1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.

Tamanho: px
Começar a partir da página:

Download "1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof."

Transcrição

1 ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V Exemplo S = {(,),(,0)} é base de R - S é LI - Gera: (x,y) = a(,)+b(,0) Definição Seja V um espaço vetorial Se V possui uma base com n vetores, então V tem dimensão n e denotamos dimv = n Se V nao possui base, dimv = 0 SeV temumabasecominfinitosvetores, entãoadimensãodev éinfinitaedenotamosdimv = Exemplo dimr = Mudança de Base Seja V um espaço vetorial de dimensão n e consideremos duas bases de N: B = {u,,u n } e C = {v,,v n } Então existe uma família de escalares α ij de maneira que ou simplesmente Note que A matriz quadrada de ordem n v = α u + +α n u n v n = α n u + +α nn u n v j = n i= α ij u i, j n v α α α n u v = α α α n u v n α n α n α nn u n α α α n α α α n P = α n α n α nn chama-se matriz de mudança de base B para a base C Exemplo 3 Qual é a matriz mudança de base B = {,+t} para a base C = {,t} no espaço P (R)?

2 3 Exercícios Álgebra Linear TRANSFORMAÇÃO LINEAR 3 Exercícios Achar o conjunto de geradores dos seguintes subespaços de R 4 : a) U = {(x,y,z,t) R 4 x y z +t = 0}; b) U = {(x,y,z,t) R 4 x y = z +t = 0} Consideremos no R 3 os seguintes subespaços vetoriais U = [(,0,0),(,,)] e V = [(0,,0),(0,0,)] Determinar um sistema de geradores de U V 3 Verificar quais dos seguintes conjuntos de vetores do espaço vetorial R 3 são linearmente independentes a) {(,,0),(,,5),(,6,5)} b) {(,,3),(,4,9),(,8,7)} c) {(,,),(,4,),(5,0,5)} 4 Determinar as coordenadas do vetor u = (,,4) do R 3 em relação às bases: a) Canônica b) {(,,),(,0,),(,0, )} 5 Determinar as coordenadas da matriz [ ] 0 de M (R) em relação à base {[ ] 0, 0 [ ] 0, 0 0 [ ] 0 0, 0 [ ]} Determinar as coordenadas do polinônimo +t t 3 P 3 (R) em relação à base (a) Canônica (b) {, t, t, t 3 } 7 Achar a matriz de mudança de base para a base canônica do R 3 B = {(,,0),(0,,0),(0,0,3)} Transformação Linear Conceito Definição Sejam U e V espaços vetoriais sobre R Uma aplicação F : U V é chamada transformação linear de U em V se, e somente se, (a) F(u +u ) = F(u )+F(u ), u,u V;

3 TRANSFORMAÇÃO LINEAR Álgebra Linear Núcleo e Imagem (b) F(αu) = αf(u), α R e u U Quando U = V, uma transformação linear F : U V é chamada de operador linear Exemplo Seja F : R 3 R definida por f(x,y,z) = (x,x z), para todo (x,y,z) R 3 Mostre que F é uma transformação linear Exemplo Seja D : P n (R) P n (R) definida por D(f(t)) = f (t) para todo polinômio f(t) de P n (R) Mostre que D é um operador linear Proposição Se W é um subespaço de U, então a imagem de W por F é um subespaço de V Demonstração: Veja F(W) = {F(w) w W} é a imagem de W por F i) Como F(0) = 0, então 0 F(W) ii) Sejam u,u F(W), assim existem w,w W tais que u = F(w ) e u = F(w ) Então u +u = F(w )+F(w ) = F(w +w ) Como W é um subespaço de U, w +w W, portanto u +u F(W) iii) Seja α R e u F(W), logo existe w W tais que u = F(w) Assim αu = αf(w) = F(αu) F(W) Núcleo e Imagem Definição Sejam U e V espaços vetoriais sobre R e F : U V uma transformação linear Definimos Núcleo: ker(f) = {u U F(u) = 0}; Imagem: Im(R) = {F(u) V u U} Exemplo 3 Seja F : R R 3 a transformação linear dada po F(x,y) = (0,x+y,0) Achemos o núcleo de F Proposição Seja F : U V uma transformação linear Então: a) ker(f) é um subespaço vetorial de U; b) A transformação linear F é injetora se, e somente se, ker(f) = {0} Teorema (Teorema do Núcleo e da Imagem) Sejam U e V espaços vetoriais de dimensão finita sobre R Dada um transformação linear F : U V, então 3 Isomorfismos e Automorfismos dimu = dimker(f)+dimim(f) Definição 3 Dizemos quem uma transformação linear F : U V, com U e V espaços vetoriais, é um isomorfismo se F é bijetora Um isomorfismo F : U U é um automorfismo de U Exemplo 4 F : R P (R) definida por F(x,y) = x+(x+y)t é um isomorfismo Teorema Dois espaços U e V de dimensão finita são isomorfos se, e somente se, dimu = dimv 3

4 4 Autovalores e Autovetores Álgebra Linear TRANSFORMAÇÃO LINEAR 4 Autovalores e Autovetores Definição 4 Seja T : V V um operador linear Se existirem v V, v 0, e λ R tais que Tv = λv, λ é um autovalor de T e v é um autovetor de T associado a λ Teorema 3 Dada uma transformação T : V V e um autovetor v associado a um autovalor λ, qualquer vetor w = αv(α 0) também é autovetor de T associado a λ 5 Autovalores e Autovetores de uma Matriz Dada uma matriz quadrada, A, de ordem n, estaremos entendendo por autovalor e autovetor de A autovalor e autovetor da transformação linear T A : R n R n, associada à matriz A em relação à base canônica, isto é, T A (v) = A v Assim, um autovalor λ R e um autovetor v R n, são soluções da equação A v = λv, v 0 5 Determinação dos autovalores e autovetores Para determinar os autovalores basta resolver a equação det(a λi) = 0 () Aequação()édenominadaequação característicadatransformaçãot A Odeterminante det(a λi) é um polinômio em λ denominado polinômio característico Ao substituir o autovalor λ na equação A v = λv, encontraremos o autovetor associado a λ Exemplo 5 Determinar os autovalores e autovetores do operador linear T : R 3 R 3 dado por T(x,y,z) = (3x y +z, x+5y z,x y +3z) Autovalores: λ =, λ =, λ 3 = 3 Autovetores: v = (,0, ), v = (,,), v 3 = (,,) Exemplo 6 Os autovalores de um operador linear T : R R são λ = e λ = 3, sendo v = (, ) 3 v = (,0) os respectivos vetores associados Determinar T(x,y) Escrever na base {(, ),(,0)} (x,y) = a(, )+b(,0) a = y e b = x y T(x,y) = yt(, )+( x y)t(,0) = ( 3x 5y,y) Definição 5 Uma transformação linear F : U V, dimu = dimv = n chama-se ortogonal quando sua matriz M é ortogonal(m M = M M = I n ) 6 Exercícios Quais das seguintes aplicações de R 3 em R 3 são operadores lineares? a) F (x,y,z) = (x y,x+y,0); b) F (x,y,z) = (x y +z,0,0); c) F 3 (x,y,z) = (x,x,x); d) F 4 (x,y,z) = (x +3y,x,z) Existe um operador linear F : R 3 R 3 tal que F(,,) = (,,3), F(,,3) = (,4,9) e F(,3,4) = (,8,7)? Justifique a resposta 3 Seja o operador linear do R tal que F(,0) = (,) e F(0,) = (,4) a) Determinar F(, 4) 4

5 TRANSFORMAÇÃO LINEAR Álgebra Linear 6 Exercícios b) Determinar (x,y) R tal que F(x,y) = (,3) 4 Para cada uma das transformações lineares abaixo determinar uma base e a dimensão do núcleo e da imagem: (a) F : R 3 R dada por F(x,y,z) = x+y z (b) F : R R dada por F(x,y) = (x,x+y) (c) F : R 3 R 4 definida por F(x,y,z) = (x y z,x+y +z,x y +z, y) (d) F : P (R) P (R) dada por F(f(t)) = t f (t) 5 Determine os autovalores e autovetores das seguintes transformações lineares: (a) T : R R, T(x,y) = (x+y, x+4y) (b) T : R R, T(x,y) = (x+y,x+3y) (c) T : R R, T(x,y) = (5x y,x+3y) (d) T : R 3 R 3, T(x,y,z) = (x+y +z,y +z,y +3z) (e) T : R 3 R 3, T(x,y,z) = (x, x y,x+y +z) (f) T : R 3 R 3, T(x,y,z) = (x+y,y,z) 6 Os vetores v = (,) e v = (, ) são autovetores do operador linear T : R R, associados a λ = 5 e λ =, respectivamente Determinar a imagem do vetor v = (4,) por esse operador 5

