Universidade da Madeira Ano lectivo 2006/07-2º semestre Responsável: Prof. José Carmo

Tamanho: px
Começar a partir da página:

Download "Universidade da Madeira Ano lectivo 2006/07-2º semestre Responsável: Prof. José Carmo"

Transcrição

1 TEORIA DA COMPUTABILIDADE E COMPLEXIDADE Licenciatura em Engenharia Informática (2ª ano) Licenciatura em Ensino da Informática (2ª ano) Licenciatura em Matemática (2ª ano) Universidade da Madeira Ano lectivo 2006/07-2º semestre Responsável: Prof. José Carmo Exame Frequência final (2/4/07) (Duração 3h + 30m de tolerância; Cotação: 20 valores) I (3 valores) Especifique uma máquina de Turing que calcule a função f : Ν 0 Ν 0 assim definida: f(n) = 0 se n é par; f(n) = n se n é ímpar. Pretende-se especificar uma máquina de Turing que calcule a função: 0, se né par f (n) = n, se né ímpar Configuração inicial da fita para o cálculo de f(n): n+ uns consecutivos e tudo o resto em branco... β... β... Estado inicial: q O resultado da função calculada é dado pelo número de uns na fita quando a computação pára (sendo indefinido se esta não parar). Ideia (Há sempre outras soluções):. Começar por determinar se o número representado é par, guardando em cada momento (no estado) a informação sobre se o número lido até ao momento é par; 2. Se o número representado na fita for par, apagar todos os uns (para o que são precisos dois estados); 3. Se o número representado na fita for ímpar, apagar um (pois há na fita n+ uns). Significado dos estados considerados (Há outras alternativas): q : estado inicial (ainda não foi processado qualquer ) q 2 : o número (já) lido até ao momento é par (sem contar com o símbolo de leitura) q 3 : o número (já) lido até ao momento é ímpar q 4 : apagar o símbolo em leitura se este for (e mudar de estado para avançar uma casa para a esquerda) q 5 : avançar uma casa para a esquerda (para continuar a apagar uns) q 6 : apagar um e um só q 7 : parar (desnecessário)

2 Especificação da máquina de Turing (onde _ significa casa em branco): (q,, R, q 2 ) (q 2,, R, q 3 ) (q 2, β, L, q 4 ) (q 3,, R, q 2 ) (q 3, β, L, q 6 ) (q 4,, β, q 5 ) (q 5, β, L, q 4 ) (q 4, β, β, q 7 ) (q 6,, β, q 7 ) OU (q,, R, q 2 ) (q 2,, R, q 3 ) (q 2, β, L, q 4 ) (q 3,, R, q 2 ) (q 3, β, L, q 6 ) (q 4,, β, q 5 ) (q 5, β, L, q 4 ) (q 6,, β, q 6 ) II (6.5 valores) ) Construa um programa URM (sem instruções de chamadas de outros programas) que calcule a função característica parcial do predicado x<y. Pretende-se construir um programa URM que calcule a seguinte função:, se x < y f ( x, y) =, se x y (indefinida) Configuração Inicial: x y 0 2 Por exemplo, o programa URM a seguir calcula f. (a) I : S() (a) I 2 : J(, 2, 4) I 3 : J(,, ) I 4 : Z() I 5 : S() 2) O programa Mathematica qpq, a seguir, testa se um número natural x é um quadrado perfeito, começando por calcular a raiz quadrada inteira de x (onde a raiz quadrada inteira de um natural x é o maior número natural cujo quadrado é x), e depois testando se o seu quadrado é igual a x. qpq = Function[x, Module[ {i}, i = 0 ; While[ (i+)^2 <= x, i = i+ ] ; If[ i^2 ==x,, 0] ]] ; 2

3 Sabendo que C é um programa URM que calcula a função característica do predicado, e que P é um programa URM que calcula a função produto (de dois naturais), indique como obter um programa URM generalizado (podendo envolver sub-programas - instruções de chamada de outros programas) que que emule o programa qpq. (Sugestão: aconselha-se a que mantenham/guardem os valores de i, de i+ e de (i+)^2 em três células de memória distintas.) Seja m = máximo{2, ρ(c), ρ(p)} número máximo de argumentos da função a calcular e das funções relevantes calculadas pelos programas C e P Configuração Inicial: x 0 Reservaremos as células: R m+ para guardar o valor inicial de x R m+2 para guardar o valor de i R m+3 para guardar o valor de i+ R m+4 para guardar o valor de (i+) 2 e usaremos a célula R m+5, guardando o valor zero, para os testes. Configuração típica :?...? x i i+ m m+ m+2 m+3 m+4 m+5 O seguinte programa URM generalizado emula o programa Mathematica em causa: I : T(, m+) (podíamos fazer aqui Z(m+2), mas não é necessário) I 2 : S(m+3) I 3 : call P[m+3, m+3 m+4] I 4 : call C[m+4, m+ ] (a) I 5 : J(, m+5, 8) I 6 : S(m+2) OU I 7 : J(,, 2) (a) I 8 : call P[m+2, m+2 ] (b) I 9 : J(, m+, 2 ) I 0 : Z() parar I : J(,, 4 ) (b) I 2 : Z() I 3 : S() (i+) S(m+2) S(m+3) call P[m+3, m+3 m+4] J(,, 4) 3

4 3) Considere o programa URM P = ( J(,2,3), J(,,4), S(2), T(2,) ). a) Diga a que é igual ρ(p). ρ(p) = 2 (pois ρ(p) = máximo{,2,,,2,2,}) b) Supondo que a é o código de P (isto é, a = γ(p)), diga a que é igual: φa (), Wa () e Ea (). () Sendo a = γ (P), então φ a é a função unária calculada pelo programa Configuração Inicial: P = ( J(,2,3), J(,,4), S(2), T(2,) ) x Tem-se: φ (), se x = 0 a (x) = 0, se x 0 Wa () = dom( φ a () ) = IN0 Ea () = cod( φ a () ) = {0,} III (5 valores) Neste grupo pode usar (se tal lhe for útil), sem demonstrar, o facto de serem recursivas primitivas as funções constantes, de qualquer aridade, bem como as seguintes funções: 2 soma: Ν 0 Ν 0, com soma(x,y) = x+y prod: Ν 2 0 Ν 0, com prod(x,y) = x*y ant: Ν 0 Ν 0, com ant(n)=if[n>0, n-, 0] dif: Ν 2 0 Ν 0, com dif(x,y) = If[x y, x-y, 0] = If[x > y, x-y, 0] sg: Ν 0 Ν 0, com sg(n) = If[n,, 0] (isto é, sg(0)=0, e sg(n)=, se n ) sg: Ν 0 Ν 0, com sg(n) = If[n, 0, ] (isto é, sg(0)=, e sg(n)=0, se n ) ) Mostre que a função f (x, y) = x y! é recursiva primitiva. A função factorial, que a seguir designaremos de fact, é recursiva primitiva, pois pode ser definida, por recursão, à custa de funções recursivas primitivas (mais precisamente, à custa da constante, e das funções sucessor e produto), como se segue: fact( 0 ) = fact( k+ ) = ( k+ ) * k! = prod( k+, fact(k) ) suc(k) 4

5 ( Tecnicamente o factorial é definido recursivamente à custa da constante e da função g, como se segue: fact ( 0 ) = fact ( k+ ) = g ( k, fact(k) ) com g ( x, y ) = prod ( suc(x), y ) = prod ( suc(x), Id(y) ) sendo g recursiva primitiva, pois obtém-se por substituição à custa da função recursiva primitiva prod e das funções básicas suc e Id = U ) A função potência, a seguir designada por pot, é recursiva primitiva, pois pode ser definida, por recursão, à custa de funções recursivas primitivas (mais precisamente, à custa da função unária constantemente igual a e da função prod), como se segue: pot (x, 0) = x 0 = ( = (x) ) pot (x, k+) = x k+ = x k x = prod ( x, pot(x, k) ) Assim, a função f é recursiva primitiva, pois pode ser definida, por substituição, à custa das funções recursivas primitivas pot e fact, como se segue: f (x, y) = pot ( x, fact( y ) ) ( = Id(x) ou = U 2 ( x, ) ) y 2) Mostre que a função característica do predicado x>y é recursiva primitiva. A função característica de x > y é dada por:, se x > y, se x y > 0 f ( x, y) = = 0, se x y 0, se x y 0 Assim, f pode ser definida como se segue: f ( x, y ) = sg ( dif( x, y) ) Logo f define-se, por substituição, à custa das funções sg e dif. Como estas funções são recursivas primitivas, f também o é. 3) Justifique a seguinte afirmação (sem recorrer ao postulado de Church): a função f : Ν 0 Ν 0 assim definida: f(x) = menor inteiro cujo factorial é superior a x, é computável. Considere-se o predicado M ( n, x ) = n! > x 5

6 A função característica de M:, se n!> x C M (n, x) = 0, se n! x pode ser definida, por substituição, à custa de C > e de fact, como se segue: C M ( n, x ) = C > ( n!, x ) = C > ( fact(n), x ) Assim, como C > e fact são recursivas primitivas, C M também o é e, portanto, C M é computável. Logo M é decidível. Mas então a função definida por minimização (ilimitada) f (x) = µ n (n!> x) é computável (de acordo com um resultado provado nas teóricas) IV (5.5 valores) ) Defina a função universal para funções unárias computáveis e, recorrendo ao postulado de Church, esboce a demonstração de que ela é computável. A função universal para funções unárias computáveis é a função (binária) que se denota por ψ U () ou, simplesmente, por ψu, e se define como se segue: ψ U (x, y) = φ x (y) Usando o Postulado/Tese de Church, podemos concluir que esta função é computável, uma vez que é intuitivamente imediato que o algoritmo a seguir permite calcular ψ U (x, y) : ) Descodificar x, obtendo-se o programa que x representa (codifica): Px = γ (x) (Recorde-se que γ é efectivamente computável) 2) Emular (simular) a execução de P x, a partir da configuração inicial y Passo a passo, seguindo a evolução do estado da máquina URM, até ao fim da execução de P x (se esta ocorrer). Se a computação P x (y) terminar (i.e. se a emulação de P x, a partir daquela configuração inicial, terminar), o resultado de ψ U (x, y) será o valor guardado no registo R, quando se dá a terminação de P x (y). Se a computação P x (y) não terminar (divergir), então a função φx não está definida no ponto y, pelo que ψ U (x, y) não está definido. 6

7 2) Recorrendo ao método da diagonal, demonstre que existe uma função unária total que não é computável. Seja f : IN0 IN a função assim definida: 0 f (x) = φ x (x) +, se x W x (i.e.seφ x (x) está definida) x IN 0 0,se x W x É imediato que f(x) está sempre definida, pelo que f é uma função total (uma aplicação). Por outro lado, é igualmente imediato que f (x) φ x (x) x ( IN 0 ) Assim: f φ x x E como φ 0,φ,φ 2, constitui uma enumeração de todas as funções unárias computáveis, concluímos que f não pode ser computável. (c.q.d.) 3) Sem recorrer ao postulado de Church, mostre que a função característica parcial do predicado Px(y) é computável. Queremos mostrar que é computável a seguinte função: f (x, y) =, se P x (y) (i.e.seφ x (y) está definida), caso contrário Ora, f pode ser definido, por substituição, à custa da função unária constantemente igual a e da função universal para as funções unárias computáveis, como se segue: = φ x (y) f (x, y) = (ψ U (x, y)) Assim, como a função unária constantemente igual a e a função ψ U são computáveis, a função f também é computável (pois obtém-se, por substituição, à custa dessas funções). (c.q.d.) 4) Recorrendo ao teorema de Rice, demonstre que o problema "φx é sobrejectiva" é indecidível. Seja β = {g C : gé sobrejectiva} (com C o conjunto das funções unárias computáveis). Tem-se: φ é sobrejectiva <=> φ x β x Assim, pelo Teorema de Rice, teremos provado que φ é sobrejectiva é indecidível, se provarmos que: 7 x

8 a) β b) β C (istoé, β C ) Ora, β pois (por exemplo) a função identidade Id( = U ) pertence a β. E β C pois (por exemplo) a função zero pertence a C β. (c.q.d.) 5) Demonstre que o problema "8 Ex" é indecidível, reduzindo o problema "x Wx" a este problema (recorrendo, para tal, à versão simples do teorema s-m-n). a) Comecemos por provar que: qualquer que seja a função k total e computável, se "8 E k(x) " for indecidível, então "8 E x " também o é. Dem: Suponha-se que "8 E x " é decidível e que k é total e computável. Então (a função característica de "8 E x ") C(x) =, se 8 Ε x 0, se 8 Ε x é computável. Mas então também é computável g(x) = C(k(x)) =, se 8 Ε k(x) 0, se 8 Εk(x) pois g obtém-se por substituição à custa de C e de k. Mas g é a função característica de 8 Ε k(x). Logo, o problema "8 E k(x) " será decidível (se "8 E x " o for). b) Pela versão simples do Teorema s-m-n, dada uma função f : IN 2 IN0, 0 computável, existe uma função (unária) k total e computável, tal que f (x, y) = φ k(x) (y) c) Assim, se conseguirmos definir f, computável, de modo a que (*) 8 Ε k(x) x W x = = cod(φ k(x) ) dom(φ x ) 8

9 Teremos mostrado que o problema "8 E k(x) " é indecidível, por redução do problema x W x (que é indecidível) a este problema (e, pela alínea a), podemos concluir que "8 E x " é indecidível, como pretendemos) d) Defina-se f como se segue: ( φ k(x) (y) = ) f (x, y) = 8,se x W x (i.e.seφ x (x) está definida), se x W x Verifica-se (*), pois: x W x y ( f (x, y) = 8) 8 cod(φ k(x) ) = φ k(x) (y) (Nota: para se ter isto bastava que y ( f (x, y) = 8 ) x W x y (φ k(x) (y) = ) 8 cod(φ k(x) ) e) Resta-nos provar que f é computável (para isso não podemos recorrer à computabilidade da definição por casos, pois o problema x W x é indecidível). Que f é computável sai de f poder ser definida por substituição à custa de funções computáveis (a função ψ U (x, y) e a função 8(x), isto é, a função unária constantemente igual a 8), como se segue f (x, y) = 8(ψ U (x, x)) =φ x (x) 9

Teoria da Computação I

Teoria da Computação I Licenciatura em Engenharia Informática e Computação João Mendes Moreira João Falcão e Cunha Teoria da Computação I 3º Ano 2001-2002 6ª Aula Prática Numeração de Programas URM 6.1. Resolução β(j(3,4,2))

Leia mais

printing problem: dado um programa e um valor arbitrários, o problema de determinar se sim ou não se vai obter como output do programa esse valor;

printing problem: dado um programa e um valor arbitrários, o problema de determinar se sim ou não se vai obter como output do programa esse valor; 1 Introdução 1 No texto que se segue vão ser apresentados resultados sobre não decidibilidade de alguns predicados (sobre os naturais). Para certos predicados vai ser apresentada uma prova de que não é

Leia mais

Aulas Práticas. 1ª Aula Prática Perguntas sobre a Implementação de Funções Simples na Máquina URM...1

Aulas Práticas. 1ª Aula Prática Perguntas sobre a Implementação de Funções Simples na Máquina URM...1 Aulas Práticas 1ª Aula Prática Perguntas sobre a Implementação de Funções Simples na Máquina URM...1 2ª Aula Prática Perguntas sobre a Implementação de Funções Recursivas na Máquina URM...2 3ª Aula Prática

Leia mais

Teoria da Computação I

Teoria da Computação I Licenciatura em Engenharia Informática e Computação João Falcão e Cunha João Mendes Moreira Teoria da Computação I º Ano 2001-2002 Prova Escrita 2ª chamada 2002.01.0 Esta prova escrita tem a duração de

Leia mais

6. Decidibilidade, indecidibilidade e decidibilidade parcial

6. Decidibilidade, indecidibilidade e decidibilidade parcial 6. Decidibilidade, indecidibilidade e decidibilidade parcial Nos capítulos anteriores, já foram referidos diversos problemas decidíveis. Apenas foi analisado um único problema indecidível ( φ é total )

Leia mais

Exercícios de Teoria da Computação Computabilidade

Exercícios de Teoria da Computação Computabilidade Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicação e Informação -LERCI Exercícios de Teoria da Computação Computabilidade Paula Gouveia Secção

Leia mais

2. Geração de Funções Computáveis

2. Geração de Funções Computáveis 2. Geração de Funções Computáveis 2.1 As funções básicas 2.2 Concatenação de programas 2.3 Substituição 2.5 Minimização Teresa Galvão LEIC - Teoria da Computação I 2.1 2.1 As funções básicas Métodos que

Leia mais

Exercícios de Teoria da Computação Computabilidade

Exercícios de Teoria da Computação Computabilidade Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Comunicação e Informação -LERCI Exercícios de Teoria da Computação Computabilidade Secção Ciência

Leia mais

1 Postulado de Church-Turing 1

1 Postulado de Church-Turing 1 1 Postulado de Church-Turing 1 Alguns modelos alternativos no estudo da computabilidade Turing: Máquina de Turing Gödel-Kleene: Funções recursivas Church: Cáluculo λ (funções definidas por termos λ) Post:

Leia mais

Os Limites da Computabilidade. Dois Conceitos Distintos. Tese de Church Turing. O Que É Computável? O Que É Possível De Ser Computado?

Os Limites da Computabilidade. Dois Conceitos Distintos. Tese de Church Turing. O Que É Computável? O Que É Possível De Ser Computado? LFA - PARTE 6 Os Limites da Computabilidade O Que É Computável? O Que É Possível De Ser Computado? João Luís Garcia Rosa LFA-FEC-PUC-Campinas 2002 R. Gregory Taylor: http://starbase.cs.trincoll.edu/~rtaylor/thcomp/

Leia mais

Teoria da Computação 31 de Maio de 2017 Teste 2A Duração: 1h30

Teoria da Computação 31 de Maio de 2017 Teste 2A Duração: 1h30 31 de Maio de 2017 Teste 2A Duração: 1h30 Seja Σ um alfabeto. Considere as seguintes linguagens: L 1 = {M M : M é máquina classificadora}, L 2 = {M M : L ac (M) = Σ }. a) Use o teorema de Rice para demonstrar

Leia mais

Teoria da Computação

Teoria da Computação Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: jupcampos@gmail.com Máquinas Universais Máquinas Universais podem ser entendidas de duas formas: Se é capaz

Leia mais

COMPUTABILIDADE 2. Indecidibilidade

COMPUTABILIDADE 2. Indecidibilidade Licenciatura em Ciências da Computação COMPUTABILIDADE 2. Indecidibilidade José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho 15 de Novembro de 2011 José Carlos Costa DMA-UMinho 15 de

Leia mais

Teoria da Computação

Teoria da Computação Ciência da Computação Teoria da Computação (ENG10395) Profa. Juliana Pinheiro Campos E-mail: jupcampos@gmail.com Funções recursivas Os formalismos usados para especificar algoritmos podem ser classificados

Leia mais

Teoria da Computação. Exercícios. 1 Máquinas de Registos Ilimitados 2013/2014

Teoria da Computação. Exercícios. 1 Máquinas de Registos Ilimitados 2013/2014 Teoria da Computação 2013/2014 Exercícios 1 Máquinas de Registos Ilimitados 1. Construa programas URM sem módulos que calculem as seguintes funções (a) quatro(x) = 4 (b) sg(x) retorna 0 se x > 0, 1 no

Leia mais

Noção de Computabilidade

Noção de Computabilidade Noção de Computabilidade 1 Procedimento X Algoritmo Procedimento: sequência finita de instruções, que são operações claramente descritas, e que podem ser executadas mecanicamente, em tempo finito. claramente

Leia mais

Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30

Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30 Instituto Superior Técnico Lic. Engenharia Informática e de Computadores (Alameda) Teoria da Computação 27 de Maio de 2015 Teste 2A Duração: 1h30 Grupo I (3+1+3 valores) Considere as linguagens P A = {M

Leia mais

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados.

Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. Capítulo 9: Linguagens sensíveis ao contexto e autômatos linearmente limitados. José Lucas Rangel 9.1 - Introdução. Como já vimos anteriormente, a classe das linguagens sensíveis ao contexto (lsc) é uma

Leia mais

Problemas Computáveis

Problemas Computáveis Indecidibilidade Problemas Computáveis Máquinas de Turing ou Problemas Computáveis ou Linguagens Recursivamente Enumeráveis LER (*) podem ser divididas em 2 classes: as MT que sempre param (Algoritmos),

Leia mais

Exercícios de Teoria da Computação Computabilidade

Exercícios de Teoria da Computação Computabilidade Licenciatura em Engenharia Informática e de Computadores - LEIC Licenciatura em Engenharia de Redes de Computadores -LERC Exercícios de Teoria da Computação Computabilidade Secção de Lógica e Computação

Leia mais

Capítulo 2: Procedimentos e algoritmos

Capítulo 2: Procedimentos e algoritmos Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo

Leia mais

COMPUTABILIDADE 3. Funções Parciais Recursivas

COMPUTABILIDADE 3. Funções Parciais Recursivas José Carlos Costa DMA-UMinho 2 de Dezembro de 2011 1/17 Licenciatura em Ciências da Computação COMPUTABILIDADE 3. Funções Parciais Recursivas José Carlos Costa Dep. Matemática e Aplicações Universidade

Leia mais

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1

Máquinas Universais. Departamento de Ciência de Computadores da FCUP MC Aula 23 1 Máquinas Universais Um modelo de computação diz-se universal se todo o problema efectivamente computável o for nesse modelo. Um modelo universal é suficientemente poderoso para se aceitar a si próprio:

Leia mais

Teoria da Computação Exame 1 30 de Junho de 2003

Teoria da Computação Exame 1 30 de Junho de 2003 Licenciatura em Engenharia Informática e de Computadores Teoria da Computação Exame 1 30 de Junho de 2003 I.1 a) Considere-se a gramática regular G = (V, I, P, S) onde V = {S, A, B, C, D}, I = {x, y} e

Leia mais

Linguagem Universal. assim como a entrada ser processada por a. (b) A segunda fita de representa a fita de

Linguagem Universal. assim como a entrada ser processada por a. (b) A segunda fita de representa a fita de Linguagem Universal 1. Uma máquina de Turing representa um PC? Ou representa um possível problema que um PC pode resolver? 2. Uma máquina de Turing pode ser utilizada para simular uma de Turing máquina.

Leia mais

Draft-v0.1. Máquinas de Turing Máquinas de Turing

Draft-v0.1. Máquinas de Turing Máquinas de Turing 13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal

Leia mais

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução.

Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel Introdução. Capítulo 8: O problema da parada. Decidibilidade e computabilidade. José Lucas Rangel 8.1 - Introdução. Como observado no capítulo anterior, podemos substituir a definição informal de procedimento pela

Leia mais

I.2 Introdução a Teoria da Computação

I.2 Introdução a Teoria da Computação I.2 Introdução a Teoria da Computação O que é? Fundamento da Ciência da Computação Tratamento Matemático da Ciência da Computação Estudo Matemático da Transformação da Informação Qual sua importância?

Leia mais

Computabilidade. da Computação que estudam, formalmente, as capacidades e as limitações da computação.

Computabilidade. da Computação que estudam, formalmente, as capacidades e as limitações da computação. Computabilidade Universidade dos Açores Departamento de Matemática www.uac.pt/~hguerra!! A Computabilidade e a Complexidade são áreas nucleares da Ciência da Computação que estudam, formalmente, as capacidades

Leia mais

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação

Leia mais

Departamento de Matemática e Engenharias. Emulação da Máquina URM no Mathematica

Departamento de Matemática e Engenharias. Emulação da Máquina URM no Mathematica Departamento de Matemática e Engenharias Emulação da Máquina URM no Mathematica José Laurindo de Góis Nóbrega Sobrinho UMa, 13 de Novembro de 2003 Motivação: Na cadeira de Paradigmas da Programaçã ção

Leia mais

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato?

Computação efectiva. Que linguagens podem ser reconhecidas por algum tipo de autómato? Computação efectiva Que linguagens podem ser reconhecidas por algum tipo de autómato? O que é ser computável? Que linguagens são computáveis? Existem linguagens que não são computáveis? Isto é, existem

Leia mais

INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação

INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação INE5317 Linguagens Formais e Compiladores AULA 3: Introdução a Teoria da Computação bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: silveira@inf.ufsc.br

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade

Apostila 06. Objetivos: Estudar a Computabilidade Estudar a Decidibilidade Estudar a Redutibilidade Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

Teresa Galvão LEIC - Teoria da Computação I 3.1

Teresa Galvão LEIC - Teoria da Computação I 3.1 3. Outras abordagens à computabilidade 3.1 Outras abordagens à computabilidade 3.2 Funções parciais recursivas 3.3 Funções recursivas primitivas 3.4 Computabilidade de Turing 3.5 Sistemas de Post e Markov

Leia mais

Outras abordagens à computabilidade. Nota

Outras abordagens à computabilidade. Nota Outras abordagens à computabilidade 3.1 Nota Os presentes acetatos foram baseados quase na sua totalidade nos acetatos realizados pela Professora Teresa Galvão da Universidade de Porto para a cadeira Teoria

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas são sim ou não. Exemplo

Leia mais

Funções Recursivas. Prof.: Edson Holanda Teoria da computação - Diverio e Menezes

Funções Recursivas. Prof.: Edson Holanda Teoria da computação - Diverio e Menezes Funções Recursivas Prof.: Edson Holanda edsonholanda@gmail.com Teoria da computação - Diverio e Menezes Tipos de Formalismos Operacional Define-se uma máquina abstrata, baseada em estados, em instruções

Leia mais

Máquinas de Turing: uma introdução

Máquinas de Turing: uma introdução Máquinas de Turing: uma introdução Nelma Moreira Armando Matos Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {nam,acm}@ncc.up.pt 1996 Revisão: Maio 2001 1

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas

Leia mais

Turing e Complexidade

Turing e Complexidade (baseado em material da disciplina PCS2214) PMR2300 Escola Politécnica da Universidade de São Paulo Máquina de Turing Máquina de Turing: modelo mais poderoso de computador, proposto pelo inglês Alan M.

Leia mais

Linguaguens recursivamente enumeráveis

Linguaguens recursivamente enumeráveis Linguaguens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário,

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO Projecto Delfos: Escola de Matemática Para Jovens 1 Uma função, f, é uma aplicação de um conjunto, D, que designamos por domínio, para um conjunto, C, designado por contra-domínio, segundo uma lei, f(x),

Leia mais

Máquina de Turing. Controle finito

Máquina de Turing. Controle finito Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos

Leia mais

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação

Leia mais

Linguagens recursivamente enumeráveis

Linguagens recursivamente enumeráveis Linguagens recursivamente enumeráveis Uma palavra x Σ é aceite por uma máquina de Turing M ( x L(M)) se M iniciando com a palavra x na fita e no estado inicial, pára num estado final. Caso contrário, M

Leia mais

Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens

Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens Procedimentos e Algorítmos Programas e Linguagens de Programação Tese de Church-Turing Formas de Representação de Linguagens 1 Introdução Estudar computação do ponto de vista teórico é sinônimo de caracterizar

Leia mais

Máquinas de Turing 3

Máquinas de Turing 3 Máquinas de Turing 3 Exercícios Máquinas de Turing com Múltiplas Fitas Máquinas de Turing Não-deterministicas A Tese/Hipótese de Church-Turing Linguagens decidíveis por Máquinas de Turing (Recursivas)

Leia mais

Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1

Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1 Instituto Superior Técnico Teoria da Computação - LEIC 2013/2014 Aula prática 1 Nota: Na sequência o símbolo representa o símbolo de registo vazio. 1 Máquinas de Turing 1. Considere a máquina de Turing

Leia mais

0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida.

0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida. Lic. Ciências da Computação Exercícios - Folha 1 0. Definições indutivas 0.1 Seja S o subconjunto de P(N) definido indutivamente pelas 3 regras apresentadas de seguida. (1) {1} S (2) X S X \ {1} S (3)

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade

Leia mais

Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02)

Redutibilidade. Mário S. Alvim Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Redutibilidade Mário S. Alvim (msalvim@dcc.ufmg.br) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Redutibilidade DCC-UFMG (2018/02) 1 / 46 Redutibilidade:

Leia mais

Marcos Castilho. DInf/UFPR. 16 de maio de 2019

Marcos Castilho. DInf/UFPR. 16 de maio de 2019 16 de maio de 2019 Motivação Quais são os limites da computação? O que é um Problema de decisão? Um problema de decisão é um conjunto de perguntas, cada uma das quais tem um SIM ou um NÃO como resposta.

Leia mais

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla Ministério da Ciência, Tecnologia e Ensino Superior U.C. 21082 Matemática Finita 6 de junho de 2018 - Resolução e Critérios de Avaliação - Questões de escolha múltipla 1. (Exame e P-fólio De quantas maneiras

Leia mais

Análise de algoritmos. Parte I

Análise de algoritmos. Parte I Análise de algoritmos Parte I 1 Procedimento X Algoritmo Procedimento: sequência finita de instruções, que são operações claramente descritas, e que podem ser executadas mecanicamente, em tempo finito.

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

Computação e Programação Exame Época de recurso

Computação e Programação Exame Época de recurso Nome : Número : Computação e Programação 2013-2014 Mestrado Integrado em Engenharia Civil Licenciatura Bolonha em Engenharia Geológica e de Minas DECivil Exame Época de recurso 29 de Janeiro de 2014 v

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Computabilidade para Complexidade...

Computabilidade para Complexidade... Computabilidade para Complexidade... Março de 2007 Armando B. Matos Índice Introdução................................................................................ 2 Linguagem FOR e funções primitivas

Leia mais

Máquinas de Turing para construção: Foram encontrados dois modelos que se destacaram em nossas pesquisas.

Máquinas de Turing para construção: Foram encontrados dois modelos que se destacaram em nossas pesquisas. Máquina de Turing É um dispositivo imaginário que formou a estrutura para fundamentar a ciência da computação moderna. Seu inventor, o matemático Alan Mathison Turing, mostrou que a computação das operações

Leia mais

Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios

Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios Curso de Engenharia de Computação - UTFPR Teoria da Computação - Prof. Celso Kaestner Lista de exercícios 1. Escreva a expressão regular para as seguintes linguagens sobre o alfabeto {0, 1}: strings começando

Leia mais

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Observação Como para k > 1 se tem (a 1, a 2,..., a k ) = (a 1, a k )(a 1, a k 1 ) (a 1, a 2 ), um ciclo de comprimento par é uma permutação ímpar e um ciclo de comprimento ímpar é uma permutação par. Proposição

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Exercícios Data Modeling

Exercícios Data Modeling Exercícios Data Modeling I Algoritmos 1. Construir um algoritmo, em pseudo-código, para calcular o mínimo múltiplo comum entre 2 inteiros X e Y 2. Construir um algoritmo, em pseudo-código, para determinar

Leia mais

Modelos de Computação Folha de trabalho n. 10

Modelos de Computação Folha de trabalho n. 10 Modelos de Computação Folha de trabalho n. 10 Nota: Os exercícios obrigatórios marcados de A a D constituem os problemas que devem ser resolvidos individualmente. A resolução em papel deverá ser depositada

Leia mais

Teoria da Computação. Computabilidade e complexidade computacional

Teoria da Computação. Computabilidade e complexidade computacional Teoria da Computação Computabilidade e complexidade computacional 1 Computabilidade e Complexidade Computabilidade: verifica a existência de algoritmos que resolva uma classe de linguagens trata a possibilidade

Leia mais

S. C. Coutinho. Máquina de Turing Universal p. 1/22

S. C. Coutinho. Máquina de Turing Universal p. 1/22 Máquina de Turing Universal S. C. Coutinho Máquina de Turing Universal p. 1/22 Objetivo Descrever uma máquina de Turing U, capaz de simular qualquer outra máquina de Turing M. Para isto a máquina deve

Leia mais

Linguagens Formais e Autômatos Decidibilidade

Linguagens Formais e Autômatos Decidibilidade Linguagens Formais e Autômatos Decidibilidade Andrei Rimsa Álvares Sumário Introdução A tese de Church-Turing Máquinas de Turing e problemas de decisão Máquina de Turing Universal O problema da parada

Leia mais

Limites da Computação Algorítmica: Problemas Indecidíveis

Limites da Computação Algorítmica: Problemas Indecidíveis Capítulo 10 Limites da Computação Algorítmica: Problemas Indecidíveis Tendo estudado o que as máquinas de Turing podem fazer, estudaremos, agora, o que elas não podem fazer. Embora a tese de Turing nos

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

SCC Capítulo 4 Linguagens Recursivamente Enumeráveis e Máquinas de Turing

SCC Capítulo 4 Linguagens Recursivamente Enumeráveis e Máquinas de Turing SCC-205 - Capítulo 4 Linguagens Recursivamente Enumeráveis e Máquinas de Turing João Luís Garcia Rosa 1 1 Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis

Leia mais

Estruturação de Procedimentos

Estruturação de Procedimentos Capítulo 4 Estruturação de Procedimentos 4. Exercícios de revisão. Diga o que entende por linguagem estruturada em blocos. Descreva a regra associada a esta estrutura, e diga qual a sua importância. 2.

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Matemática Computacional

Matemática Computacional folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x

Leia mais

Teoria da Computação. Computabilidade

Teoria da Computação. Computabilidade Cristiano Lehrer Introdução O objetivo do estudo da solucionabilidade de problemas é investigar a existência ou não de algoritmos que solucionem determinada classe de problemas. Ou seja, investigar os

Leia mais

Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375

Capítulo A máquina de Turing (TM) padrão Combinações de máquinas de Turing A Tese de Turing. ADC/TC/Cap.9/ /LEI/DEIFCTUC 375 Capítulo 9 Máquinas de Turing 9.1. A máquina de Turing (TM) padrão 9.2. Combinações de máquinas de Turing 9.3. A Tese de Turing ADC/TC/Cap.9/2009-10/LEI/DEIFCTUC 375 Linguagens regulares Autómatos finitos

Leia mais

11º ano - Indução matemática

11º ano - Indução matemática 1 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de

Leia mais

Instruções de repetição

Instruções de repetição Instruções de repetição Estruturas de controlo na linguagem C Repetição (e componentes associadas a qualquer repetição: inicialização, teste da condição de paragem e actualização) Repetição com teste à

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens

Leia mais

Linguaguens recursivamente enumeráveis e recursivas

Linguaguens recursivamente enumeráveis e recursivas Linguaguens recursivamente enumeráveis e recursivas Uma linguagem diz-se recursivamente enumerável (r.e) ou semi-decidível se é aceite por uma máquina de Turing. SD: classe de linguagens recursivamente

Leia mais

Máquinas Universais. Máquina de Turing. Celso Olivete Júnior.

Máquinas Universais. Máquina de Turing. Celso Olivete Júnior. Máquinas Universais Máquina de Celso Olivete Júnior olivete@fct.unesp.br http://www2.fct.unesp.br/docentes/dmec/olivete/ Roteiro Hipótese de Church - Máquinas Universais: Máquina de Máquina de : Noção

Leia mais

LÓGICOS E ALGÉBRICOS DA PROGRAMAÇÃO Licenciaturas em Engenharia Informática, Ensino de Informática e Matemática 2º Semestre 2005/2006

LÓGICOS E ALGÉBRICOS DA PROGRAMAÇÃO Licenciaturas em Engenharia Informática, Ensino de Informática e Matemática 2º Semestre 2005/2006 FUNDAMENTOS UNIVERSIDADE da MADEIRA Departamento de Matemática e Engenharias LÓGICOS E ALGÉBRICOS DA PROGRAMAÇÃO Licenciaturas em Engenharia Informática, Ensino de Informática e Matemática 2º Semestre

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Fundamentos de Programação

Fundamentos de Programação Fundamentos de Programação Soluções do primeiro teste 13 de Novembro de 2004 9:00-10:30 Nota Número: 20 Nome: Turma: Escreva o seu número em todas as folhas do teste. O espaço das respostas deve ser limitado

Leia mais

Resolução Exe 2.12 Monolítico Recursivo

Resolução Exe 2.12 Monolítico Recursivo Resolução Exe 2.12 Monolítico Recursivo Recursivo P R é R 1 onde R 1 def (se T1 então R 2 senão R 3 ) R 2 def F; R 3 R 3 def (se T2 então R 4 senão R 7 ) R 4 def G; R 5 R 5 def (se T1 então R 7 senão R

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Linguagens Formais e Autômatos (LFA) Aula de 18/11/2013 Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço 1 Linguagens Recursivamente

Leia mais

Máquinas de Turing - Computabilidade

Máquinas de Turing - Computabilidade BCC244-Teoria da Computação Prof. Lucília Figueiredo Lista de Exercícios 03 DECOM ICEB - UFOP Máquinas de Turing - Computabilidade 1. Seja L uma linguagem não livre de contexto. Mostre que: (a) Se X uma

Leia mais

2007/2008 Resolução do 1 o exame

2007/2008 Resolução do 1 o exame Introdução à Álgebra 2007/2008 Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão,

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais