O Problema da 3- Coloração de Grafos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O Problema da 3- Coloração de Grafos"

Transcrição

1 Otimização Combinatória O Problema da - Coloração de Grafos Guilherme Zanardo Borduchi Hugo Armando Gualdron Colmenares Tiago Moreira Trocoli da Cunha Prof.ª Marina Andretta

2 Introdução ao Problema Problema das Três Cores - Seja um grafo G(V,E). - Objetivo: Colorir os vértices do grafo com somente cores tal que nenhum vértice adjacente tenha cores iguais.

3 Algoritmos de Aproximação Solução exata: - Máximo de cores: Algoritmo de Jonhson - Máximo de cores: O(n/log(n)) Algoritmo de Wigderson - Máximo de cores: O( n)

4 Prova NP - Seja um grafo G(V,E) uma instância. Satisfeito e e... em Pergunta Pergunta Pergunta c(v) c(u)? c(v) c(u)?... c(vn) c(un)? Verdadeiro Verdadeiro Verdadeiro Falso Falso Falso G Não Satisfeito

5 Prova NP-Completo Redução do -SAT para -Coloração. - Seja φ uma instância do -SAT, com variáveis x,x...xn e cláusulas C, C Cm.

6 Prova NP-Completo Parte -SAT valores Redução O que fazer? -Coloração valores

7 Prova NP-Completo F T B x x x x xn xn...

8 Prova NP-Completo - Como os vértices das variáveis não podem ser iguais a cor BASE, então só podem ser coloridas com TRUE e FALSE.

9 x=t ou x=t ou x=t Prova NP-Completo Parte x=x=x=f Falso Não é - Colorável Ci Associação Gi Verdadeiro -Colorável

10 Prova NP-Completo Exemplo: x x x x x T x F

11 Prova NP-Completo x x T x F

12 Prova NP-Completo B B x B x T x F

13 Prova NP-Completo F B T B x B x T x F

14 Prova NP-Completo? F B T B x B x T x F

15 Prova NP-Completo Exemplo x x T x F

16 Prova NP-Completo Exemplo B x B x T x F

17 Prova NP-Completo Exemplo B T x B x T x F

18 Prova NP-Completo Exemplo F B T x B x T x F

19 Prova NP-Completo Exemplo F B B T x B x T x F

20 Prova NP-Completo Exemplo F B B T F x B x T x F

21 Prova NP-Completo G G... Gm F T B x x x x xn xn...

22 Prova NP-Completo - Se a instância φ é satisfeita para uma dada valoração, então o grafo G é -colorável. Satisfeita φ Satisfeita Satisfeita Satisfeita C C... -colorável -colorável G G... -colorável G Cm -colorável Gm

23 Prova NP-Completo - Se o grafo G é -colorável, então a instância φ é satisfeita. -colorável G -colorável -colorável G G Satisfeita Satisfeita C C Satisfeita φ colorável Gm Satisfeita Cm

24 Algoritmo de Johnson O algoritmo de Johnson foi o primeiro algoritmo a mostrar uma garantia de aproximação para o problema de coloração de grafos. Trata-se de um algoritmo guloso, cuja garantia de aproximação é de O(n/log(n)) cores, para um grafo G qualquer com n vértices.

25 Algoritmo de Johnson - O algoritmo funciona encontrando conjuntos independentes no grafo. - Conjunto independente: conjunto de vértices em um grafo, tais que estes não possuam nenhuma aresta em comum. - Cada vértice de um conjunto independente terá a mesma cor. Cada conjunto independente distinto possuirá uma cor distinta.

26 Algoritmo de Johnson(G):

27 Algoritmo de Johnson Instância de exemplo

28 Algoritmo de Johnson i U V U Ø? Sim W U U i = Cores: W

29 Algoritmo de Johnson W Ø? Sim Obter o vértice de menor grau no subgrafo induzido por W U i = Cores: W

30 Algoritmo de Johnson Colorir v com a cor i U i = Cores: W

31 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

32 Algoritmo de Johnson W Ø? Sim Obter o vértice de menor grau no subgrafo induzido por W U i = Cores: W

33 Algoritmo de Johnson Colorir v com a cor i U i = Cores: W

34 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

35 Algoritmo de Johnson W Ø? Sim Obter o vértice de menor grau no subgrafo induzido por W U i = Cores: W

36 Algoritmo de Johnson Colorir v com a cor i U i = Cores: W

37 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

38 Algoritmo de Johnson W Ø? Sim Obter o vértice de menor grau no subgrafo induzido por W U i = Cores: W

39 Algoritmo de Johnson Colorir v com a cor i U i = Cores: W

40 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

41 Algoritmo de Johnson Por último... U i = Cores: W

42 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

43 Algoritmo de Johnson W Ø? Não i i + U i = Cores: W

44 Algoritmo de Johnson U Ø? Sim W U U i = Cores: W

45 Algoritmo de Johnson W Ø? Sim Obter o vértice de menor grau no subgrafo induzido por W U i = Cores: W

46 Algoritmo de Johnson Colorir v com a cor i U i = Cores: W

47 Algoritmo de Johnson W W - {v} - N(v) U U - {v} U i = Cores: W

48 Algoritmo de Johnson Continuando para esse W... U i = Cores: W

49 Algoritmo de Johnson Terminando a execução... U i = Cores:

50 Prova da Aproximação do Algoritmo de Johnson Teorema.: Um grafo k-colorável possui um conjunto independente σ de tamanho V /k. Teorema.: Cada vértice v do conjunto independente σ possui N(v) V - V /k vizinhos.

51 Algoritmo de Johnson(G):

52 Prova da Aproximação do Algoritmo de Johnson Seja H este subgrafo, de forma que W seja o conjunto de vértices de H. Como H é subgrafo de um grafo k-colorável, H também é k- colorável.

53 Prova da Aproximação do Algoritmo de Johnson Dos teoremas. e., temos que H possui um conjunto independente de tamanho pelo menos W /k, sendo que cada vértice neste conjunto possui grau no máximo W - W /k = W (k-)/k Logo, o grau mínimo de H é no máximo W (k-)/k, e assim, pelo menos W - W (k-)/k = W /k vértices estarão em W no começo da próxima iteração.

54 Prova da Aproximação do Algoritmo de Johnson O laço interno só termina quando W fica vazio, assim, pelo menos log k W iterações devem ser executadas: Iteração : W Iteração : W /k Iteração : W /k/k = W /k Iteração : W /k Iteração n: W /k n = Para k n = W, precisamos de n = log k W iterações.

55 Prova da Aproximação do Algoritmo de Johnson Deste modo, no final do laço interno, teremos {v v W cor(v) = i} log k W. Ou seja, o número de vértices coloridos com a cor i será pelo menos log k U, sendo U o conjunto de vértices sem cor antes do começo do laço.

56 Prova da Aproximação do Algoritmo de Johnson Para completar a prova, precisamos analisar o tamanho de U no começo de uma iteração qualquer do laço externo. Quando U V /log k V, temos que log k U log k U log k ( V /log k V ) > log k V = ½ log k V. Assim, o tamanho de U diminui pelo menos ½ log k V a cada iteração. Desta maneira, quando U se tornar menor que V /log k V, o algoritmo não terá usado mais do que V /log k V cores.

57 Prova da Aproximação do Algoritmo de Johnson Para completar a prova, precisamos analisar o tamanho de U no começo de uma iteração qualquer do laço externo. Quando U < V /log k V, é claro que o algoritmo utilizará no máximo V /log k V cores. Segue então que o algoritmo de Johnson utiliza no máximo V /log k V cores. Para o nosso caso, k=, portanto o algoritmo de Johnson usa no máximo V /log V cores.

58 Algoritmo de Wigderson Teorema.: Para um grafo -colorável, a vizinhança de cada vértice pode ser colorida com duas cores. Teorema.: Qualquer grafo cujo vértice de maior grau é (G) pode ser colorido com no máximo (G)+ cores em tempo polinomial. Teorema.: Todo grafo bipartido pode ser colorido em tempo polinomial.

59 Algoritmo de Wigderson Instância de exemplo

60 Algoritmo de Wigderson Coloração ótima

61 Algoritmo de Wigderson Cores:

62 Algoritmo de Wigderson i = Cores:

63 Algoritmo de Wigderson Obter o subgrafo H induzido da vizinhança do vértice de maior grau e colorir com as cores i e i+ i = Cores:

64 Algoritmo de Wigderson Colorir o vértice de maior grau com a cor i+ i = Cores:

65 Algoritmo de Wigderson i i + i = Cores:

66 Algoritmo de Wigderson Remove, do grafo G, o vértice de maior grau e seu vizinhos i = Cores:

67 Algoritmo de Wigderson Remove, do grafo G, o vértice de maior grau e seu vizinhos i = Cores:

68 Algoritmo de Wigderson i = Cores:

69 Algoritmo de Wigderson Colorir os vértices restantes com (G)+ cores i = Cores:

70 Algoritmo de Wigderson Colorir os vértices restantes com (G)+ cores i = Cores:

71 Algoritmo de Wigderson Resultado i = Cores:

72 Algoritmo de Wigderson(G):

73 Prova da Aproximação do Algoritmo de Wigderson

74 Prova da Aproximação do Algoritmo de Wigderson Para cada iteração são usadas cores

75 Prova da Aproximação do Algoritmo de Wigderson Linhas até são executadas no máximo n vezes

76 Prova da Aproximação do Algoritmo de Wigderson Serão usadas no máximo n cores

77 Prova da Aproximação do Algoritmo de Wigderson Quando o grafo tiver vértices com grau menor que n, eles serão coloridos com no máximo (G)+ cores

78 Prova da Aproximação do Algoritmo de Wigderson Assim, o algoritmo de Wigderson, para colorir um grafo - colorável, emprega no máximo n cores

79 Implementação Os algoritmos de Johnson e Wigderson podem ser implementados com complexidade linear Acesso em tempo constante ao vértice de menor ou maior grau logo após a remoção de vértices e arestas do grafo

80 Implementação Os algoritmos de Johnson e Wigderson podem ser implementados com complexidade linear Acesso em tempo constante ao vértice de menor ou maior grau logo após a remoção de vértices e arestas do grafo d d... d (G)

81 Implementação Os algoritmos de Johnson e Wigderson podem ser implementados com complexidade linear Acesso em tempo constante ao vértice de menor ou maior grau logo após a remoção de vértices e arestas do grafo d d... d (G)... v v vj

82 Implementação Os algoritmos de Johnson e Wigderson podem ser implementados com complexidade linear Acesso em tempo constante ao vértice de menor ou maior grau logo após a remoção de vértices e arestas do grafo V V V... Vn &Grau Vizinhos d d... d (G)... v v vj

83 Resultados Vértices ( V ) Arestas ( E ) # instâncias ±. ±. ±. ±. ±. ±.. ± ±. ±. ±.

84 Resultados

85 Resultados

86 Resultados

87 Resultados

88 Resultados

89 Conclusões O algoritmo de Wigderson, apesar de possuir uma garantia de aproximação melhor que o algoritmo de Johnson, apresentou, em média, piores resultados de coloração. É importante que uma análise dos algoritmos seja feita antes da escolha de algum deles, uma vez que confiar nas garantias de aproximação nem sempre é a melhor opção. Dúvidas?

Paulo Guilherme Inça. 7 de dezembro de 2016

Paulo Guilherme Inça. 7 de dezembro de 2016 Coloração de grafos é NP-Difícil Paulo Guilherme Inça 7 de dezembro de 2016 Sumário 1 Introdução 1 2 O Problema da Coloração de Grafos 2 3 3-Coloração é NP-Completo 3 4 Generalizações e Restrições 6 5

Leia mais

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses 1 7 Teoria dos grafos Caminho euleriano e Hamiltoniano Grafo Euleriano Grafo onde é possível achar um caminho fechado (ciclo), passando em cada aresta uma única vez Quais são os grafos de Euler? Teorema:

Leia mais

Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes.

Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes. Thiago Jabur Bittar Em vários problemas, é preciso particionar os vértices de um grafo em conjunto de vértices independentes. Problema: Queremos dividir um grupo em subgrupos que contêm somente elementos

Leia mais

Lista de Exercícios2

Lista de Exercícios2 Lista de Exercícios2 Esta lista de exercícios foi criada com o intuito de prover ao aluno uma plataforma para a revisão sistemática do conteúdo visto em aula. Estes exercícios não são de nenhuma maneira

Leia mais

Reduções de Problemas Difíceis

Reduções de Problemas Difíceis Reduções de Problemas Difíceis André Vignatti DINF- UFPR Reduções de Problemas Difíceis Na figura abaixo, esquema das reduções que vamos (tentar) ver. Todos problemas NP CIRCUIT SAT SAT 3SAT INDEPENDENT

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Introdução à teoria de otimização Tiago de Souza Farias 23 de

Leia mais

TEORIA DE COMPLEXIDADE

TEORIA DE COMPLEXIDADE TEORIA DE COMPLEXIDADE Fundamentos: classes P e N P Mauricio Ayala-Rincón Grupo de Teoria da Computaç~ao http://ayala.mat.unb.br/tcgroup Instituto de Ciências Exatas Universidade de Brasília, Brasília

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

Algoritmos Combinatórios: Introdução

Algoritmos Combinatórios: Introdução lucia@site.uottawa.ca UFSC, Fevereiro, 2010 Estruturas e Problemas Combinatórios Introdução a Algoritmos Combinatórios O que são: Estruturas Combinatórias? Algoritmos Combinatórios? Problemas Combinatórios?

Leia mais

Problema. Quantas cores são necessárias para pintar este mapa? Número. Cromático. Estruturas de Dados - Grafos. Problema. Problema

Problema. Quantas cores são necessárias para pintar este mapa? Número. Cromático. Estruturas de Dados - Grafos. Problema. Problema Problema Número Quantas cores são necessárias para pintar este mapa? romático Problema Problema Problema Um problema mais complicado este? Número cromático oloridos ótimos menor número de cores necessárias

Leia mais

Teoria dos Grafos Coloração. Profª. Alessandra Martins Coelho

Teoria dos Grafos Coloração. Profª. Alessandra Martins Coelho Teoria dos Grafos Coloração Profª. Alessandra Martins Coelho junho/2014 Quantas cores para colorir o mapa do Brasil, sem que estados adjacentes possuam a mesma cor? Coloração de Grafos Colorir vértices

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).

Leia mais

Grafos: componentes fortemente conexos, árvores geradoras mínimas

Grafos: componentes fortemente conexos, árvores geradoras mínimas Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente

Leia mais

Técnicas de Desenho de Algoritmos

Técnicas de Desenho de Algoritmos Técnicas de Desenho de Algoritmos Mudança de ênfase: da implementação de algoritmos para o desenho de algoritmos A ver: 5 tipos de algoritmos abordagem ao problema exemplos complexidade em tempo e espaço

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Ciclos hamiltonianos e o problema do caixeiro viajante

Ciclos hamiltonianos e o problema do caixeiro viajante Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.

Leia mais

04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II

04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II 04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.

Leia mais

Teoria dos Grafos Aula 18

Teoria dos Grafos Aula 18 Teoria dos Grafos Aula 18 Aula passada Coloração Algoritmo guloso Número cromático Teorema das 4 cores Aula de hoje Clusterização (ou agrupamento) Algoritmo Variação Clusterização Coleção de objetos Agrupar

Leia mais

1.2 Grau de um vértice

1.2 Grau de um vértice 1.2 Grau de um vértice Seja G um grafo. Para um vértice v de V G, sua vizinhança N G (v) (ou N(v)) é definida por N(v) = {u V G vu E G }.. p.1/19 1.2 Grau de um vértice Seja G um grafo. Para um vértice

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO

INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO CURSO BACHARELADO EM SISTEMAS DE INFORMAÇÃO ANTONIO CARLOS GOMES BASILIO EVANDRO DAS VIRGENS SCARPATI MARCOS AURÉLIO MELO DIAS RENAN COSMO PROBLEMA DO CAMINHO MÍNIMO

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Tempo polinomial Verificação de tempo polinomial Diane Castonguay diane@inf.ufg.br Instituto de Informática Universidade Federal de Goiás Tempo polinomial Um algoritmo é

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

Grafos Eulerianos e o Problema do Carteiro Chinês

Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino

Leia mais

Grafo planar: Definição

Grafo planar: Definição Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

Teoria dos Grafos Aula 6

Teoria dos Grafos Aula 6 Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

Uma forma de classificação

Uma forma de classificação Uma forma de classificação L. Não-RE ou f. nãocomputáveis LRE ou MT ou f. comput. L. Indecidíveis ou Procedimentos L. Recursivas ou Decidíveis ou Algoritmos Outra forma de classificação Problemas Indecidíveis

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Idéias básicas Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada. Verifica se ele é viável - vindo a fazer parte da solução ou não. Após uma seqüência de

Leia mais

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes Grafos Planares Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução Os exemplos mais naturais de grafos são os que se referem à representação de mapas

Leia mais

Coloração Equilibrada dos Grafos Ímpares e Triangulares

Coloração Equilibrada dos Grafos Ímpares e Triangulares Coloração Equilibrada dos Grafos Ímpares e Triangulares Milene Pimenta IME, Universidade Federal Fluminense, Brasil, milene@vm.uff.br RESUMO Uma coloração de vértices de um grafo G(,E) é uma aplicação

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Cortes em grafos G: grafo (não orientado) sem laços, possivelmente com

Leia mais

CI065 CI755 Algoritmos e Teoria dos Grafos

CI065 CI755 Algoritmos e Teoria dos Grafos CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices

Leia mais

3 Algoritmo de Busca Local

3 Algoritmo de Busca Local 3 Algoritmo de Busca Local Um algoritmo de busca local define, para cada solução, uma vizinhança composta por um conjunto de soluções com características muito próximas. Dada uma solução corrente, uma

Leia mais

Leonardo Sampaio Rocha. b-colorações de grafos

Leonardo Sampaio Rocha. b-colorações de grafos Leonardo Sampaio Rocha b-colorações de grafos Fortaleza, Ceará Setembro/2009 Leonardo Sampaio Rocha b-colorações de grafos Dissertação de mestrado apresentada ao programa de Mestrado e Doutorado em Ciência

Leia mais

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Grafos IFRN. Robinson Alves

Grafos IFRN. Robinson Alves Grafos IFRN Robinson Alves Introdução Problema das Pontes de Königsberg No século 18 havia na cidade de Königsberg(antiga Prússia) um conjunto de sete pontes (identificadas pelas letras de a até f nas

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Teoria dos Grafos. Componentes, Conj. Indep., Cliques

Teoria dos Grafos. Componentes, Conj. Indep., Cliques Teoria dos Grafos Componentes, Conj. Indep., Cliques Grafo Conexo/Desconexo Um grafo é conexo se existe um caminho entre qualquer par de nós, caso contrário ele é chamado desconexo. Basta que não exista

Leia mais

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os

Leia mais

L(2, 1)-coloração de k-árvores e grafos com treewidth limitado

L(2, 1)-coloração de k-árvores e grafos com treewidth limitado Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 015. Trabalho apresentado no XXXV CNMAC, Natal-RN, 014. L(, 1)-coloração de k-árvores e grafos com treewidth

Leia mais

Agenda. Complexidade Não Determinista A classe NP. A classe Co-NP Reduções de tempo polinomial. Definida por. Exemplos em:

Agenda. Complexidade Não Determinista A classe NP. A classe Co-NP Reduções de tempo polinomial. Definida por. Exemplos em: A Classe NP Agenda Complexidade Não Determinista A classe NP Definida por aceitação em tempo polinomial por NTM s instâncias positivas com provas de tamanho polinomial aceitação por verificadores em tempo

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias

Leia mais

TEORIA DE COMPLEXIDADE

TEORIA DE COMPLEXIDADE UFMG/ICEX/DCC PROJETO E ANÁLISE DE ALGORITMOS TEORIA DE COMPLEXIDADE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 1 O SEMESTRE DE 2008 Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro

Leia mais

Caminhos em Grafos. Grafos - Caminho Simples (1) (Cliente para M. de Adj.) static int visited[maxv];

Caminhos em Grafos. Grafos - Caminho Simples (1) (Cliente para M. de Adj.) static int visited[maxv]; Caminhos em rafos Caminho simples Dados dois vértices num grafo, saber se estão ligados por um caminho; Determinar se o caminho existe ou calculá-lo explicitamente; Caminho de Hamilton Dados dois vértices

Leia mais

Grafos. Notas. Notas. Notas. Notas. Caminhos mais curtos de única origem. Subestrutura ótima. Propriedades de caminhos mais curtos

Grafos. Notas. Notas. Notas. Notas. Caminhos mais curtos de única origem. Subestrutura ótima. Propriedades de caminhos mais curtos Grafos Caminhos mais curtos de única origem Conteúdo Subestrutura ótima Inicialização Propriedades de caminhos mais curtos Algoritmos Algoritmo de Bellman-Ford Caminhos mais curtos de única origem em gaos

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos O que é um algoritmo? Sequência bem definida e finita de cálculos que, para um dado valor de entrada, retorna uma saída desejada/esperada. Na computação: Uma descrição de como

Leia mais

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Cobertura, Coloração

Leia mais

Tecnicas Essencias Greedy e Dynamic

Tecnicas Essencias Greedy e Dynamic Tecnicas Essencias Greedy e Dynamic Paul Crocker RELEASE - Reliable and Secure Computation Group Universidade da Beira Interior, Portugal October 2010 1 / 27 Outline 1 Introdução 2 Exemplo Greedy I : Interval

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado.

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado. Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 2005 GRAFOS ORIENTAOS Resumo Existem ocasiões onde grafos não são apropriados para descrever certas situações. Por exemplo, um

Leia mais

Introdução à Teoria dos Grafos. Isomorfismo

Introdução à Teoria dos Grafos. Isomorfismo Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são

Leia mais

Análise e Projeto de Algoritmos

Análise e Projeto de Algoritmos Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br eduardo.barrere@ice.ufjf.br www.barrere.ufjf.br A Classe de Problemas P A classe de algoritmos P é formada pelos procedimentos

Leia mais

Grafos: caminhos mínimos em Listas de Adjacência. Profa. Graça Nunes

Grafos: caminhos mínimos em Listas de Adjacência. Profa. Graça Nunes Grafos: caminhos mínimos em Listas de Adjacência Profa. Graça Nunes Caminhos mínimos O problema do caminho mínimo consiste em determinar um menor caminho entre um vértice de origem e um vértice de destino

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes O limite superior de complexidade de um problema refere-se ao melhor algoritmo que o resolve. nlog 2 n é um limite superior para o problema de classificação. O limite inferior de um problema

Leia mais

Teorema de Hajós para Coloração Ponderada

Teorema de Hajós para Coloração Ponderada Teorema de Hajós para Coloração Ponderada Júlio César Silva Araújo Universidade Federal do Ceará - UFC Campus do Pici, Bloco 910. 60455-760 - Fortaleza, CE - Brasil juliocesar@lia.ufc.br Cláudia Linhares

Leia mais

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar

Leia mais

Problemas N P-Completo e Algoritmos Aproximados

Problemas N P-Completo e Algoritmos Aproximados Projeto de Algoritmos Cap.9 Problemas N P-Completo e Algoritmos Aproximados Introdução Problemas intratáveis ou difíceis são comuns na natureza e nas áreas do conhecimento. Problemas N P-Completo e Algoritmos

Leia mais

Teoria dos Grafos AULA 2

Teoria dos Grafos AULA 2 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 2 Subgrafos, Operações com Grafos Preparado a partir

Leia mais

Ordenação: Heapsort. Algoritmos e Estruturas de Dados II

Ordenação: Heapsort. Algoritmos e Estruturas de Dados II Ordenação: Heapsort Algoritmos e Estruturas de Dados II Introdução Possui o mesmo princípio de funcionamento da ordenação por seleção Selecione o menor item do vetor Troque-o pelo item da primeira posição

Leia mais

Problemas NP-Completos Bolas Mágicas

Problemas NP-Completos Bolas Mágicas NP-Completo 1 Problemas NP-Completos Bolas Mágicas Já vimos antes alguns problemas NP-completos. Um deles é o jogo de cartões perfurados. Quem encontrar uma solução polinomial para o problema geral desse

Leia mais

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32 Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).

Leia mais

Problemas NP-Completo e Algoritmos Aproximados

Problemas NP-Completo e Algoritmos Aproximados Problemas NP-Completo e Algoritmos Aproximados Última alteração: 28 de Setembro de 200 Transparências elaboradas por Charles Ornelas Almeida, Israel Guerra e Nivio Ziviani Projeto de Algoritmos Cap.9 Problemas

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Análise e Síntese de Algoritmos Algoritmos de Aproximação CLRS, Cap. 35 Resumo Algoritmos de aproximação Algoritmos, com complexidade polinomial, que calculam soluções aproximadas para problemas de optimização

Leia mais

Introdução a Teoria dos Grafos Raimundo Macêdo

Introdução a Teoria dos Grafos Raimundo Macêdo Doutorado em Ciência da Computação lgoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UF Introdução a Teoria dos Grafos Raimundo Macêdo Definição Estrutura que consiste em dois conjuntos: um conjunto de vértices

Leia mais

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns

Leia mais

Corte Máximo em Grafos Notas de aula de MAC-5727

Corte Máximo em Grafos Notas de aula de MAC-5727 Corte Máximo em Grafos Notas de aula de MAC-577 (Material Extra do Capítulo ) Prof. a Yoshiko Wakabayashi Versão pós-aula feita por Bruno Takahashi C. de Oliveira em 09/03/09 15 de agosto de 016 1 Definições

Leia mais

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma Grafos Árvores espalhadas mínimas Conteúdo Introdução Como construir uma árvore geradora miníma Algoritmos Referências Introdução Dado um grafo conectado não orientado G = (V, E) e uma função peso w :

Leia mais

Buscas Informadas ou Heurísticas - Parte II

Buscas Informadas ou Heurísticas - Parte II Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução

Leia mais

Problemas N P-Completo. Algoritmos Aproximados. Introdução. Problemas. Classe N P - Problemas Sim/Não

Problemas N P-Completo. Algoritmos Aproximados. Introdução. Problemas. Classe N P - Problemas Sim/Não Projeto de Algoritmos Cap.9 Problemas N P-Completo e Algoritmos Aproximados Introdução Problemas intratáveis ou difíceis são comuns na natureza e nas áreas do conhecimento. Problemas N P-Completo e Algoritmos

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Imagination is more important than knowledge A. Einstein. 4. Partição de Polígonos. Mestrado em Matemática e Aplicações

Imagination is more important than knowledge A. Einstein. 4. Partição de Polígonos. Mestrado em Matemática e Aplicações 4. Partição de Polígonos Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Mestrado em Matemática e Aplicações Imagination is more important than knowledge A. Einstein 2 Algumas motivações

Leia mais

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó

Leia mais

Otimização por Colônia de Formigas (Ant Colony Optimization - ACO)

Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) Eros Moreira de Carvalho Gabriel Silva Ramos CI209 - Inteligência Artificial BCC - Bacharelado em Ciência da Computação DInf - Departamento

Leia mais

Algoritmos e Programação

Algoritmos e Programação Algoritmos e Programação Aula 5 Estruturas de Repetição Profa. Marina Gomes marinagomes@unipampa.edu.br 26/04/2017 Engenharia de Computação - Unipampa 1 Aula de Hoje Estrutura de repetição Comando for

Leia mais

Árvores: Conceitos Básicos e Árvore Geradora

Árvores: Conceitos Básicos e Árvore Geradora Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:

Leia mais

Conceito Básicos da Teoria de Grafos

Conceito Básicos da Teoria de Grafos 1 Conceito Básicos da Teoria de Grafos GRAFO Um grafo G(V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w),

Leia mais

UM ALGORITMO EFICIENTE PARA COLORAÇÃO DE ARESTAS BASEADO NO TEOREMA DE VIZING

UM ALGORITMO EFICIENTE PARA COLORAÇÃO DE ARESTAS BASEADO NO TEOREMA DE VIZING UM ALGORITMO EFICIENTE PARA COLORAÇÃO DE ARESTAS BASEADO NO TEOREMA DE VIZING Tiago de Oliveira Januario 1, Sebastián Urrutia 1 1 Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Leia mais

ANÁLISE DE ALGORITMOS

ANÁLISE DE ALGORITMOS ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução

Leia mais

GRAFOS Aula 01 Introdução Max Pereira

GRAFOS Aula 01 Introdução Max Pereira Ciência da Computação GRAFOS Aula 01 Introdução Max Pereira Todos os dias nos vemos cercados por incontáveis conexões e redes: rodovias e ferrovias, linhas telefônicas e a Internet, circuitos eletrônicos

Leia mais

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Teobaldo L. Bulhões Júnior a a Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil

Leia mais

Complexidade de algoritmos Notação Big-O

Complexidade de algoritmos Notação Big-O Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema

Leia mais

Teoria dos Grafos Conceitos Básicos

Teoria dos Grafos Conceitos Básicos Teoria dos Grafos Conceitos Básicos Profª. Alessandra Martins Coelho fev/2014 Grafos com apelidos diamante Grafos com apelidos Grafos com apelidos diamante casinha Grafos com apelidos diamante casinha

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

colorindo mapas A forma de representação mais simples que podemos fazer é um artifício matemático chamado grafo.

colorindo mapas A forma de representação mais simples que podemos fazer é um artifício matemático chamado grafo. V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 colorindo mapas Gésica Peixoto Campos & Izabelly Marya Lucena da Silva 1 Introdução

Leia mais

Conceitos Básicos da Teoria de Grafos

Conceitos Básicos da Teoria de Grafos Conceitos Básicos da Teoria de Grafos Universidade Federal do Pampa - UNIPAMPA Engenharia da Computação Estrutura de Dados Profª Sandra Piovesan Grafos Uma noção simples, abstrata e intuitiva. Representa

Leia mais