Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho"

Transcrição

1 Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts - Considere a transformação linear T : R R x, y x + 3y, y + 3x a,0 pts Encontre o núcleo NucT e a imagem ImT da transformação T ; Resp: Primeiro encontraremos o núcleo de T Por definição, o núcleo da transformação T é o conjunto dos vetores x, y de R tais que T x, y = 0, 0, ou seja, tais que x + 3y, y + 3x = 0, 0 Assim, o núcleo é o conjunto-solução do sistema linear homogêneo { x +3y = 0 x = 0, y = 0 3x +y = 0 Portanto NucT = {0, 0} Vamos agora encontrar a imagem de T Para isso, note que dimnuct = 0 e logo, pelo Teorema do Núcleo e da Imagem, temos dimr = dimnuct + dimimt = 0 + dimimt, implicando que ImT tem dimensão igual a Assim ImT é um subespaço de dimensão de R e portanto tem que ser o próprio R inteiro Logo ImT = R b 1,0 pts Determine se T é inversível e, em caso afirmativo, encontre sua inversa T 1 Resp: A transformação T é inversível pois é injetora já que NucT = {0, 0} e sobrejetora já que ImT = R Vamos então achar a inversa de T Como T é a transformação associada à matriz M =, então a inversa T 1 será a transformação associada à matriz M 1 Agora lembre que a inversa a b de uma matriz é a matriz c d 1 d b det c a onde det = ad bc é o determinante da matriz Assim, com a =, b = 3, c = 3, d = 1

2 temos detm = 4 9 = e M 1 = 1 3 = / 3/ 3/ / Assim T 1 é a transformação associada à matriz acima, isto é, T 1 : R R x + 3y x, y, 3x y c,0 pts Ache os autovalores e respectivos autoespaços de T Se possível, exiba uma base diagonalizante para T e exiba a matriz de T com respeito a esta base Resp: Os autovalores de T são as raízes do polinômio característico pλ = detm λi, onde M = é a matriz associada a T na base canônica e I é a matriz identidade Logo λ 3 pλ = det = λ 9 = λ 4λ λ Como este polinômio tem raízes λ = 4 ± 4 4 = 4 ± 36 = e 1 então T tem autovalores λ = e λ = 1 Vamos agora encontrar os autoespaços V λ associados a cada um destes autovalores Como V 1 = NucT 1Id = NucT + Id, primeiro precisamos achar a lei desta transformação Temos T + Idx, y = T x, y + Idx, y = x + 3y, 3x + y + x, y = 3x + 3y, 3x + 3y Logo V 1 é o conjunto dos x, y tais que 3x+3y, 3x+3y = 0, 0, ou seja, é o conjunto-solução do sistema homogêneo { 3x +3y = 0 y = x 3x +3y = 0 Assim V 1 = {x, x x R} = 1, 1 Como V = NucT Id, primeiro precisamos achar a lei desta transformação Temos T Idx, y = T x, y Idx, y = x + 3y, 3x + y x, y = 3x + 3y, 3x 3y Logo V é o conjunto dos x, y tais que 3x+3y, 3x 3y = 0, 0, ou seja, é o conjunto-solução do sistema homogêneo { 3x +3y = 0 y = x 3x 3y = 0 Assim V = {x, x x R} = 1, 1 Como dimv 1 = 1 e dimv = 1, temos que dimv 1 + dimv = = dimr mostrando que T é diagonalizável Uma base que diagonaliza T é A = {1, 1, 1, 1} e a matriz de T com respeito a esta base é 1 0 [T ] A,A = 0

