b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado.

Tamanho: px
Começar a partir da página:

Download "b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado."

Transcrição

1 1) As usinas de potência (termoelétricas e nucleares) precisam retornar ao meio ambiente uma determinada quantidade de calor para o funcionamento do ciclo. O retorno de grande quantidade de água aquecida para um rio ou lago pode afetar a capacidade de manter gases dissolvidos, o que inclui o oxigênio necessário para a vida aquática local. Se a temperatura for maior que 35 C, o oxigênio dissolvido pode ser insuficiente para manter algumas espécies de peixes. Além disso, se a diferença de temperatura entre o retorno e a água presente no meio ambiente for muito grande, algumas espécies de peixes podem ficar estressadas causando um desequilíbrio em diversas atividades, inclusive a reprodutora. Outro problema encontrado é que espécies não nativas podem assumir o controle da região por serem mais adaptadas a águas quentes e também há o favorecimento para o aparecimento e crescimento de algas e bactérias. Com base nos seus conhecimentos sobre energia para ciclos analise as seguintes afirmações: a) Somente a afirmação b; b) Somente a afirmação c; c) As afirmações a e c; d) As afirmações b e c; e) Todas as afirmações. a Os ciclos de potência poderiam trabalhar sem a rejeição de energia térmica para um corpo frio na forma de calor desde que toda energia térmica que entra no ciclo fosse transformada em trabalho. b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado. c Nos ciclos termodinâmicos de potência, a quantidade de energia térmica que entra no ciclo e igual a soma da quantidade de energia térmica que sai do ciclo mais o trabalho gerado pelo ciclo. Das afirmações acima podemos dizer que estão corretas:

2 2) A vida moderna seria impossível sem a utilização dos princípios fundamentais da termodinâmica, pois ela é a ciência que estuda os fenômenos relacionados ao trabalho, a energia, ao calor e as leis que governam os processos da conservação de energia. Portanto, fica evidente que a vida moderna gira em torno das diversas formas de transformações de energia. Transformamos a energia elétrica em trabalho mecânico como no caso do motor elétrico que faz uma polia girar. Transformamos energia química dos combustíveis em energia na forma de calor. Nestas transformações energéticas, utilizamos vários equipamentos que se tornaram essenciais nas nossas atividades diárias, tais como: os automóveis, os motores elétricos, ar condicionado, refrigerador e etc. Podemos dividir os equipamentos citados anteriormente, segundo o seu ciclo de funcionamento. Estes equipamentos podem trabalhar segundo o ciclo de potência ou segundo o ciclo de refrigeração ou bomba de calor. Nas figuras abaixo estão representados os dois ciclos. Com base no texto e no desenho podemos concluir que: I - Ciclos de potência são aqueles que fornecem uma transferência líquida de energia sob a forma de trabalho e o desempenho ou eficiência de um sistema de potência pode ser descrito em termos da extensão na qual a energia adicionada por calor é convertida em trabalho líquido. II - Ciclos de refrigeração ou bomba de calor são aqueles que necessitam de uma entrada líquida de trabalho para realizar a transferência de calor de um corpo mais quente para um corpo mais frio e o desempenho dos ciclos de refrigeração ou coeficiente de desempenho pode ser descrito como a razão entre a quantidade de energia recebida na forma de calor do corpo quente e o trabalho líquido necessário para produzir esse efeito. III - O desempenho da bomba de calor está relacionado com a quantidade de energia térmica que é descarregada no corpo quente. IV Para sabermos se um ciclo de potência está recebendo ou entregando trabalho é só observarmos o sinal correspondente no valor final do ciclo, isto é, positivo, +, significa que o ciclo de potência está entregando trabalho, enquanto que negativo, +, significa que o ciclo de potência está recebendo trabalho. Qual das alternativas abaixo está correta? a) Os itens I e III estão corretos; b) Os itens I e IV estão corretos; c) Os itens II e III estão corretos; d) Os itens II e IV estão corretos; e) Os itens I, III e IV estão corretos;

3 3) Substância pura é aquela que não possui variação na sua composição química. Pode existir em mais de uma fase, mas a sua composição química é a mesma em todas as fases. Assim água líquida e vapor d'água ou uma mistura de gelo e água líquida são todas substância puras, pois cada fase tem a mesma composição química. Denomina-se líquido saturado a substância que se encontra como líquido à temperatura e pressão de saturação. Chama-se líquido comprimido, ou subresfriado, se a pressão do líquido é maior que a pressão de saturação para uma determinada temperatura ou temperatura do líquido é menor que a temperatura de saturação para a pressão existente. O título (x) é obtido relação entre a massa de vapor pela massa total, isto é, massa de líquido mais a massa de vapor quando uma substância se encontra parte líquida e parte vapor, que se denomina vapor úmido. Vapor saturado é a substância se encontra completamente como vapor na temperatura e pressão de saturação. Já o vapor superaquecido é quando o vapor está a uma temperatura maior que a temperatura de saturação. O ponto crítico é definido pelo ponto de encontro entre a linha de líquido saturado e vapor saturado. Abaixo, temos os gráficos (T x v) e (P x v) referentes à água saturada. Com as definições do texto acima e analisando os gráficos é incorreto afirmar que: a) Em ambos os gráficos os pontos A, B, C e D correspondem, respectivamente, ao ponto de líquido saturado, mistura líquido/vapor, ponto crítico e vapor saturado; b) O ponto E encontra-se na região de vapor superaquecido e no primeiro gráfico possui uma pressão de 5 MPa e temperatura superior ao ponto de ebulição e no segundo gráfico se encontra na temperatura de ebulição com uma pressão inferior a 0,1 MPa; c) Dado o título de 50% para o ponto B, em ambos os gráficos, seu volume específico será de 0, m 3 /kg para o primeiro gráfico e 0, m 3 /kg para o segundo; d) Os pontos A, B e D do primeiro gráfico estão sob a mesma temperatura 265ºC, a qual chamamos de temperatura de saturação (T sat ) para a pressão de 5 MPa; e) Os pontos A, B e D do segundo gráfico estão sob a mesma pressão 0,1 MPa, a qual chamamos de pressão de saturação (P sat ) para a temperatura de 100 ºC.

4 4) Não é de hoje que o vento vem sendo utilizado como um sistema de gerador de energia. Na verdade desde 4000 a.c. que vem se utilizando a energia dos ventos para se movimentar barcos, moinhos, bombear água para cidades e regiões de plantio de alimentos, porém somente recentemente é que essa energia vem sendo convertida em eletricidade. Nos Estados Unidos a energia eólica vem sendo utilizada desde os anos 1850 para o bombeio de água por meio de pequenos cataventos, mas somente a partir de 1900 para gerar eletricidade. Contudo, o desenvolvimento de turbinas modernas só ocorreu nos anos de No mundo a capacidade de geração de energia eólica já ultrapassa 0s 40 GW de potência, sendo que 75% dessa geração encontram-se nos Estados Unidos, Alemanha, Dinamarca e Espanha. Diversos países estão intensificando suas atividades na geração de energia elétrica por meio de captação da energia eólica. No Brasil, leilões de regiões para a produção de energia eólica estão sendo feitos desde 2009 a fim de promover a diversificação da matriz energética do país. Segundo diversos estudos a capacidade brasileira gira em torno de 143 GW, sendo que o governo pretende alcançar até 2020 uma capacidade implantada de 10 GW. Se considerarmos que a vazão mássica de ar que ultrapassa uma turbina é de kg/s e que essa turbina tenha uma eficiência de 30%. Determine qual é a potência por ela gerada se o vento encontra-se a uma velocidade de m/h, e assumindo que só haja transformação de energia cinética apenas em trabalho. Dica: assim como a potência é a relação do trabalho pelo tempo a energia cinética (EC = mv2 2 ) pode ser relacionada com a vazão mássica se dividida pelo tempo. (1kJ/kg = 1000 m 2 /s 2 ) a) 50 kw b) 750 kw c) 2500 kw d) kw e) kw

5 Resolução Exercício 4 EC tempo = m tempo 2 Como toda energia cinética é transformada em trabalho, então: 1 h = 3600 s, então V = m/h = 10 m/s W total = m V2 2 V 2 = = ƞ = W gerada W total W gerada = 0,3x = W ou 750 kw

6 5) O trabalho realizado pelo sistema, devido ao movimento da fronteira, durante um processo quase estático, pode ser determinado pela integração ou pela área sob a curva de transformação. A integração somente pode ser efetuada se conhecermos a relação entre P e V durante esse processo. Essa relação pode ser expressa na forma de equação ou na forma de um diagrama P x v. Para sistemas que se encontram no estado de mistura (região bifásica, líquido-vapor), estes possuem os valores de suas propriedades listadas nas tabelas de saturação, que, através de dados de entrada de pressão ou temperatura, nos apresentam valores específicos de volume de líquido saturado (v l ) e vapor saturado (v v ), e ainda energia interna (u), entalpia (h) e entropia (s) para ambos estados de saturação. Abaixo, uma parte da tabela de saturação para entrada de pressão e também um diagrama P x v são apresentado. Informações: O sistema, no estado 1, possui título de 10%. No estado final 2, o sistema está no ponto de vapor saturado. Em todo o processo, a massa se mantém constante De acordo com os dados fornecidos, pedem-se: a) O trabalho total do sistema. b) Justifique, com cálculos, se podemos, através de um diagrama P x v, encontrar o trabalho total do estado 1 para 2 pela obtenção da área sob a curva de transformação. c) A temperatura com que ocorre todo o processo.

7 Resolução do Exercício 5 a) b) W = P(v 2 v 1 ) v 1 = 1 x v l + xv v = 0,9 0, ,1 0,31567 = 0, m 3 /kg W = 600(0, , ) W = 169,91586kJ/kg 170kJ/kg A = base X altura A = (v 2 v 1 )(P 0) A = W = P(v 2 v 1 ) c) Diretamente da tabela de P = 600 kpa, T = 158,85 C.

8 6) Durante um processo de escoamento estacionário, a quantidade total de energia no interior do volume de controle permanece constante (E v.c. = constante). Por isso, a quantidade de energia que entra para o volume de controle nas diferentes formas (calor, trabalho, energia transportada pela massa) deve ser igual à quantidade total de energia que de lá sai. Para sistemas com apenas uma corrente de fluido (uma entrada e uma saída), a equação da Primeira Lei Aplicada a tal volume de controle pode ser expressa como: Q VC W VC = m h s h e + V s 2 2 V 2 e 2 + g z s z e representando como índice (s) e índice (e), respectivamente, as propriedades do fluído à saída e à entrada. Em alguns dispositivos utilizados em engenharia, aplica-se a equação acima e em sua maioria, há a possibilidade de algumas considerações serem feitas e também alguns cancelamentos. Com relação às proposições abaixo, é incorreto afirmar que: a) Uma turbina é um dispositivo onde se produz trabalho resultante da passagem de um gás, ou líquido, através de um conjunto de lâminas presas a um eixo que pode girar. Normalmente, e em particular nas turbinas de gás e vapor, a variação de energia potencial gravitacional do fluido é desprezível. b) Numa bomba fornece-se trabalho a um líquido para lhe modificar o estado enquanto este a atravessa. As trocas de calor com a vizinhança são, normalmente, pouco significativas, podendo o termo Q v.c. ser cancelado e o trabalho fornecido ao fluido, por convenção, deve ser negativo. c) Um bocal é um dispositivo usado para aumentar a velocidade do escoamento de um fluido, reduzindo a pressão. Não há trabalho adicionado nesses dispositivos e, normalmente, a transmissão de calor é ignorada. d) Os trocadores de calor são usados para transmitir energia de um corpo mais quente para um mais frio ou para a vizinhança por transmissão de calor. Nestes dispositivos, a velocidade normalmente muda pouco, a queda de pressão através da passagem é ignorada na transmissão de calor, a variação de energia potencial é assumida como zero e também não há trabalho realizado. e) Um difusor é um dispositivo que aumenta a pressão do escoamento de um fluido, reduzindo a velocidade. Além de contabilizar o trabalho de escoamento pela relação das entalpias, também há a preocupação com o trabalho realizado pelo fluido em tal sistema.

9 7) Processos termodinâmicos envolvem na maioria dos casos expansão e/ou compressão de gases. Tais processos podem ser relacionados por equações do tipo Pϑ n = constante. Calculando o trabalho para esses processos politrópicos podemos obter as seguintes equações: W = P 2θ 2 P 1 θ 1 para n 1 (Eq.1) 1 n W = P 1 θ 1 ln θ 2 ou W = P θ 2 θ 2 ln θ 2 para n = 1 (Eq.2) 1 θ 1 W = P θ 2 θ 1 para n = 0 (Eq.3) Além dessa relação, diversas outras equações de estado podem ser utilizadas para o desenvolvimento dessas equações. Utilizando a equação dos gases reais, Pϑ = mrt, e correlacionado com as equações (Eq.1), (Eq.2) e (Eq.3), respectivamente, podemos obter: a) W = mr T 2 T 1 ; W = mrt n 1 1 ln θ 1 ; W = mr T θ 2 mr T b) W = ; W = mrt 1 n 1 ln θ 1 ; W = mr T θ 2 T 1 2 c) W = mr T 2 T 1 1 n d) W = mr T 2 T 1 1 n e) W = mr T 2 T 1 n 1 ; W = mrt 1 ln θ 2 θ 1 ; W = mr T 1 T 2 ; W = mrt 1 ln θ 2 θ 1 ; W = mr T W = mrt 1 ln θ 2 θ 1 ; W = mr T 2 T 1

10 8) Os dispositivos de engenharia quase sempre operam em regime permanente, pois costumam operar durante longos períodos antes de serem paralisados para manutenção. Portanto análise em regime permanente para a equação da Primeira Lei da Termodinâmica aplicada a Volume de Controle é frequentemente utilizada. 0 = Q VC W VC + m e h e + V e gz e m s h s + V 2 s 2 + gz s Considere as afirmações abaixo: I Válvulas de expansão são dispositivos que não apresentam geração ou consumo de potência. Além disso, as mesmas devem operar adiabaticamente, sendo desprezíveis as variações de energia potencial e cinética. II Para um trocador de calor com 1 entrada e 1 saída de fluxo, sem acumulo de massa e com as variações de energia cinética e potencial desprezíveis. Além disso, a troca térmica com o ambiente pode ser minimizada por meio de isolamento térmico, podendo assim ser considerada nula. III Uma turbina não isolada termicamente possui uma entrada e uma saída de fluxo de ar, mas que não apresenta variação de energia potencial e cinética suficiente para serem consideradas. Analisando as afirmações, a equação da 1 Lei pode ser resumida em cada um dos casos. Verifique a resposta incorreta para as três equações na alternativa considerando o desenvolvimento para o caso I, II e III, respectivamente. a) Isoentálpico; Isoentálpico; W VC = m h e h s b) h e = h s ; Isoentálpico; W VC = Q VC + m h e h s c) Isoentálpico; Isoentálpico; W VC = Q VC + m h s h e d) W VC = Q VC + m h e h s ; h e = h s ; W VC = Q VC + m h e h s e) h e = h s ; W VC = m h e h s ; W VC = Q VC + m h e h s

11 9) Nas usinas de potência a vapor, aquecedores de água de alimentação abertos são utilizados com frequência misturando água com o vapor que é extraído da turbina em estágios intermediários. Considere um aquecedor que opera a uma pressão de 1000 kpa. Água de alimentação a 50 C e 1000 kpa deve ser aquecida com vapor superaquecido a 200 C e 1000 kpa. A mistura deixa o aquecedor como líquido saturado. Determine a relação y entre os fluxos de massa da água de alimentação e do vapor superaquecido y = m 1 m 2. Dados: h 1 = 200 kj/kg; h 2 = 2700 kj/kg; h 3 = 700 kj/kg

12 0 = Q Resolução do Exercício 9 VC W VC + m e h e + V 2 e 2 + gz e m s h s + V 2 s 2 + gz s Como é um aquecedor, não há troca térmica com o ambiente, não há trabalho envolvido e as variações de energia potencial e cinética podem ser desprezadas. 0 = + m e h e m s h s m e h e = m s h s m 1 h 1 + m 2 h 2 = m 3 h 3 Porém, m 3 = m 1 + m 2 m 1 h 1 + m 2 h 2 = m 1 + m 2 h 3 m 1 h 1 m 1 h 3 = m 2 h 3 m 2 h 2 y = m 1 m 2 = h 3 h 2 h 1 h 3 = y =

13 10) O escoamento de massa transporta energia nas formas interna, potencial e cinética. Porém devido à dificuldades de medidas exatas de energia interna a saída é considerar a energia proveniente do escoamento para obtermos a entalpia como mostrado nas equações abaixo: me = m u + V2 2 + gz. Sendo e escoamento = Pv me total = m me total = m Pv + u + V2 2 + gz h + V2 2 + gz Portanto o uso da entalpia no lugar na energia interna já considera o efeito da energia de escoamento. Com base nisso verifique a seguinte situação. Um reator nuclear gera energia térmica suficiente para aquecer a água presente numa caldeira a 300 C e pressão de 9 MPa. Aproximadamente 3 kg de água são transformados em vapor a cada 5 minutos e deixa a caldeira na forma de vapor saturado passando por um a válvula de segurança de 10 mm 2 de área de seção transversal. Dados: volume específico = 0,02 m 3 /kg entalpia específica = 2700 kj/kg energia interna específica = 2550 kj/kg a) Calcule a velocidade de escoamento do vapor pela válvula de segurança b) Calcule a energia de escoamento e energia total

14 Resolução do Exercício 10 a) b) m = ρva = VA v 3 5(60) = V(10x10 6 ) 0,02 V = 20 m/s e escoamento = Pv h = Pv + u h = e escoamento + u e escoamento = = 150 kj/kg 20 2 E total = me total = m h + V2 + gz = 0, E total = 27,002 kw ou E total mh, pois a energia cinética pode ser desprezada.

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

Dispositivos com escoamento em regime permanente

Dispositivos com escoamento em regime permanente Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um

Leia mais

Essa relação se aplica a todo tipo de sistema em qualquer processo

Essa relação se aplica a todo tipo de sistema em qualquer processo Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas

Leia mais

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz

Leia mais

A 1 a lei da termodinâmica para um sistema transiente é:

A 1 a lei da termodinâmica para um sistema transiente é: TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação

Leia mais

Análise Energética para Sistemas Abertos (Volumes de Controles)

Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente

Leia mais

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

Módulo I Ciclo Rankine Ideal

Módulo I Ciclo Rankine Ideal Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento

Leia mais

Capítulo 1. Introdução à Termodinâmica Aplicada

Capítulo 1. Introdução à Termodinâmica Aplicada Capítulo Introdução à Termodinâmica Aplicada Objetivos Na disciplina de Fundamentos da Termodinâmica, você aprendeu inúmeros conceitos físicos importantes. O objetivo da disciplina de Termodinâmica Aplicada

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão

Leia mais

Lista de Exercícios Solução em Sala

Lista de Exercícios Solução em Sala Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que

Leia mais

Cap. 4: Análise de Volume de Controle

Cap. 4: Análise de Volume de Controle Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação

Leia mais

Exercícios sugeridos para Ciclos de Refrigeração

Exercícios sugeridos para Ciclos de Refrigeração Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas

Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas BIJ-0207 Bases conceituais da energia Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas Prof. João Moreira CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5 Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

Sistemas de Refrigeração Parte I

Sistemas de Refrigeração Parte I Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de

Leia mais

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue: 1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total

Leia mais

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos

Leia mais

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação

Leia mais

1ª Lei da Termodinâmica lei da conservação de energia

1ª Lei da Termodinâmica lei da conservação de energia 1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da

Leia mais

Nota: Campus JK. TMFA Termodinâmica Aplicada

Nota: Campus JK. TMFA Termodinâmica Aplicada TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização

Leia mais

Componentes dos ciclos termodinâmicos

Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Quais podem ser os componentes de um ciclo termodinâmico? Turbinas, válvulas, compressores, bombas, trocadores de calor (evaporadores,

Leia mais

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade

Leia mais

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:

Leia mais

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53 Conteúdo 13 Conteúdo 1 Introdução e Comentários Preliminares, 21 1.1 O Sistema Termodinâmico e o Volume de Controle, 23 1.2 Pontos de Vista Macroscópico e Microscópico, 24 1.3 Estado e Propriedades de

Leia mais

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 ANÁLISE VOLUME DE CONTROLE 1) Óleo vegetal para cozinha é acondicionado em um tubo cilíndrico equipado com bocal para spray. De acordo com o rótulo, o tubo é capaz de fornecer 560

Leia mais

Disciplina : Termodinâmica. Aula 2

Disciplina : Termodinâmica. Aula 2 Disciplina : Termodinâmica Aula 2 Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução Estamos familiarizados com o princípio da conservação de energia, que é um expressão da primeira lei da termodinâmica,

Leia mais

Exercícios e exemplos de sala de aula Parte 1

Exercícios e exemplos de sala de aula Parte 1 PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém

Leia mais

Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração.

Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Primeira Lei da Termodinâmica A única maneira de variar a energia de um sistema fechado é por meio de calor ou trabalho.

Leia mais

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos Disciplina : Termodinâmica Aula 17 Processos Isentrópicos Prof. Evandro Rodrigo Dário, Dr. Eng. Processos Isentrópicos Mencionamos anteriormente que a entropia de uma massa fixa pode variar devido a (1)

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Capítulo 4: Primeira Lei da Termodinâmica Processos de controlo de volume Sumário No Capítulo 3 discutimos as interações da energia entre um sistema e os seus arredores e o princípio

Leia mais

Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot

Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo

Leia mais

Capítulo 4. Ciclos de Potência a Vapor

Capítulo 4. Ciclos de Potência a Vapor Capítulo 4 Ciclos de Potência a Vapor Objetivos Estudar os ciclos de potência em que o fluido de trabalo é alternadamente vaporizado e condensado. Fornecer uma introdução aos processos de co-geração. 4..

Leia mais

Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle

Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle Prof. João Porto Objetivos: Enunciar e aplicar a 1ª primeira lei da termodinâmica para volume de controle. Resumo 01- Conservação

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.4 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 09 Primeira Lei da Termodinâmica Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir

Leia mais

1. Os seguintes dados são referentes à instalação motora a vapor mostrada abaixo.

1. Os seguintes dados são referentes à instalação motora a vapor mostrada abaixo. 1. Os seguintes dados são referentes à instalação motora a vapor mostrada abaixo. gerador de vapor Q S turbina condensador W T água de resfriamento 10C P [Pa] T [C] 1 9,5 MPa 2 3 4 35 MPa 790 5 35 MPa

Leia mais

Disciplina : Termodinâmica. Aula 13 Análise da massa e energia aplicadas a volumes de controle - Regime Transiente

Disciplina : Termodinâmica. Aula 13 Análise da massa e energia aplicadas a volumes de controle - Regime Transiente Disciplina : Termodinâmica Aula 13 Análise da massa e energia aplicadas a volumes de controle - Regime Transiente Prof. Evandro Rodrigo Dário, Dr. Eng. Processos que envolvem mudanças no volume de controle

Leia mais

Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados

Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados Disciplina : Termodinâmica Aula 6 - Análise da Energia dos Sistemas Fechados Prof. Evandro Rodrigo Dário, Dr. Eng. Análise da Energia dos Sistemas Fechados Já vimos várias formas de energia e de transferência

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...

Leia mais

Energética Industrial

Energética Industrial Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,

Leia mais

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 2º Teste-Repescagem, 15/Junho /2015. Nome Nº

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 2º Teste-Repescagem, 15/Junho /2015. Nome Nº 2º Teste-Repescagem, 15/Junho /2015 P1 Problema 1 (10 v) (selecione apenas uma resposta) 1) Para aumentar o rendimento de um ciclo reversível de potência que opera entre duas fontes de energia com temperaturas

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Análise Integral (Volume de Controle) 2 ou 1ª Lei da Termodinâmica A 1ª Lei da Termodinâmica para um Sistema Fechado é dada por,

Leia mais

Capítulo 5. Ciclos de Refrigeração

Capítulo 5. Ciclos de Refrigeração Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.

Leia mais

Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.

Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot. Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia

Leia mais

Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia

Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia Processos Politrópicos Processos reais podem ter a pressão e o volume relacionados pela seguinte

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 6-8 MELHORANDO O DESEMPENHO PROF.: KAIO DUTRA Superaquecimento Como não estamos restritos a ter vapor saturado na entrada da turbina, uma energia adicional

Leia mais

Aula 6 Vapor e ciclos combinados

Aula 6 Vapor e ciclos combinados Universidade Federal do ABC P O S M E C Aula 6 Vapor e ciclos combinados MEC202 Ciclos de vapor Consideramos os ciclos de alimentação de vapor, em que o fluido de trabalho é alternativamente vaporizado

Leia mais

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson

Leia mais

Utilizando Gráficos de Entropia

Utilizando Gráficos de Entropia Módulo IV Variação da Entropia em Substâncias Puras, Relações Termodinâmicas (Tds), Diagramas T-s e h-s, Entropia em Substâncias Incompressíveis, Entropia em Gás Ideal. Utilizando Gráficos de Entropia

Leia mais

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado. Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2016

CONCURSO PÚBLICO EDITAL Nº 03 / 2016 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Branco, 50 Santa Lúcia 29056-255 Vitória ES 27 3357-7500 CONCURSO PÚBLICO EDITAL Nº 03 / 2016 Professor do Magistério do

Leia mais

EM 524 : aula 3. Capítulo 3 : Propriedades das. Substâncias Puras

EM 524 : aula 3. Capítulo 3 : Propriedades das. Substâncias Puras EM 524 : aula 3 Capítulo 3 : Propriedades das 1. Definições; Substâncias Puras 2. Equilíbrio de fase; Diagrama temperatura volume; Título de uma mistura líquido-vapor; Diagrama pressão temperatura; Diagrama

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

SIMULAÇÃO DE UMA USINA COM CICLO SIMPLES A VAPOR (CICLO RANKINE)

SIMULAÇÃO DE UMA USINA COM CICLO SIMPLES A VAPOR (CICLO RANKINE) SIMULAÇÃO DE UMA USINA COM CICLO SIMPLES A VAPOR (CICLO RANKINE) Glauber Rocha 1 Adilson Luiz da Silva 2 Fausto Neves Silva 3 RESUMO Para gerar vapor necessário aos processos de uma usina existe na caldeira

Leia mais

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 1º Exame, 15/Junho /2015. Nome Nº

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 1º Exame, 15/Junho /2015. Nome Nº P1 Problema 1 (6 v) (selecione apenas uma resposta) 1) Para aumentar o rendimento de um ciclo reversível de potência que opera entre duas fontes de energia com temperaturas Th (fonte quente) e Tc (fonte

Leia mais

Aula 1 Leis de conservação da energia

Aula 1 Leis de conservação da energia Universidade Federal do ABC P O S M E C Aula 1 Leis de conservação da energia MEC202 Problema para discussão O estranho caso do refrigerador aberto na sala adiabática O que acontece com a temperatura do

Leia mais

Gabarito do Trabalho T1 - Termodinâmica Ambiental

Gabarito do Trabalho T1 - Termodinâmica Ambiental Gabarito do Trabalho T - Termodinâmica Ambiental Professor: Emílio Graciliano Ferreira Mercuri, D.Sc. Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR mercuri@ufpr.br Questão

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Definição de Substância Pura Equilíbrio de Fases Líquido-Vapor de uma Substância Pura Diagrama de Temperatura versus Volume Específico Título de uma Substância com Fases Líquida

Leia mais

Aula 7 Refrigeração e bombeamento de calor

Aula 7 Refrigeração e bombeamento de calor Universidade Federal do ABC P O S M E C Aula 7 Refrigeração e bombeamento de calor MEC202 Refrigeração Transferência de calor a partir de uma região de temperatura mais baixa para uma região com temperatura

Leia mais

SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a

SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS INTRODUÇÃO E CONCEITOS INICIAIS ALBERTO HERNANDEZ NETO PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução

Leia mais

Nome: Nº Sala. Hipóteses: o ar é gás perfeito ( R

Nome: Nº Sala. Hipóteses: o ar é gás perfeito ( R Termodinâmica I Ano Lectivo 2011/12 1º Ciclo-2ºAno/2º semestre (LEAmb LEAN MEAer MEMec) Exame, 26 / Junho/ 2012 P1 Nome: Nº Sala Problema 1 (5v) A figura representa um tanque rígido e adiabático com uma

Leia mais

Termodinâmica e Estrutura da Matéria (MEFT)

Termodinâmica e Estrutura da Matéria (MEFT) Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva carlos.santos.silva@tecnico.ulisboa.pt Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina

Leia mais

Capítulo 3 A Segunda Lei da Termodinâmica

Capítulo 3 A Segunda Lei da Termodinâmica Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei

Leia mais

Disciplina : Máquinas Térmicas e de Fluxo. Aula 2 Propriedades Termodinâmicas

Disciplina : Máquinas Térmicas e de Fluxo. Aula 2 Propriedades Termodinâmicas Disciplina : Máquinas Térmicas e de Fluxo Aula 2 Propriedades Termodinâmicas Prof. Evandro Rodrigo Dário, Dr. Eng. Líquido comprimido Considere-se um dispositivo de cilindropistão contendo água na fase

Leia mais

Lista de Exercícios - Máquinas Térmicas

Lista de Exercícios - Máquinas Térmicas DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO (GAROMERO@POLI.UFRJ.BR) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios

Leia mais

Disciplina : Termodinâmica. Aula 16 Entropia

Disciplina : Termodinâmica. Aula 16 Entropia Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,

Leia mais

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2016 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2016 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico PME3398 Fundamentos de ermodinâmica e ransferência de Calor 1 o semestre / 2016 Profs Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 2 Questão 1: Considere o dispositivo indicado abaixo destinado

Leia mais

Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica

Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,

Leia mais

) (8.20) Equipamentos de Troca Térmica - 221

) (8.20) Equipamentos de Troca Térmica - 221 onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura

Leia mais

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico

PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 1 Questão 1: Uma catapulta a vapor é muito utilizada

Leia mais

CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior

CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior CICLOS MOTORES A VAPOR Notas de Aula Prof. Dr. Silvio de Oliveira Júnior 2001 CICLO RANKINE ESQUEMA DE UMA CENTRAL TERMELÉTRICA A VAPOR REPRESENTAÇÃO ESQUEMÁTICA DA TERMELÉTRICA DIAGRAMAS DO CICLO IDEAL

Leia mais

SISTEMAS DE POTÊNCIA A VAPOR (SPV)

SISTEMAS DE POTÊNCIA A VAPOR (SPV) SISTEMAS DE POTÊNCIA A VAPOR (SPV) Prof. Dr. Paulo H. D. Santos psantos@utfpr.edu.br AULA 1 06/06/2013 Apresentação do curso; Modelagem dos Sistemas de Potência a Vapor; Sistemas de Potência a Vapor -

Leia mais

MÁQUINAS TÉRMICAS

MÁQUINAS TÉRMICAS UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA EXERCÍCIOS DAS AULAS PRÁTICAS MÁQUINAS TÉRMICAS 2010-2011 DOCENTES RESPONSÁVEIS DEM Fernando Neto DEM João Oliveira DISCIPLINA Código 40544 Ano

Leia mais

Classificação de Trocadores de Calor

Classificação de Trocadores de Calor Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 10: Segunda lei da Termodinâmica Máquinas térmicas Segunda lei da termodinâmica Na aula passada definimos a variação de entropia para um processo reversível

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 6) Primeira Lei da Termodinâmica para volume de controle. v. 2.6

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 6) Primeira Lei da Termodinâmica para volume de controle. v. 2.6 Termodinâmica 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.6 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as expressões a seguir

Leia mais

TERMODINÂMICA. Propriedades Independentes de uma Substância Pura

TERMODINÂMICA. Propriedades Independentes de uma Substância Pura UNIVERSIDADE FEDERAL RURAL DO SEMI - ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS TERMODINÂMICA Um motivo importante para a introdução do conceito de substância pura é que o estado de uma substância pura

Leia mais

Problema 1 Problema 2

Problema 1 Problema 2 1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir

Leia mais

Ciclos de Produção de Frio

Ciclos de Produção de Frio Ciclos de Produção de Frio Prof. José R. Simões Moreira EPUSP/PME/SISEA E-mail: jrsimoes@usp.br www.pme.poli.usp.br/sisea Julho/2003 COGEN Cogeração, auto-produção e produção independente Pressão Princípio

Leia mais