6 6 Exercícios Álgebra Linear TRANSFORMAÇÃO LINEAR Respostas Seção a) {(,,0,0),(,0,,0),(,0,0,)} b) {(,,0,0),(0,0,, )} U V = [(0,,)] 3 a) LD b) LI c) LD 4 a) 4 b) 5 6 a) 7 b) Seção a) Sim; b) Sim; c) Sim; d) Não Não 3 a) F(,4) = (8,8) b) (x,y) = ( 5 7, 4 7) 4 (a) Base núcleo: {(,0,),(0,,)}; base da imagem: {} (b) kerf = {(0,0)}; base da imagem: {(,),(0,)} (c) kerf = {(0,0,0)}; base da imagem: {(,,,0),(,,, ),(,,,0)} (d) Base núcleo: {,t}; Im F={0} 5 (a) λ = 3, λ =, v = (,) e v = (,); (b) λ = 4, λ =, v = (,) e v = (,); (c) λ = 4, λ = 4, v = (,) e v = (0,0); (d) λ = 4, λ =, λ 3 = v = (,,), v = (0,,) e v 3 = (,0,0); (e) λ =, λ =, λ 3 = v = (0,0,), v = (0, 3,) e v 3 = (,,); (f) λ =, λ =, λ 3 = v = (0,0,), v = (,0,0) e v 3 = (0,0,0); 6 T(4,) = (8,9) 6

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0 Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

3 a Avaliação Parcial - Álgebra Linear

3 a Avaliação Parcial - Álgebra Linear 3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

3 a. Lista de Exercícios

3 a. Lista de Exercícios Última atualização 07/05/008 FACULDADE Engenharia Disciplina: Álgebra Linear Professor(: Data / / Aluno(: urma a Lista de Exercícios Dentre as aplicações, as mais importantes são as aplicações lineares

Leia mais

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

2 Álgebra Linear (revisão)

2 Álgebra Linear (revisão) Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7 Plano e Programa de Ensino Matrizes Exemplos Ordem de Uma Matriz Exemplos Representação 7 Matriz Genérica m x n 8 Matriz Linha 9 Exemplos Matriz Coluna Exemplos Diagonal de Uma

Leia mais

0.1 Lista: Autovalores, autovetores

0.1 Lista: Autovalores, autovetores 0. Lista: Autovalores, autovetores (Prof. Patricia, Katiani, Graciela). Encontre os autovalores das transformações lineares dadas: (a) T : R 2 R 2 tal que T(x,y) = (2y,x). (b) T : R 2 R 2 tal que T(x,y)

Leia mais

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( +

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( + Lista de exercícios: Unidade 3 Transformações Lineares 1) Consideremos a transformação linear : ² ² definida por (,) = (3 2, +4). Utilizar os vetores = (1,2) e = (3, 1) para mostrar que (3 +4) = 3() +

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1

Leia mais

CM005 Álgebra Linear Lista 2

CM005 Álgebra Linear Lista 2 CM005 Álgebra Linear Lista 2 Alberto Ramos 1. Seja M M n (R) uma matriz. Mostre que se {v 1,..., v p } R n é linearmente dependente, então {Mv 1,..., Mv p } é também linearmente dependente. Agora suponha

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica Departamento de Matemática Álgebra Linear e Geometria Analítica João Pessoa, 16 de março de 2013 AGENDA Primeira prova: 31 de janeiro de 2013 - Sistemas de Equações Lineares e Espaços Vetoriais Segunda

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Exercício 1. Prove que cada uma das transformações

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios extra de Álgebra Linear Ano Lectivo 204/205 . Sejam A = 0 2 0 0 2 e B = 0 0 0 0. (a) Calcule, se possível, as matrizes AB, BA e B

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

3 a LISTA DE EXERCÍCIOS

3 a LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DA BAHIA DEARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR I rofs: Enaldo Vergasta e Glória Márcia a LISTA DE EXERCÍCIOS Sejam u (x, y, z e v (x, y, z vetores do R Verifique se cada uma das

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U. Lista de Álgebra Linear - Prof. Edson Iwaki 1. Quais dos subconjuntos são R subespaços vetoriais? Ache uma base para os que forem. (a) S = {(x, y, z) R 3 x 0} R 3 (b) S = {(x, y, z) R 3 x = 0} R 3 (c)

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista. MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :

Leia mais

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R).

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R). UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSUNTO: TRANSFORMAÇÕES LINEARES EXERCÍCIOS RESOLVIDOS 1. Verifique se são operadores lineares

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios 1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +

Leia mais

Primeira Lista de Álgebra Linear

Primeira Lista de Álgebra Linear Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto

Leia mais

Lista de Exercícios cap. 4

Lista de Exercícios cap. 4 Lista de Exercícios cap. 4 1) Consideremos a transformação, linear T: IR² IR² definida por T(x, y) = (3x 2y, x + 4y). Utilizar os vetores u = (1,2) e v = (3, 1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

ESPAÇOS LINEARES (ou vetoriais)

ESPAÇOS LINEARES (ou vetoriais) Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão Notas de Aula Álgebra Linear II IFA 2007.1 Prof. Paulo Goldfeld Versão 2007.03.29 1 2 Contents 2 Espaços Vetoriais 5 2.1 Espaços e Subespaços....................... 5 2.2 Independência Linear.......................

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

MAT Álgebra Linear para Engenharia II

MAT Álgebra Linear para Engenharia II MAT2458 - Álgebra Linear para Engenharia II Prova Substitutiva - 04/12/2013 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Álgebra Linear Diagonalização de Operadores

Álgebra Linear Diagonalização de Operadores Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Verdadeiro ou falso?

Leia mais

1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55

1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Capítulo LINE LINE Autovetor e Autovalor 9 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Matrizes Simétricas, o Teorema Espectral e Operadores Auto-adjuntos 8 4 Formas Bilineares,

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

Introdução à Geometria

Introdução à Geometria Introdução à Geometria - 2007-2008 Algumas noções 1. Norma de um vector Seja E um espaço vectorial real de dimensão finita E munido de um produto interno (u, v) u v. Dado um vector v E chama-se norma ou

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

REVISÃO DE ÁLGEBRA LINEAR

REVISÃO DE ÁLGEBRA LINEAR REVISÃO DE ÁLGEBRA LINEAR I) INTRODUÇÃO D1. Estabilidade para a operação + : x E, y E, x + y E D2. Definição de grupo comutativo (Abeliano): (E,+) é um grupo comutativo se e somente se: 1) Associatividade:

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Dou Mó Valor aos Autovalores

Dou Mó Valor aos Autovalores 1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,

Leia mais

ESPAÇOS VETORIAIS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

ESPAÇOS VETORIAIS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga ESPAÇOS VETORIAIS Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Sabe-se que o conjunto 2 ( x, y) / x, y é interpretado geometricamente como o plano cartesiano. O par ordenado (x,y)

Leia mais

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019 Álgebra Linear ECT2202 Prof. Ronaldo Carlotto Batista 20 de março de 2019 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser entendidos como referência

Leia mais

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela

Leia mais

Álgebra Linear. Professor: página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin.

Álgebra Linear. Professor: página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin. página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin.html Sumário I 1 Motivação Google Navegação Sistemas Lineares 2 O que eu não vou explicar Operações com matrizes Matrizes

Leia mais

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo. Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2. MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 7 - Bases e dimensão A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade introduziremos dois conceitos

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Álgebra Linear I - Aula 11. Roteiro

Álgebra Linear I - Aula 11. Roteiro Álgebra Linear I - Aula 11 1. Transformações lineares. 2. Exemplos de Transformações lineares. Roteiro 1 Transformações lineares Definição 1 (Transformação linear). Uma transformação linear T definida

Leia mais

Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria

Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria Lista de Exercícios - Autovalores e autovetores Legenda Cálculos Teoria Geometria Questões. Considere o quadrado determinado pelos pontos A(0, 0), B(, 0), C(, ) e D(0, ).Em cada item aplique o referido

Leia mais

Álgebra Linear Contra-Ataca

Álgebra Linear Contra-Ataca Contra-Ataca Prof Afonso Paiva Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP São Carlos Cálculo Numérico SME0104 Operações elementares Operações

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais