 Vetores Nesta seção lembraremos brevemente os vetores e suas operações básicas. Definição de vetor. Vetor determinado

Leia mais

2006/2007 Análise e Síntese de Algoritmos 2

2006/2007 Análise e Síntese de Algoritmos 2 Análise e Síntese de Algoritmos Árvores Abrangentes de Menor Custo CLRS, Cap. 23 Resumo Árvores Abrangentes de Menor Custo Minimum-Spanning Trees (MSTs) Algoritmo (greedy) genérico Prova de optimalidade

Leia mais

Alguns Exercícios de Inteligência Artificial

Alguns Exercícios de Inteligência Artificial Alguns Exercícios de Inteligência Artificial Ana Paula Tomás Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {apt,nam}@ncc.up.pt 1997 1. Números

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

Teoria dos Grafos Aula 23

Teoria dos Grafos Aula 23 Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes O limite superior de complexidade de um problema refere-se ao melhor algoritmo que o resolve. nlog 2 n é um limite superior para o problema de classificação. O limite inferior de um problema

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 00/006 o Semestre RESOLUÇÃO DA REPESCAGEM DO o TESTE I. (,+,+,0 =,0 val.) ) Considere o seguinte grafo. d f i l a c g h b e j k

Leia mais

Teoria da Complexidade Computacional

Teoria da Complexidade Computacional Teoria da Complexidade Computacional 25 de novembro de 2011 Enquanto a teoria de análise de algoritmos estuda a análise de complexidade de algoritmos, a teoria da complexidade estuda a classificação de

Leia mais

X - D U A L I D A D E

X - D U A L I D A D E X - D U A L I D A D E 1 - Introdução. Regras de transformação "Primal - Dual" Consideremos os dois problemas P1 e P2 de Programação Linear seguintes: P1 : n Maximizar F = Σ ck. Xk k = 1 n Σ aik. Xk bi

Leia mais

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos Página 1 de 9 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de Março AVALIAÇÃO DA CAPACIDADE

Leia mais

Análise e Síntese de Algoritmos.

Análise e Síntese de Algoritmos. Análise e Síntese de Algoritmos http://fenix.ist.utl.pt/leic-a/disciplinas/asa Corpo Docente Aulas Teóricas: Vasco Manquinho INESC-ID, Sala 329 Email: vasco.manquinho@inesc-id.pt Tel: 21 3100204 (INESC-ID)

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos Página 1 de 10 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de Março AVALIAÇÃO DA CAPACIDADE

Leia mais

Códigos Corretores de Erros e Cliques de Grafos

Códigos Corretores de Erros e Cliques de Grafos Códigos Corretores de Erros e Cliques de Grafos Natália Pedroza Jayme Szwarcfiter Paulo Eustáquio UFRJ/UERJ 2016 Natália Pedroza (UFRJ/UERJ) Códigos Corretores 2016 1 / 32 Apresentação Códigos corretores

Leia mais

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32 Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

INTRATABILIDADE e NP-COMPLETUDE

INTRATABILIDADE e NP-COMPLETUDE INTRATABILIDADE e NP-COMPLETUDE Sandro Santos Andrade Doutorado Multiinstitucional em Ciência da Computação UFBA/UNIFACS/UEFS Junho/2008 Grafos e Análise de Algoritmos Introdução Para alguns problemas

Leia mais

PROCURA E PLANEAMENTO

PROCURA E PLANEAMENTO PROCURA E PLANEAMENTO Primeiro Exame 13 de Janeiro de 2007 11:00-13:30 Este exame é composto por 13 páginas contendo 6 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.

Leia mais

Problemas N P-Completo e Algoritmos Aproximados

Problemas N P-Completo e Algoritmos Aproximados Projeto de Algoritmos Cap.9 Problemas N P-Completo e Algoritmos Aproximados Introdução Problemas intratáveis ou difíceis são comuns na natureza e nas áreas do conhecimento. Problemas N P-Completo e Algoritmos

Leia mais

O Problema do Fluxo de Custos Mínimos Terça-feira 2 de abril. O Problema do Caminho mais Curto. Fórmula. Outra Fórmula

O Problema do Fluxo de Custos Mínimos Terça-feira 2 de abril. O Problema do Caminho mais Curto. Fórmula. Outra Fórmula 15.053 Terça-feira 2 de abril O Problema do Caminho mais Curto Algoritmo de Dijkstra para solucionar o Problema do Caminho mais Curto Distribuir: Observações de Aula 1 O Problema do Fluxo de Custos Mínimos

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Escalonamento em uma máquina

Escalonamento em uma máquina Capítulo 4 Escalonamento em uma máquina Veremos neste capítulo vários problemas relacionados ao escalonamento em uma máquina. Estes problemas são importantes, pois além de fornecerem idéias para problemas

Leia mais

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40 Algoritmos Greedy Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/2015 1 / 40 Algoritmos Greedy Vamos falar de algoritmos greedy. Em português são conhecidos como: Algoritmos

Leia mais

Complexidade computacional

Complexidade computacional Complexidade computacional CLRS sec 34.1 e 34.2 Algoritmos p. 1 Algumas questões Por que alguns problemas parecem ser (computacionalmente) mais difíceis do que outros? Algoritmos p. 2 Algumas questões

Leia mais

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então

Leia mais

ANÁLISE DE ALGORITMOS

ANÁLISE DE ALGORITMOS ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução

Leia mais

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29 Análise e Síntese de Algoritmos Programação Linear CLRS, Cap. 29 Conteto Algoritmos em Grafos (CLRS, Cap. 22-26)... Fluos máimos em grafos (CLRS, Cap. 26) Programação Linear (CLRS, Cap. 29) Programação

Leia mais

Árvores: Conceitos Básicos e Árvore Geradora

Árvores: Conceitos Básicos e Árvore Geradora Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:

Leia mais

Problema do Caminho Mais Curto. Problema do Caminho Mais Curto

Problema do Caminho Mais Curto. Problema do Caminho Mais Curto Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago 650 600 700 Toronto 200 New

Leia mais

Problemas NP-Completo e Algoritmos Aproximados

Problemas NP-Completo e Algoritmos Aproximados Problemas NP-Completo e Algoritmos Aproximados Última alteração: 28 de Setembro de 200 Transparências elaboradas por Charles Ornelas Almeida, Israel Guerra e Nivio Ziviani Projeto de Algoritmos Cap.9 Problemas

Leia mais

Grafos: caminhos mínimos

Grafos: caminhos mínimos quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

2 Teoria da Informação

2 Teoria da Informação 2 Teoria da Informação Neste capítulo apresentamos alguns conceitos básicos sobre Teoria da Informação que utilizaremos durante este trabalho. 2.1 Alfabeto, texto, letras e caracteres Um alfabeto Σ = (σ

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

Alguns probleminhas...

Alguns probleminhas... Introdução Vários problemas da computação, com aplicações em diversos problemas importantes, nasceram de jogos ou brincadeiras. Hoje veremos uma pequana amostra deste fato. Alguns probleminhas... Problema

Leia mais

TEORIA DE COMPLEXIDADE

TEORIA DE COMPLEXIDADE TEORIA DE COMPLEXIDADE Fundamentos: classes P e N P Mauricio Ayala-Rincón Grupo de Teoria da Computaç~ao http://ayala.mat.unb.br/tcgroup Instituto de Ciências Exatas Universidade de Brasília, Brasília

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

Problemas N P-Completo. Algoritmos Aproximados. Introdução. Problemas. Classe N P - Problemas Sim/Não

Problemas N P-Completo. Algoritmos Aproximados. Introdução. Problemas. Classe N P - Problemas Sim/Não Projeto de Algoritmos Cap.9 Problemas N P-Completo e Algoritmos Aproximados Introdução Problemas intratáveis ou difíceis são comuns na natureza e nas áreas do conhecimento. Problemas N P-Completo e Algoritmos

Leia mais

Teoria da Computação. Exercícios. 1 Máquinas de Registos Ilimitados 2013/2014

Teoria da Computação. Exercícios. 1 Máquinas de Registos Ilimitados 2013/2014 Teoria da Computação 2013/2014 Exercícios 1 Máquinas de Registos Ilimitados 1. Construa programas URM sem módulos que calculem as seguintes funções (a) quatro(x) = 4 (b) sg(x) retorna 0 se x > 0, 1 no

Leia mais

A Dualidade em Programação Linear

A Dualidade em Programação Linear Investigação Operacional- 2009/10 - Programas Lineares 14 A Dualidade em Programação Linear Para melhor ilustrar este conceito vamos estudar dois problemas intimamente relacionadas: o problema da dona

Leia mais

CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches

CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra Ideia de Tarjan (1972) Durante a exploração em profundidade de um digrafo, podemos numerar seus vértices de

Leia mais

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2 LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7

Leia mais

Grafos: aplicações. Grafos: árvore geradora mínima

Grafos: aplicações. Grafos: árvore geradora mínima árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17)

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel

Leia mais

Inteligência Artificial 2008/09 E z D

Inteligência Artificial 2008/09 E z D /Jan/009 9h-h Inteligência Artificial 008/09 DI/FCT/UNL, Duração: 3h Exame: Época Normal GRUP I I.) Considere o seguinte grafo de estados de um problema de procura. s valores apresentados nos arcos correspondem

Leia mais

Investigação Operacional

Investigação Operacional Ano lectivo: 0/06 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o Algoritmo Simplex Cursos: Gestão e Economia. Considere o seguinte conjunto

Leia mais

Construção de Compiladores Aula 16 - Análise Sintática

Construção de Compiladores Aula 16 - Análise Sintática Construção de Compiladores Aula 16 - Análise Sintática Bruno Müller Junior Departamento de Informática UFPR 25 de Setembro de 2014 1 Introdução Hierarquia de Chomsky Reconhecedores Linguagens Livres de

Leia mais

PCS Inteligência Artificial

PCS Inteligência Artificial PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman A. Introdução à IA 1. Descreva resumidamente o que é o Teste de Turing. B. Representação por Espaço de

Leia mais

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo Notas de aula da disciplina IME - ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) Troco mínimo Dados os tipos de moedas de um país, determinar o número mínimo

Leia mais

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática

Leia mais

Compactação de Dados. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Seção 12.5 em diante.

Compactação de Dados. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Seção 12.5 em diante. Compactação de Dados Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Seção 12.5 em diante. Compactação de Dados } Armazenar arquivos grandes (backup)

Leia mais

Árvore Binária de Busca Ótima

Árvore Binária de Busca Ótima MAC 5710 - Estruturas de Dados - 2008 Referência bibliográfica Os slides sobre este assunto são parcialmente baseados nas seções sobre árvore binária de busca ótima do capítulo 4 do livro N. Wirth. Algorithms

Leia mais

Teoria dos Grafos Aula 5

Teoria dos Grafos Aula 5 Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema

Leia mais

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. IV Modelo Dual António Carlos Morais da Silva Professor de I.O. i Cap. IV - Modelo Dual - Exercícios IV. Modelo Problema Dual 1. Apresente o

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Técnicas de Desenho de Algoritmos

Técnicas de Desenho de Algoritmos Técnicas de Desenho de Algoritmos Mudança de ênfase: da implementação de algoritmos para o desenho de algoritmos A ver: 5 tipos de algoritmos abordagem ao problema exemplos complexidade em tempo e espaço

Leia mais

Investigação Operacional

Investigação Operacional Investigação Operacional Licenciatura em Gestão 3.º Ano Ano Lectivo 2013/14 Programação Linear Texto elaborado por: Maria João Cortinhal (Coordenadora) Anabela Costa Maria João Lopes Ana Catarina Nunes

Leia mais

Medida do Tempo de Execução de um Programa

Medida do Tempo de Execução de um Programa Medida do Tempo de Execução de um Programa Livro Projeto de Algoritmos Nívio Ziviani Capítulo 1 Seção 1.3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ Comportamento Assintótico de Funções O parâmetro n

Leia mais

Introdução à classe de problemas NP- Completos

Introdução à classe de problemas NP- Completos Introdução à classe de problemas NP- Completos R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes FEUP, MIEIC, CAL, 2010/2011 1 Introdução Considerações Práticas Em alguns casos práticos, alguns

Leia mais

Parte II. Aplicações em Roteamento de Veículos

Parte II. Aplicações em Roteamento de Veículos Parte II Aplicações em Roteamento de Veículos 5 Problema de Roteamento de Veículos com Restrição de Capacidade O problema de roteamento de veículos com restrição de capacidade, mais conhecido pela sua

Leia mais

P, NP e NP-Completo. André Vignatti DINF- UFPR

P, NP e NP-Completo. André Vignatti DINF- UFPR P, NP e NP-Completo André Vignatti DINF- UFPR Problemas Difíceis, Problemas Fáceis O mundo está cheio de problemas de busca. Alguns podem ser resolvidos eficientemente, outros parecem ser muito difíceis.

Leia mais

ESIG2001 Minimização do número de cores para colorir giros de carteiros

ESIG2001 Minimização do número de cores para colorir giros de carteiros ESIG2001 Minimização do número de cores para colorir giros de carteiros Jacinto Maurício Nunes (1), José Pedro Rufino (2) (1) CTT Correios de Portugal, SA Rua do Conde Redondo, 1167-002 Lisboa, Portugal

Leia mais

Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches CT-234 2) Algoritmos recursivos Indução matemática, recursão, recorrências Indução matemática Uma

Leia mais

Aula 5 Equações paramétricas de retas e planos

Aula 5 Equações paramétricas de retas e planos Aula 5 Equações paramétricas de retas e planos MÓDULO 1 - AULA 5 Objetivo Estabelecer as equações paramétricas de retas e planos no espaço usando dados diversos. Na Aula 3, do Módulo 1, vimos como determinar

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos

Leia mais

Algoritmos de Compressão sem Perdas

Algoritmos de Compressão sem Perdas Algoritmos de Compressão sem Perdas (continuação) Aula 08 Diogo Pinheiro Fernandes Pedrosa Universidade Federal Rural do Semiárido Departamento de Ciências Exatas e Naturais Curso de Ciência da Computação

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

ASSA 2001/ /2002

ASSA 2001/ /2002 Análise de Sistemas e Simulação em Ambiente 2001/2002 1 Índice Pág. 1- Objectivo 1 2- Resolução do Problema 1 2.1- Resolução pelo Método Gráfico 1 2.2- Resolução utilizando o Solver do Excel 3 3- Conclusão

Leia mais