3 d 0, pts Usando informações obtidas no item c, classifique a curva cônica de equação x + 6xy + y 4x + 10y + 1 = 0 Resp: Para fazer esta classificação precisamos encontrar os autovalores da matriz M = associada à forma quadrática x + 6xy + y Agora note que esta é a mesma matriz do item anterior, que tem autovalores λ 1 = e λ = 1 Isto significa que a curva dada é uma hipérbole já que, após uma mudança de coordenadas, sua equação fica λ 1 X + λ Y = c X Y = c onde c é uma constante e X e Y são as novas coordenadas QUESTÃO,0 pts - Seja T : P 1 R 3 uma transformação linear cuja matriz associada é [T ] A,B = onde A = { x+, x 1} é uma base do espaço de polinômios P 1 e B = {, 1, 0, 0, 1, 1, 0, 3, } é uma base de R 3 a Ache a lei da transformação T Resp: Como as colunas da matriz [T ] A,B são as expressões de T x + e T x 1 na base B, temos que T x + = 1, 1, 0 + 0, 1, 1 10, 3, =, 6, 0, T x 1 = 3, 1, , 1, 1 + 0, 3, = 6,, Assim, buscamos a lei da transformação linear T : P 1 R 3 tal que T x + =, 6, 0 e T x 1 = 6,, Para isso escrevemos os vetores ax + b de P 1 como combinação linear dos vetores x + e x 1: ax + b = r x + + sx 1 = r + sx + r s Basta então resolver o sistema { r +s = a r s = b r = a + b, s = a + b Assim, temos que Portanto a lei procurada é T ax + b = rt x + + st x 1 = a + b, 6, 0 + a + b6,, = 14a + 8b, a 4b, 10a + b T : P 1 R 3 ax + b 14a + 8b, a 4b, 10a + b 3

4 b A transformação T é sobrejetora? Justifique Resp: A transformação será sobrejetora se sua imagem ImT for igual a R 3 Teorema do Núcleo e da Imagem temos que Ora, pelo dimp 1 = dimnuct + dimimt e como dimp 1 = e dimnuct 0 pois todo espaço vetorial tem dimensão maior ou igual a zero, então = dimnuct + dimimt 0 + dimimt mostrando que dimimt e portanto ImT não pode ser igual ao R 3 Assim T não é sobrejetora Outro modo de resolver a questão é encontrar a imagem de T Um vetor r, s, t de R 3 está na imagem de T se existe ax + b P 1 tal que T ax + b = r, s, t, ou seja, se existem escalares a, b R tais que 14a + 8b, a 4b, 10a + b = r, s, t Buscamos então condições sobre r, s, t para que existam escalares a, b satisfazendo o sistema 14a +8b = r a 4b = s 10a +b = t ou seja, buscamos condições para que este sistema seja possível Montando e escalonando a matriz do sistema temos 14 8 r 4 s 4 s 4 s 4 s 14 8 r 0 0 r + 7s 0 0 r + 7s 10 t 10 t 0 1 t + s 0 0 t + s 3 4 r + 7s onde fizemos as operações elementares L 1 L, L L + 7L 1, L 3 L 3 + L 1 e L 3 L L Assim, vemos que o sistema é possível se e somente se t + s 3 r + 7s = 0 3r s 4t = 0 4 Portanto a imagem de T é ImT = {r, s, t R 3 3r s 4t = 0}, mostrando que T não é sobrejetora QUESTÃO 3 1,0 pts Determine se as afirmações abaixo são verdadeiras ou falsas, justificando sua resposta: a A função T : P R dada por T ax + bx + c = ab, bc é uma transformação linear Resp: Falso Uma das condições para T ser linear é que T kax +bx+c = kt ax +bx+c Agora note que é diferente de T kax + bx + c = T kax + kbx + kc = kakb, kbkc = k ab, k bc Logo T não é uma transformação linear k T ax + bx + c = kab, bc = kab, kbc 4

5 b Se uma transformação linear T : V V tem 0 zero como autovalor, então T não é inversível Resp: Verdadeiro Lembre que se λ é autovalor de T então o autoespaço V λ = NucT λid não consiste apenas do vetor nulo, isto é, a transformação associada T λid não é injetora Assim, se λ = 0 é autovalor então a transformação T 0Id = T não é injetora e portanto não é inversível QUESTÃO 4 1, pts Seja T : V V uma transformação linear e seja v V um autovetor de T com autovalor associado λ a Verifique que para qualquer k R o múltiplo kv é também um autovetor de T associado ao autovalor λ Resp: Basta verificar que T kv = λkv Ora, por hipótese v é autovetor associado a λ e logo temos que T v = λv Agora, como T é linear, temos que T kv = k T v = kλv = λkv b Verifique que v é autovetor da composição T T associado ao autovalor λ Resp: Temos que verificar que T T v = λ v Agora lembre que T T v = T T v e que T v = λv pois v é autovetor de T associado a λ, por hipótese Assim, temos T T v = T T v = T λv = λt v pois T é linear = λλv aplicando novamente que T v = λv = λ v

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

2 Álgebra Linear (revisão)

2 Álgebra Linear (revisão) Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

MAT-27 Lista-09 Outubro/2011

MAT-27 Lista-09 Outubro/2011 MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Dr. Ole Peter Smith Instituto de Matemática e Estatística Universidade Federal de Goiás 1 Vetores em R 2 e R 3

Dr. Ole Peter Smith Instituto de Matemática e Estatística Universidade Federal de Goiás 1 Vetores em R 2 e R 3 Dr Ole Peter Smith olematufgbr Data: 7/5/ urso Engenharia de omputação Disciplina: Álgebra Linear Lista: I Vetores em R e R Dado os vetores a = (,, ) T, b = (,, 4) T e c = (,, ) T Determine o constante

Leia mais

Álgebra Linear Diagonalização de Operadores

Álgebra Linear Diagonalização de Operadores Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7 Plano e Programa de Ensino Matrizes Exemplos Ordem de Uma Matriz Exemplos Representação 7 Matriz Genérica m x n 8 Matriz Linha 9 Exemplos Matriz Coluna Exemplos Diagonal de Uma

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

Álgebra Linear - Exercícios resolvidos

Álgebra Linear - Exercícios resolvidos Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos

Leia mais

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U. Lista de Álgebra Linear - Prof. Edson Iwaki 1. Quais dos subconjuntos são R subespaços vetoriais? Ache uma base para os que forem. (a) S = {(x, y, z) R 3 x 0} R 3 (b) S = {(x, y, z) R 3 x = 0} R 3 (c)

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA DIAGONALIZAÇÃO DE MATRIZES SIMETRICAS DE 2º ORDEM. BELO HORIZONTE 2012 ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA

Leia mais

Mudança de base. Lista de exercícios. Professora: Graciela Moro

Mudança de base. Lista de exercícios. Professora: Graciela Moro Lista de exercícios Professora: Graciela Moro Mudança de base. Sejam β {( ) ( )} β {( ) ( )} β { ) ( )} e β {( ) ( )} bases ordenadas de R. (a) Encontre a matrizes mudança de base: i. [I β β ii. [I β β

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

. Repare que ao multiplicar os vetores (-1,1) e

. Repare que ao multiplicar os vetores (-1,1) e Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx.

Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx. 4 Álgebras de Lie Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx. 4.1 Álgebras de Lie Simples Definição 4.1 Uma álgebra

Leia mais

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela

Leia mais

Lista de Exercícios III. junho de 2005

Lista de Exercícios III. junho de 2005 ÁLGEBRA LINEAR II Prof Amit Bhaya Lista de Exercícios III junho de 2005 Ortogonalidade, espaços fundamentais 1 Se Ax = b possui solução e A T y = 0, então y é perpendicular a 2 Se Ax = b não possui solução

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Soluções dos trabalhos de 1 a 7

Soluções dos trabalhos de 1 a 7 Universidade Federal Rural do Semiárido-UFERSA Departamento de Ciências Exatas e Naturais Curso: Bacharelado em Ciência e Tecnologia e Computação Disciplina: Álgebra Linear Aluno(a): Soluções dos trabalhos

Leia mais

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 7 Operadores Normais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 7: Operadores Normais Meta

Leia mais

CM005 Algebra Linear Lista 1

CM005 Algebra Linear Lista 1 CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

Lista de exercícios 6 Espaços Vetoriais

Lista de exercícios 6 Espaços Vetoriais Universidade Federal do Paraná semestre 016. Algebra Linear, Olivier Brahic Lista de exercícios 6 Espaços Vetoriais Exercícios da Seção 3. Exercício 1: Determine se os seguintes conjuntos formam subespaços

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Lista de exercícios 6 Espaços Vetoriais

Lista de exercícios 6 Espaços Vetoriais Universidade Federal do Paraná semestre 015. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 6 Espaços Vetoriais Exercícios da Seção 3. Exercício 1: Determine se os seguintes conjuntos formam

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

Lista de exercícios 5 Determinantes

Lista de exercícios 5 Determinantes Universidade Federal do Paraná semestre 015. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 5 Determinantes Exercício 1: Seja A := 3 1 3 3 Encontre os valores dos menores det(m,1 ), det(m, )

Leia mais

Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo.

Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo. Importante: havia 6 modelos de prova, com os dados numéricos diferentes. Os valores numéricos das soluções estão no final deste arquivo. Aplicada Instituto de Matemática Universidade Federal do Rio de

Leia mais

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay)

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay) Espaços Vetoriais Definição. Um espaço vetorial sobre R é um conjunto V no qual se tem definida uma adição e uma multiplicação de seus elementos por escalares (isto é, por números reais), ou seja, dados

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

Parte II. Decomposição de matrizes

Parte II. Decomposição de matrizes Parte II Decomposição de matrizes 119 Uma das características da ciência, e em particular das estruturas em Matemática é a busca de elementos simples com os quais podemos gerar todos os elementos de um

Leia mais

Lista de Exercícios cap. 4

Lista de Exercícios cap. 4 Lista de Exercícios cap. 4 1) Consideremos a transformação, linear T: IR² IR² definida por T(x, y) = (3x 2y, x + 4y). Utilizar os vetores u = (1,2) e v = (3, 1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).

Leia mais

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II Módulos 1e2 Volume 2ª edição Hernando Bedoya Ricardo Camelier Álgebra Linear II 1 Álgebra Linear II Volume 1 - Módulos 1 e 2 2ª edição Hernando Bedoya Ricardo Camelier Apoio: Fundação Cecierj / Consórcio

Leia mais

2.1 Fundamentos Básicos

2.1 Fundamentos Básicos .1 Fundamentos Básicos Recordemos que uma aplicação (ou transformação) entre espaços vetoriais T : V! W é linear quando: (a) T (u + v) = T (u) + T (v) ; u; v V: (b) T ( u) = T (u) ; u V e F: Podemos condensar

Leia mais

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares Diagonalização de Matrizes e Sistemas de Equações Diferenciais Lineares Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 3 de setembro de

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Transformações geométricas planas

Transformações geométricas planas 9 Transformações geométricas planas Sumário 9.1 Introdução....................... 2 9.2 Transformações no plano............... 2 9.3 Transformações lineares................ 5 9.4 Operações com transformações...........

Leia mais

Álgebra Linear. Transformações Lineares

Álgebra Linear. Transformações Lineares Álgebra Linear Transformações Lineares Fórmulas e Resumo Teórico Para fins gerais, considere V um espaço vetorial e uma transformação T: V W. Propriedades de Transformações Lineares - T é linear se: Para

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 7 II SEMESTRE DE 00 Professores: Flávia, Gustavo e Lana. Suponha que uma força

Leia mais

Retratos de Fase de Sistemas Lineares Homogêneos 2 2

Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 2 de novembro de 20 2 Eemplo Considere

Leia mais

TERCEIRO TESTE DE ÁLGEBRA LINEAR Teste de Dezembro de 2013 Instituto Superior Técnico - LEE, LEGI, LEIC-TP, LETI

TERCEIRO TESTE DE ÁLGEBRA LINEAR Teste de Dezembro de 2013 Instituto Superior Técnico - LEE, LEGI, LEIC-TP, LETI TERCEIRO TESTE DE ÁLGEBRA LINEAR Teste 3.3 21 de Dezembro de 2013 Instituto Superior Técnico - LEE, LEGI, LEIC-TP, LETI Nome: Número: Curso: Problema a b c d e lalala Classificação 1 2 3 4 5 9 10 11 12

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais 2 2

Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais 2 2 Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais Sylvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão 5. - Agosto Resumo O Teorema da Forma Canônica de Jordan

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Curso de Álgebra Linear

Curso de Álgebra Linear Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada

Leia mais

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( +

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( + Lista de exercícios: Unidade 3 Transformações Lineares 1) Consideremos a transformação linear : ² ² definida por (,) = (3 2, +4). Utilizar os vetores = (1,2) e = (3, 1) para mostrar que (3 +4) = 3() +

Leia mais

FORMA CANÔNICA DE JORDAN

FORMA CANÔNICA DE JORDAN FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Lista de exercícios 7 Independência Linear.

Lista de exercícios 7 Independência Linear. Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Lista de Exercícios 04 Álgebra Matricial

Lista de Exercícios 04 Álgebra Matricial Lista de Exercícios 04 Álgebra Matricial - 017.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis

Leia mais

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb.

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb. Ga no plano 1 GA no plano Prof. Fernando Carneiro Rio de Janeiro, Outubro de 015 1 Introdução Estudaremos as retas no plano euclidiano bidimensional e uma interessante aplicação, que recebe o nome de programação

Leia mais

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2 UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Exercícios sobre AUTOVALORES e AUTOVETORES Professora: Graciela Moro. Encontre

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais