Corretude e Completude da Dedução Natural. Thiago Alves Rocha

Tamanho: px
Começar a partir da página:

Download "Corretude e Completude da Dedução Natural. Thiago Alves Rocha"

Transcrição

1 Lógica para Computação Corretude e Completude da Dedução Natural Thiago Alves Rocha thiagoalvesifce@gmail.com Thiago Alves Rocha Lógica para Computação 1 / 15

2 Tópicos 1 Introdução 2 Corretude 3 Completude Thiago Alves Rocha Lógica para Computação 2 / 15

3 Introdução Dedução natural para mostrar derivações da forma Γ ϕ Uma fórmula ϕ é consequência lógica de um conjunto de fórmula Γ quando Γ = ϕ Thiago Alves Rocha Lógica para Computação 3 / 15

4 Introdução Dedução natural para mostrar derivações da forma Γ ϕ Uma fórmula ϕ é consequência lógica de um conjunto de fórmula Γ quando Γ = ϕ Corretude da Dedução Natural: se Γ ϕ então Γ = ϕ. Completude da Dedução Natural: se Γ = ϕ então Γ ϕ. Thiago Alves Rocha Lógica para Computação 3 / 15

5 Corretude Teorema da Corretude Seja φ 1,..., φ n um conjunto de fórmulas e ψ uma fórmula. Se φ 1,..., φ n ψ então φ 1,..., φ n = ψ. Definimos regras da dedução natural que funcionam da mesma forma que a consequência lógica Exemplo r (p q), r q p Thiago Alves Rocha Lógica para Computação 4 / 15

6 Corretude Teorema da Corretude Seja φ 1,..., φ n um conjunto de fórmulas e ψ uma fórmula. Se φ 1,..., φ n ψ então φ 1,..., φ n = ψ. Definimos regras da dedução natural que funcionam da mesma forma que a consequência lógica Exemplo r (p q), r q p Pelo Teorema, r (p q), r = q p Thiago Alves Rocha Lógica para Computação 4 / 15

7 Corretude A corretude é útil para mostrar a não existência de uma dedução Thiago Alves Rocha Lógica para Computação 5 / 15

8 Corretude A corretude é útil para mostrar a não existência de uma dedução Pela contrapositiva do teorema da corretude, se φ 1,..., φ n = ψ então φ 1,..., φ n ψ. Thiago Alves Rocha Lógica para Computação 5 / 15

9 Exemplo Mostre que p (q p) p q Thiago Alves Rocha Lógica para Computação 6 / 15

10 Completude Temos que provar que se φ 1,..., φ n = ψ então φ 1,..., φ n ψ É equivalente a mostrar que se = φ 1 (...(φ n ψ)...) então φ 1 (...(φ n ψ)...) Thiago Alves Rocha Lógica para Computação 7 / 15

11 Completude Teorema da Completude Seja φ uma fórmula. Se = φ então φ. Thiago Alves Rocha Lógica para Computação 8 / 15

12 Exemplo Exemplo Seja φ = p q p. Temos que = p q p. Temos que mostrar de forma uniforme que p q p. Como = p q p, para qualquer valoração temos que v(p q p) = T. Thiago Alves Rocha Lógica para Computação 9 / 15

13 Exemplo Exemplo Seja φ = p q p. Temos que = p q p. Temos que mostrar de forma uniforme que p q p. Como = p q p, para qualquer valoração temos que v(p q p) = T. p, q p q p p, q p q p p, q p q p p, q p q p Thiago Alves Rocha Lógica para Computação 9 / 15

14 Exemplo Vamos mostrar que p q p p, q p q p p, q p q p p, q p q p p, q p q p Thiago Alves Rocha Lógica para Computação 10 / 15

15 Completude Lema Seja φ com atom(φ) = {p 1,..., p n }. Seja v uma valoração de φ e ˆp i = p 1 se v(p i ) = T e ˆp i = p 1 se v(p i ) = F. Temos que: ˆp 1 ˆp 2... ˆp n φ se v(φ) = T ˆp 1 ˆp 2... ˆp n φ se v(φ) = F Thiago Alves Rocha Lógica para Computação 11 / 15

16 Completude Prova Indução estrutural em φ. Caso Base: φ = p i. É trivial que p i p i e p i p i. Hipótese de Indução: ˆp 1 ˆp 2... ˆp n φ 1 se v(φ 1 ) = T ˆp 1 ˆp 2... ˆp n φ 1 se v(φ 1 ) = F Passo de Indução: Seja φ = φ 1. Temos dois casos: 1) v(φ) = T. Logo, v(φ 1 ) = F. Pela hipótese de indução, ˆp 1 ˆp 2... ˆp n φ 1. Logo, ˆp 1 ˆp 2... ˆp n φ pois φ = φ 1. 2) v(φ) = F. Logo, v(φ 1 ) = T. Pela hipótese de indução, ˆp 1 ˆp 2... ˆp n φ 1. Com a regra i, temos que ˆp 1 ˆp 2... ˆp n φ 1. Logo, ˆp 1 ˆp 2... ˆp n φ pois φ = φ 1. Thiago Alves Rocha Lógica para Computação 12 / 15

17 Completude Prova Hipótese de Indução: ˆq 1 ˆq 2... ˆq l φ 1 se v(φ 1 ) = T ˆq 1 ˆq 2... ˆq l φ 1 se v(φ 1 ) = F ˆr 1 ˆr 2... ˆr k φ 2 se v(φ 2 ) = T ˆr 1 ˆr 2... ˆr k φ 2 se v(φ 2 ) = F Passo de Indução: Seja φ = φ 1 φ 2 tal que atomos(φ) = {p 1,..., p n } = atomos(φ 1 ) atomos(φ 2 ). Temos dois casos: 1) v(φ) = T. Logo, v(φ 1 ) = T e v(φ 2 ) = T. Pela hipótese de indução, ˆq 1 ˆq 2... ˆq l φ 1 e ˆr 1 ˆr 2... ˆr k φ 2. Logo, ˆp 1 ˆp 2... ˆp n φ 1 e ˆp 1 ˆp 2... ˆp n φ 2. E pela i temos que ˆp 1 ˆp 2... ˆp n φ 1 φ 2. Thiago Alves Rocha Lógica para Computação 13 / 15

18 Completude Prova Passo de Indução: 2) v(φ) = F. Temos 3 subcasos: 2.1) v(φ 1 ) = T e v(φ 1 ) = F. Pela hipótese de indução, ˆq 1 ˆq 2... ˆq l φ 1 e ˆr 1 ˆr 2... ˆr k φ 2. Logo, ˆp 1 ˆp 2... ˆp n φ 1 φ 2. Temos que mostrar que ˆp 1 ˆp 2... ˆp n (φ 1 φ 2 ). 2.2) v(φ 1 ) = F e v(φ 2 ) = T. Pela hipótese de indução, ˆq 1 ˆq 2... ˆq l φ 1 e ˆr 1 ˆr 2... ˆr k φ 2. Logo, ˆp 1 ˆp 2... ˆp n φ 1 φ 2. Temos que mostrar que ˆp 1 ˆp 2... ˆp n (φ 1 φ 2 ). 2.3) v(φ 1 ) = F e v(φ 2 ) = F. Pela hipótese de indução, ˆq 1 ˆq 2... ˆq l φ 1 e ˆr 1 ˆr 2... ˆr k φ 2. Logo, ˆp 1 ˆp 2... ˆp n φ 1 φ 2. Temos que mostrar que ˆp 1 ˆp 2... ˆp n (φ 1 φ 2 ). Thiago Alves Rocha Lógica para Computação 14 / 15

19 Completude Teorema da Completude Seja φ uma fórmula. Se = φ então φ. Prova Seja φ uma fórmula tal que = φ. Logo, para toda valoração v, v(φ) = T. Seja atom(φ) = {p 1,..., p n }. Pelo Lema provado anteriormente, temos que p 1, p 2,..., p n φ p 1, p 2,..., p n φ p 1, p 2,..., p n φ... p 1, p 2,..., p n φ. Agora falta mostrar que φ. Basta usar a regra LEM nas atômicas que aparecem em φ, ou seja, p 1,..., p n. Thiago Alves Rocha Lógica para Computação 15 / 15

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lógica Computacional Aulas 8 e 9

Lógica Computacional Aulas 8 e 9 Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade

Leia mais

Lista: Lógica Proposicional - Dedução Natural (Gabarito)

Lista: Lógica Proposicional - Dedução Natural (Gabarito) Universidade de Brasília - Instituto de Ciências Exatas Departamento de Ciência da Computação CIC 117366 Lógica Computacional 1 - Turmas A e B (2018/1) 16 de abril de 2018 Lista: Lógica Proposicional -

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida.

0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida. Lic. Ciências da Computação Exercícios - Folha 1 0. Definições indutivas 0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida. (1) {1} S (2) X S X \ {1} S (3)

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

Um novo sistema de axiomas para a lógica paraconsistente J 3

Um novo sistema de axiomas para a lógica paraconsistente J 3 Um novo sistema de axiomas para a lógica paraconsistente J 3 Hércules de Araujo Feitosa Gabriel Alexandre da Cruz Ana Cláudia de Jesus Golzio Resumo We investigate the paraconsistent logic J 3. As original

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva

Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Aula 7: Dedução Natural 2

Aula 7: Dedução Natural 2 Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa

Leia mais

Integridade e Completude Para o sistema dedutivo de Hoare, vamos considerar duas propriedades usuais em sistemas lógicos:

Integridade e Completude Para o sistema dedutivo de Hoare, vamos considerar duas propriedades usuais em sistemas lógicos: Integridade e Completude Para o sistema dedutivo de Hoare, vamos considerar duas propriedades usuais em sistemas lógicos: Integridade: Cada regra deve preservar validade. O que implica (por indução nas

Leia mais

Sobre a compacidade lógica e topológica

Sobre a compacidade lógica e topológica Sobre a compacidade lógica e topológica Hércules de Araujo Feitosa Mauri Cunha do Nascimento Marcelo Reicher Soares Resumo Os ambientes da Lógica e da Topologia têm a compacidade como uma propriedade importante.

Leia mais

Espaços quase topológicos: o caso em que cada conjunto fechado é também aberto. Introdução. Hércules de A. Feitosa, Mauri C.

Espaços quase topológicos: o caso em que cada conjunto fechado é também aberto. Introdução. Hércules de A. Feitosa, Mauri C. Espaços quase topológicos: o caso em que cada conjunto fechado é também aberto Hércules de A. Feitosa, Mauri C. do Nascimento, Departamento de Matemática, FC, UNESP, 17033-360, Bauru, SP E-mail: haf@fc.unesp.br,

Leia mais

DIM Resolução e método tableaux DIM / 37

DIM Resolução e método tableaux DIM / 37 DIM0436 21. Resolução e método tableaux 20141014 DIM0436 20141014 1 / 37 Sumário 1 Demostração automática de fórmulas 2 Resolução 3 O método tableaux DIM0436 20141014 2 / 37 1 Demostração automática de

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@nccuppt Versão: 2010 Conteúdo 1 Lógica proposicional 5 11 Linguagens

Leia mais

Fórmulas da lógica proposicional

Fórmulas da lógica proposicional Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto

Leia mais

Lógica Computacional 1 Turma A Primeira Prova (Gabarito)

Lógica Computacional 1 Turma A Primeira Prova (Gabarito) Lógica Computacional 1 Turma A Primeira Prova (Gabarito) Indução e Dedução no Cálculo Proposicional Prof Mauricio Ayala-Rincón Departamento de Ciência da Computação, Instituto de Ciências Exatas Universidade

Leia mais

MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016

MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016 MC102 Aula 26 Recursão Instituto de Computação Unicamp 17 de Novembro de 2016 Roteiro 1 Recursão Indução 2 Recursão 3 Fatorial 4 O que acontece na memória 5 Recursão Iteração 6 Soma em um Vetor 7 Números

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@dccuppt Versão: 2016 Conteúdo 1 Lógica proposicional 7 11 Linguagens

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

MAC Tópicos de POO Padrão: Teorias Formais

MAC Tópicos de POO Padrão: Teorias Formais MAC5715 - Tópicos de POO Padrão: Teorias Formais Ana Paula Mota(NUSP: 3671589) e Daniel Ribeiro (NUSP: 3667708) 1 Objetivo Pesquisar, compreender e estender o conhecimento de áreas como matemática, estatística

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

IME, UFF 4 de novembro de 2013

IME, UFF 4 de novembro de 2013 Lógica IME, UFF 4 de novembro de 2013 Sumário e ferramentas Considere o seguinte texto, da aritmética dos números naturais. Teorema: Todo número inteiro positivo maior que 1 tem um fator primo. Prova:

Leia mais

UMA PROVA DE CONSISTÊNCIA

UMA PROVA DE CONSISTÊNCIA UMA PROVA DE CONSISTÊNCIA Felipe Sobreira Abrahão Mestrando do HCTE/UFRJ felipesabrahao@gmail.com 1. INTRODUÇÃO Demonstradas por Kurt Gödel em 1931, a incompletude da (ou teoria formal dos números ou aritmética)

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 22: em Lógica de Primeira Ordem António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Universidade de Aveiro Departamento de Matemática. Maria Nilde Fernandes Barreto. Análise Estruturada e Formal das Provas

Universidade de Aveiro Departamento de Matemática. Maria Nilde Fernandes Barreto. Análise Estruturada e Formal das Provas Universidade de Aveiro Departamento de Matemática 2009 Maria Nilde Fernandes Barreto Análise Estruturada e Formal das Provas Universidade de Aveiro Departamento de Matemática 2009 Maria Nilde Fernandes

Leia mais

Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.

Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes. Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q

Leia mais

Álgebra Linear e Aplicações - Primeira Prova - Gabarito. Problema 1 (2 pontos) Calcule dim(ran(t )) para a transformação linear T : R 4 R 3

Álgebra Linear e Aplicações - Primeira Prova - Gabarito. Problema 1 (2 pontos) Calcule dim(ran(t )) para a transformação linear T : R 4 R 3 Álgebra Linear e Aplicações - Primeira Prova - Gabarito Problema (2 pontos) Calcule dim(ran(t )) para a transformação linear T : R R 3 com a seguinte representação matricial na base canônica. 2 3 A = 0

Leia mais

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto

Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@nccuppt 2004 Agradecimentos Estas notas baseam-se parcialmente nos Apontamentos

Leia mais

Lógica Computacional Frequência. Universidade da Beira Interior

Lógica Computacional Frequência. Universidade da Beira Interior Lógica Computacional Frequência Duração: 2 horas Universidade da Beira Interior Segunda-Feira 9 de Janeiro de 2017 Prova sem consulta de material pedagógico. É proibido o uso de calculadora e de telemóvel.

Leia mais

Sistemas Formais. Jorge Muniz Barreto UFSC-INE Curso: Teoria da Computação

Sistemas Formais. Jorge Muniz Barreto UFSC-INE Curso: Teoria da Computação Sistemas Formais Jorge Muniz Barreto UFSC-INE Curso: Teoria da Computação Em que consiste? Formal se refere a forma. Portanto sistemas formais, são sistemas de manipulação de formas, sem preocupação do

Leia mais

Seminário Semanal de Álgebra. Técnicas de Demonstração

Seminário Semanal de Álgebra. Técnicas de Demonstração UNIVERSIDADE FEDERAL DE GOIÁS CÂMPUS CATALÃO Seminário Semanal de Álgebra Técnicas de Demonstração Catalão, 26/11/2013. Universidade Federal de Goiás Campus Catalão Seminário Semanal de Álgebra Orientador:

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

LEI DA TRICOTOMIA EM N. Amanda Vitória de Jesus Mendes, Vinício Brás Oliveira Dias, João Carlos Moreira Universidade Federal de Uberlândia FACIP

LEI DA TRICOTOMIA EM N. Amanda Vitória de Jesus Mendes, Vinício Brás Oliveira Dias, João Carlos Moreira Universidade Federal de Uberlândia FACIP 1. INTRODUÇÃO Apesar do conhecimento da existência dos números naturais e a sua utilização para contar, apenas no século XIX uma construção axiomática dos números naturais foi efetivamente apresentada.

Leia mais

Alguns passos da prova do Teorema de Runge

Alguns passos da prova do Teorema de Runge Alguns passos da prova do Teorema de Runge Roberto Imbuzeiro Oliveira 15 de Junho de 2011 1 Os principais passos da prova Teorema 1 Sejam U C aberto, K U compacto e f : U C holomorfa Seja A C \U tal que

Leia mais

Lógica Computacional DCC/FCUP 2017/18

Lógica Computacional DCC/FCUP 2017/18 2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio

Leia mais

INF Semântica formal N

INF Semântica formal N INF05516 - Semântica formal N Ciência da Computação - UFRGS 2006-2 Marcus Ritt mrpritt@inf.ufrgs.br 23/08/2006 Introdução 2 Agenda............................................................... 3 Semântica

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Corpos estendidos no espaço em grupos respostas dos exercícios

Corpos estendidos no espaço em grupos respostas dos exercícios Corpos estendidos no espaço em grupos respostas dos exercícios Carlos Shine Não se assuste com o tamanho das soluções a seguir. Eu tentei colocar o máximo de informação relacionada possível nas soluções

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves

Teoria da Computação. Expressões Regulares e Autômatos Finitos. Thiago Alves Teoria da Computação Expressões Regulares e Autômatos Finitos Thiago Alves 1 Introdução Expressões Regulares e Autômatos Finitos são bem diferentes Será que são equivalentes com relação as linguagens que

Leia mais

Notas de aula. Marcus Ritt. 5 de Junho de Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica

Notas de aula. Marcus Ritt. 5 de Junho de Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica Lógica Notas de aula Marcus Ritt 5 de Junho de 2007 Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica Versão 2251 do 2007-06-05, compilada em 5 de

Leia mais

O teorema do mapeamento conforme de Riemann

O teorema do mapeamento conforme de Riemann O teorema do mapeamento conforme de Riemann Roberto Imbuzeiro Oliveira 23 de Maio de 2011 1 Preliminares Como de costume, U C é aberto. Recorde que U é simplesmente conexo se existe um ponto z 0 U tal

Leia mais

AXIOMATIZAÇÃO Equipe:

AXIOMATIZAÇÃO Equipe: AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella Curso: Engenharia de Computação Disciplina: Lógica para Computação Professor: Adolfo Neto (DAINF) Universidade

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016

Técnicas de Demonstração. Raquel de Souza Francisco Bravo   17 de novembro de 2016 Técnicas de Demonstração e-mail: raquel@ic.uff.br 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Provadores de Teoremas e suas Aplicações. Prof. Marcus Ramos 13 de Julho de 2018 UNIVASF

Provadores de Teoremas e suas Aplicações. Prof. Marcus Ramos 13 de Julho de 2018 UNIVASF Provadores de Teoremas e suas Aplicações Prof. Marcus Ramos 13 de Julho de 2018 UNIVASF Teoremas? Provas? Provadores de Teoremas? Coisa de maluco? Tem aplicação prática? Por que eu deveria me interessar

Leia mais

Notas de aula. Marcus Ritt. 14 de Maio de Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica

Notas de aula. Marcus Ritt. 14 de Maio de Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica Lógica Notas de aula Marcus Ritt 14 de Maio de 2009 Universidade Federal do Rio Grande do Sul Instituto de Informática Departamento de Informática Teórica Versão 3014 do 2009-05-14, compilada em 14 de

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Algoritmo de conversão para FNC António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lista de exercícios de MAT056

Lista de exercícios de MAT056 Lista de exercícios de MAT056 Livro-texto (principal): Ebbinghaus, H. D., Flum, J., Thomas, W., Mathematical Logic. (Undergraduate Texts in Mathematics) Editora Springer. 2th Edition. 1 Introdução Exercício

Leia mais

1 Trajeto Euleriano. > Trajeto Euleriano 0/20

1 Trajeto Euleriano. > Trajeto Euleriano 0/20 Conteúdo 1 Trajeto Euleriano > Trajeto Euleriano 0/20 Um trajeto Euleriano em um grafo G é um trajeto que utiliza todas as arestas do grafo. Definição Um grafo G é Euleriano se e somente se possui um trajeto

Leia mais

Aula 8: Tableaux Analíticos

Aula 8: Tableaux Analíticos Lógica para Computação Segundo Semestre, 2014 Aula 8: Tableaux Analíticos DAINF-UTFPR Prof. Ricardo Dutra da Silva O métodos de Dedução Natural não permite inferir a falsidade de um sequente, ou seja,

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

O Teorema Mestre da Complexidade

O Teorema Mestre da Complexidade O Teorema Mestre da Complexidade Luís Fernando Schultz Xavier da Silveira Departamento de Informática e Estatística - INE - CTC - UFSC 23 de aril de 2010 Conteúdo 1 Enunciado 2 Preliminares Peso das Folhas

Leia mais

Apostila de Lógica. Prof. Mário Benevides. 19 de Março de 2015 UFRJ

Apostila de Lógica. Prof. Mário Benevides. 19 de Março de 2015 UFRJ Apostila de Lógica Prof. Mário Benevides mario@cos.ufrj.br 19 de Março de 2015 UFRJ Motivação Prática Álgebra de Boole Programação em lógica (PROLOG) Sistemas especialistas Especificação de programas Verificação

Leia mais

Departamento de Matemática Universidade do Minho, Braga 2009 /2010. Cálculo de Predicados de Primeira-Ordem da Lógica Clássica p.

Departamento de Matemática Universidade do Minho, Braga 2009 /2010. Cálculo de Predicados de Primeira-Ordem da Lógica Clássica p. Cálculo de Predicados de Primeira-Ordem da Lógica Clássica Lógica CC Departamento de Matemática Universidade do Minho, Braga 2009 /2010 Cálculo de Predicados de Primeira-Ordem da Lógica Clássica p. 1/7

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 69 Este material é preparado usando como referências os

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Um estudo sobre espaços vetoriais simpléticos Fabiano Borges da Silva, Lívia T. Minami Borges 2

Um estudo sobre espaços vetoriais simpléticos Fabiano Borges da Silva, Lívia T. Minami Borges 2 ISSN 36-9664 v. 4 - ago. 05 Sumário Um estudo sobre espaços vetoriais simpléticos Fabiano Borges da Silva, Lívia T. Minami Borges Uma curiosa propriedade com inteiros positivos Fernando Neres de Oliveira

Leia mais

MA21: Resolução de Problemas - gabarito da primeira prova

MA21: Resolução de Problemas - gabarito da primeira prova MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam

Leia mais

Eunice Palmeira da Silva Orientador: Fred Freitas

Eunice Palmeira da Silva Orientador: Fred Freitas e Eunice Palmeira da Silva Orientador: Fred Freitas Universidade Federal de Pernambuco 4 de fevereiro de 2014 Roteiro 1 Overview do Trabalho do Doutorado 2 para ALC 3 Tipos de Linguagens Visual Model Outlines

Leia mais

Sobre a dinâmica de aplicações do círculo e do toro

Sobre a dinâmica de aplicações do círculo e do toro Sobre a dinâmica de aplicações do círculo e do toro Fernando Oliveira U. F. de Minas Gerais EMALCA 2010 Fernando Oliveira (U. F. de Minas Gerais) Sobre a dinâmica de aplicações do círculo e do toro EMALCA

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma

Leia mais

1 Primos em uma PA? 2 Pequeno teorema de Dirichlet

1 Primos em uma PA? 2 Pequeno teorema de Dirichlet Pequeno teorema de Dirichlet Primos em uma PA? O famoso teorema de Dirichlet, também conhecido como PCP princípio das casas dos primos), diz: Teorema. Dirichlet) Sejam a e n dois inteiros com a, n). Então

Leia mais

anti-simétrica, com elemento mínimo e tal que, dados n, n, n N, se

anti-simétrica, com elemento mínimo e tal que, dados n, n, n N, se 1 Sistema dedutivo T 1.1 Árvores e árvores etiquetadas Informalmente, uma árvore é uma estrutura constituída por um conjunto de elementos, designados nós, ordenados de um modo particular. Quando se faz

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Verificação Formal de Software Aula 18

Verificação Formal de Software Aula 18 Verificação Formal de Software Nelma Moreira Verificação Formal de Software Aula 18 Cálculo de Correção parcial H [skip p ] [ass p ] {φ} skip {φ} [comp p ] {φ[e/x]} x := E {φ} [if p ] {φ} C 1 {η} {η} C

Leia mais

NHI Lógica Básica (Lógica Clássica de Primeira Ordem)

NHI Lógica Básica (Lógica Clássica de Primeira Ordem) NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático

Leia mais

Teoria dos Modelos: Completude e Método das Constantes

Teoria dos Modelos: Completude e Método das Constantes Teoria dos Modelos: Completude e Método das Constantes Ricardo Bianconi Sumário 1 Introdução 1 2 Completude e Compacidade 5 2.1 Dedução formal.......................... 5 2.2 Correção, Completude e Compacidade.............

Leia mais

Segunda Lista de Exercícios 2004/2...

Segunda Lista de Exercícios 2004/2... + + UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Segunda Lista de Exercícios

Leia mais

i : V W V W é o produto tensorial de V e W se, ao considerarmos um outro espaço vetorial U sobre o mesmo corpo K e B também uma aplicação bilinear:

i : V W V W é o produto tensorial de V e W se, ao considerarmos um outro espaço vetorial U sobre o mesmo corpo K e B também uma aplicação bilinear: 3 Produto Tensorial Sistemas quânticos individuais podem interagir para formarem sistemas quânticos compostos. Existe um postulado em Mecânica Quântica que descreve como o espaço de estados do sistema

Leia mais

SETA DE SEQÜENTE: " " é chamado de seta de seqüente. Então um seqüente é equivalente em significado à fórmula:

SETA DE SEQÜENTE:   é chamado de seta de seqüente. Então um seqüente é equivalente em significado à fórmula: Texto: Introduction to Proof Theory 1 O Cálculo de Seqüentes Autor: S. Buss O Cálculo de Seqüentes foi criado por Gerard Gentzen em 1935 como uma extensão de seus sistemas anteriores de Dedução Natural.

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980)

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980) Cálculo Infinitesimal I V01.2016 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitor: Lucas Porto de Almeida Lista A - Introdução à matemática No. Try not. Do... or do not. There is no try.

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

UNIVERSIDADE FEDERAL DE. Faculdade de Ciência da Computação

UNIVERSIDADE FEDERAL DE. Faculdade de Ciência da Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Ciência da Computação Disciplina : Linguagens Formais e Autômatos - 2 Semestre 22 Professora : Sandra Aparecida de Amo Material Suplementar sobre Autômatos

Leia mais

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Notas de aula de Lógica para Ciência da Computação Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 27 de agosto de 2014 Sumário 1 Sintaxe

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Lógicas Construtivas: Intuicionismo, uma

Lógicas Construtivas: Intuicionismo, uma Lógicas Construtivas: Intuicionismo, uma Introdução Ricardo Bianconi 1 Introdução Vamos tratar agora de Lógicas Construtivas, ou seja, aquelas em que se admitem apenas argumentos construtivos. O que seriam

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Relações Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto

Leia mais

Lógica Computacional (CC2003)

Lógica Computacional (CC2003) Lógica Computacional (CC2003) Nelma Moreira Lógica Computacional 21 Conteúdo 1 Mais Teorias (decidíveis) 1 1.1 Resolução para a lógica proposicional................ 4 1.2 Cláusulas...............................

Leia mais