Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos"

Transcrição

1 Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades: a) =0. b) =1. c) é uma variável adimensional. Dizemos que a variável Z é uma variável padronizada, construída a partir de X. Momentos Definição 1: Seja X uma variável aleatória, definem-se: a) momento de ordem k de X ao valor = e b) momento central de ordem k ao valor = Definição 2: Seja,,, um conjunto de dados, definem-se: a) momento amostral de ordem k dos dados ao valor: = e b) momento central amostral de ordem k dos dados ao valor: =. Alguns autores preferem dividir o somatório por 1. Coeficiente de Assimetria A Figura 1 traz histogramas estilizados de distribuições que diferem em relação à forma; mais especificamente, ao tipo de assimetria. Nosso objetivo é mensurar o grau de assimetria de um conjunto de dados de modo que possamos intuir o tipo de assimetria e sua intensidade (o quanto de afasta de uma situação simétrica). Na Tabela 1 estão dispostas sete observações de três variáveis hipotéticas. Todas têm a mesma média e mesmo desvio-padrão amostral (pelo menos até a segunda casa decimal), no entanto, elas claramente apresentam 1

2 comportamentos diferentes. A distribuição dos dados da variável X apresenta assimetria positiva; de Y negativa e a de W é simétrica. Iremos apresentar o desenvolvimento do Coeficiente de Assimetria utilizando esses dados. Simetria Assimetria Positiva Assimetria Negativa Numa distribuição perfeitamente simétrica, se existir um ponto a uma distância a acima da média existirá um outro ponto, localizado à mesma distância abaixo da média. Numa distribuição assimétrica positiva, a tendência é que hajam desvios positivos muito maiores do que os negativos Numa distribuição assimétrica negativa, a tendência é que hajam desvios negativos muito maiores do que os positivos Figura 1: Histogramas estilizados de distribuições com diferentes tipos de assimetria Tabela 1: Conjunto de dados hipotético Observação , ,2 13, ,8 13, ,13 Média Desvio-padrão 2,06 2,06 2,06 Obs: O desvio-padrão foi calculado como a raiz quadrada do segundo momento central amostral de ordem 2 dos dados. A intuição que norteia a construção do Coeficiente de Assimetria vem dos histogramas da Figura 1. Os valores a e b indicam desvios em relação à média amostral. Na Tabela 2, apresentamos esses desvios para os dados da Tabela 1. Note que: a) para a variável X, há mais desvios negativos, no entanto, de magnitude menor do que os positivos; b) para a variável Y, ocorre o oposto, há mais desvios positivos, no entanto, de magnitude menor do que os negativos; c) em W, para cada desvio negativo, existe um positivo com o mesmo módulo. Poderíamos, então, propor o cálculo da média dos desvios. Esperaríamos que os sinais dos desvios de maior magnitude predominassem e indicassem o tipo de assimetria presente nos dados. No entanto, pode-se provar que a soma dos desvios em relação á média amostral sempre será zero. Para eliminar esse problema, e ainda preservar os 2

3 sinais dos desvios, poderíamos elevá-lo a qualquer potência ímpar e então calcular sua média. A Tabela 3 descreve essa operação utilizando-se a potência 3. Tabela 2: Desvios em relação a média dos dados da Tabela ,87-3, ,2-1,8 13,8 1, ,8-1,2 13,2 1, ,1 3,13 Média DP 2,06 2,06 2,06 Os valores das médias dos desvios ao cubo para X, Y e W são, respectivamente, 7,92; -7,92 e 0. Notem que o sinal indica o tipo de assimetria presente nos dados e que esses valores correspondem ao momento central amostral de ordem 3. Em geral, os momentos, sendo >1 um número ímpar podem ser utilizados como indicadores do tipo de assimetria presente nos dados. Os momentos, no entanto, têm um inconveniente. Eles dependem da unidade de medida dos dados. Imagine uma amostra de preços em dólares convertida para reais. Obviamente nada mudou em termos da assimetria, todavia, os terceiros momentos amostrais não irão coincidir, já que = â ó. Tabela 3: Desvios em relação a média dos dados da Tabela ,87-3,1-30, ,2-1,8-5,83 13,8 1,8 5, ,8-1,2-1,73 13,2 1,2 1, ,1 3,13 30,66 Média 12 7, , DP 2,06 2,06 2,06 Um modo de contornar esse problema é refazer os cálculos utilizando-se os dados padronizados. A Tabela 4 apresenta essas contas. Agora, mesmo que mudemos a escala de uma coluna o terceiro momento amostral da variável padronizada não sofrerá alterações. 3

4 Tabela 4: Desvios em relação a média dos dados da Tabela 1, dados padronizados ,97-0,92 14,00 0,97 0,92 8,87-1,52-3, ,2-0,87-0,67 13,80 0,87 0,67 10,00-0,97-0, ,8-0,58-0,20 13,20 0,58 0,20 11,00-0,49-0, ,49-0,11 13,00 0,49 0,11 12,00 0,00 0, ,00 0,00 12,00 0,00 0,00 13,00 0,49 0, ,97 0,92 10,00-0,97-0,92 14,00 0,97 0, ,94 7,33 8-1,9-7,3 15,1 1,52 3,53 Média 12 0, , DP 2,06 2,06 2,06 Definição 3: Seja,,, um conjunto de dados e = Assimetria (Amostral) dos dados por =., =1,2,,. Define-se o Coeficiente de Alternativamente, pode ser reescrito como = =. Em resumo temos: a) se a distribuição é assimétrica positiva >0; b) se a distribuição é assimétrica negativa <0; c) se a distribuição é (perfeitamente) simétrica =0. Definição 4: Seja X uma variável aleatória com terceiro momento finito. Define-se o Coeficiente de Assimetria (Populacional) de X por = =. 4

5 Coeficiente de Curtose A Figura 2 ilustra as funções densidade de probabilidades associadas a duas distribuições, ambas com média zero, desvio-padrão um e simétricas; apesar disso, as distribuições diferem bastante. A Figura 3 destaca o comportamento de uma das caudas dessas distribuições. Note que, em relação à f.d.p. de Y (vermelha), a f.d.p. de X (azul) aproxima-se mais rapidamente de zero. Isso sugere que um conjunto de dados gerado por Y apresentaria um número maior de observações distantes do centro da distribuição do que um conjunto de dados gerados por X. Uma vez que X e Y possuem mesmas médias e variâncias, podemos afirmar que a distribuição de Y possui caudas mais pesadas (maior curtose) do que a de X. Voltando aos conjuntos de dados gerados por X e Y, seria de se esperar que os momentos centrais de ordem par (superior a 2, uma vez que as variâncias são iguais) de Y fossem superiores aos de X, como um efeito direto da quantidade de desvios de maior magnitude (lembre que os momentos nada mais são do que médias e que as médias sofrem grande influência de valores muito elevados). Esse é o raciocínio básico que leva à definição de um coeficiente de curtose. Figura 2: F.d.p. de duas distribuições 5

6 Figura 3: Destaque da cauda esquerda dos histogramas representados na Figura2. Definição 5: Seja,,, um conjunto de dados e = (Amostral) dos dados por =., =1,2,,. Define-se o Coeficiente de Curtose Alternativamente, pode ser reescrito como = =. Definição 6: Seja X uma variável aleatória com quarto momento finito. Define-se o Coeficiente de Curtose (Populacional) de X por = =. Os coeficientes de assimetria e curtose são utilizados para verificar se um conjunto de dados podem ter sido gerados a partir de uma distribuição normal. Se uma v.a. segue uma distribuição normal, então =0 e =3. Assim se, um conjunto de dados foi de fato gerado a partir de uma normal esperaríamos ter próximo a zero e próximo a 3. A partir disso, foi proposta uma alteração no coeficiente de curtose para facilitar sua interpretação. 6

7 Definição 7: Define-se o coeficiente Excesso de Curtose por Temos que = 3. a) se <0 dizemos que a distribuição tem caudas mais leves do que a normal (platicúrtica), b) se =0 dizemos que a distribuição tem caudas com o mesmo peso das de uma normal (mesocúrtica) e c) se >0 dizemos que a distribuição tem caudas mais pesadas do que a normal (leptocúrtica) Teste de Jarque-Bera O teste de aderência de Jarque-Bera pode ser utilizado para verificar se um conjunto de dados segue uma distribuição normal. A estatística do teste é dada por = 6 +0,25 Sob a hipótese de normalidade dos dados segue uma distribuição qui-quadrado com dois graus de liberdade. Quanto maior for o valor dessa estatística, menor a evidência de que a distribuição é de fato normal. 7

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

Aula 1 Assimetria e Curtose

Aula 1 Assimetria e Curtose 2º Bimestre 1 Estatística e Probabilidade Aula 1 Assimetria e Curtose Professor Luciano Nóbrega Medidas de assimetria As medidas de assimetria e curtose (esta última veremos na próxima aula) são as que

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires cpires@uevora.pt Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

ESTATÍSTICA DESCRITIVA:

ESTATÍSTICA DESCRITIVA: UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL II

MEDIDAS DE TENDÊNCIA CENTRAL II MEDIDAS DE TENDÊNCIA CENTRAL II 8. MÉDIA, MEDIANA E MODA 8. Mediana 8 7 A mediana divide um conjunto de dados pré-ordenados em duas porções iguais, ou seja, duas partes de 50% cada. Nesta divisão, 50%

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos

Leia mais

I-094 - COLIFORMES E ph MÉDIAS ARITMÉTICAS, MÉDIAS GEOMÉTRICAS E MEDIANAS

I-094 - COLIFORMES E ph MÉDIAS ARITMÉTICAS, MÉDIAS GEOMÉTRICAS E MEDIANAS I-9 - COLIFORMES E ph MÉDIAS ARITMÉTICAS, MÉDIAS GEOMÉTRICAS E MEDIANAS Marcos von Sperling ( 1 ) Engenheiro Civil (UFMG). Doutor em Engenharia Ambiental (Imperial College, Universidade de Londres Inglaterra).

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE Instituto acional de Estudos e Pesquisas Educacionais Anísio Teixeira IEP Ministério da Educação ME álculo do onceito EADE Para descrever o cálculo do onceito Enade, primeiramente é importante definir

Leia mais

Teste 1. (a) 0.33 (b) 0.50 (c) 0.30 (d) 0.20

Teste 1. (a) 0.33 (b) 0.50 (c) 0.30 (d) 0.20 Teste 1 1. Das 4 afirmações seguintes qual a que é falsa? a) O primeiro quartil é o valor da observação tal que existem 25% de observações menores o iguais a ela; b) A mediana é sempre igual ao percentil

Leia mais

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Estatística - exestatmedposic.doc 25/02/09

Estatística - exestatmedposic.doc 25/02/09 Medidas de Posição Introdução Vimos anteriormente que, através de uma distribuição de freqüências se estabelece um sistema de classificação que descreve o padrão de variação de um determinado fenômeno

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Lição 5 Medidas Descritivas Medidas de Dispersão

Lição 5 Medidas Descritivas Medidas de Dispersão 99 Lição 5 Medidas Descritivas Medidas de Dispersão Após concluir o estudo desta lição, esperamos que você possa: identifi car o objetivo das medidas de dispersão; identifi car o conceito de variância;

Leia mais

Desvio Padrão ou Erro Padrão

Desvio Padrão ou Erro Padrão NOTAS METODOLÓGICAS ISSN 0871-3413 ArquiMed, 2006 Desvio Padrão ou Erro Padrão Nuno Lunet, Milton Severo, Henrique Barros Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do

Leia mais

Distribuições Conjuntas (Tabelas de Contingência)

Distribuições Conjuntas (Tabelas de Contingência) Cruzamento de Dados Distribuições Conjuntas (Tabelas de Contingência) Lorí Viali, Dr. DESTAT/FAMAT/PUCRS viali@pucrs.br http://www.pucrs.br/famat/viali Distribuição Conjunta Exemplo (tabela um) Suponha

Leia mais

DISCIPLINA DE ESTATÍSTICA

DISCIPLINA DE ESTATÍSTICA UNIC UNIVERSIDADE DE CUIABÁ DISCIPLINA DE ESTATÍSTICA REPRESENTANDO DADOS Dados Qualitativos Quantitativos Métodos Gráficos Métodos Tabulares Métodos Gráficos Métodos Tabulares Barras Tabelas de Freqüência

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

Estatística. Slide 0. Ana M. Abreu - 2006/07

Estatística. Slide 0. Ana M. Abreu - 2006/07 Estatística Slide 0 Capítulo 1 Estatística Descritiva Slide 1 I-1 Introdução à organização e ao processamento de dados. I-2 Amostra e população; cuidados a ter na recolha da amostra. I-3 Ordenação dos

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

Apresentação de Dados

Apresentação de Dados Probabilidade e Estatística CCT - UDESC Apresentação de Dados Departamento de Matemática CCT-UDESC 1 Média amostral Variância amostral 2 Média populacional 3 3 Variância amostral 4 Fórmula eficiente para

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

AULA 04 Estimativas e Tamanhos Amostrais

AULA 04 Estimativas e Tamanhos Amostrais 1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS ANÁLISE EXPLORATÓRIA DE DADOS 1.0 Conceitos A estatística descritiva tem o objetivo de organizar, resumir e apresentar de forma adequada os dados, para que estes se tornem informativos. A análise exploratória

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Retorno e risco de carteiras de investimento. Copyright Pereira, F. I

Retorno e risco de carteiras de investimento. Copyright Pereira, F. I Retorno e risco de carteiras de investimento OBJETIVOS DA UNIDADE DE ESTUDO Compreender o processo de avaliação do risco de uma carteira. Definir e mensurar a covariancia entre duas variáveis Definir e

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Intervalos Estatísticos para Uma Única Amostra

Intervalos Estatísticos para Uma Única Amostra Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Relatório das Provas da 2ª. Fase - Vestibular 2016

Relatório das Provas da 2ª. Fase - Vestibular 2016 Relatório das Provas da 2ª. Fase - Vestibular 2016 Resumo Executivo O presente relatório apresenta os resultados da segunda fase do Vestibular UNICAMP 2016 constituída por três provas. Esta etapa do vestibular

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

Unidade 5 5.1 Medidas de Posição ou de Tendência Central

Unidade 5 5.1 Medidas de Posição ou de Tendência Central Unidade 5 5.1 Medidas de Posição ou de Tendência Central 1- Introdução Se estivermos numa parada de ônibus urbano e nos pedirem alguma informação sobre a demora em passar um determinado ônibus, que diremos?

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS» PROBABILIDADE E ESTATÍSTICA «21. Uma fábrica, que produz pequenas peças utilizadas em materiais eletrônicos, armazena essa mercadoria em lotes com 1000 unidades. Inspecionada

Leia mais

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7 AEDB - 2ª BI Probabilidade e Estatística - 2 o Ano 2011 - Prof: Roberto Campos Leoni Simulado 1. Em um arquivo há 4 balancetes de orçamento e 3 balancetes de custos. Em uma auditoria, o auditor seleciona

Leia mais

Números inteiros Z ± 7º Ano / 2013

Números inteiros Z ± 7º Ano / 2013 Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número.

Leia mais

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média.

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média. 1) Inicializar um vetor de inteiros com números de 0 a 99 2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média 3)

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

Exercícios Selecionados de Estatística Avançada. Sumário

Exercícios Selecionados de Estatística Avançada. Sumário 1 Exercícios Selecionados de Estatística Avançada Sumário I Probabilidade... 2 II Medidas de Posição e de Dispersão. Assimetria e Curtose... 5 III Variáveis Aleatórias Discretas e Contínuas. Função de

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 5 - Análise Bivariada (Bidimensional) 5.1. Introdução O principal objetivo das análises nessa situação é explorar relações (similaridades) entre duas variáveis. A distribuição conjunta das freqüências

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas

Aula de Exercícios - Variáveis Aleatórias Discretas Aula de Exercícios - Variáveis Aleatórias Discretas Organização: Airton Kist Digitação: Guilherme Ludwig Valor Médio de uma variável aleatória Considere uma urna contendo três bolas vermelhas e cinco pretas.

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla Significância Estatística Existe uma estatítica, o t-estatístico,associado a cada estimativa O t-estatístico mede

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNVERSDADE DO ESTADO DO RO GRANDE DO NORTE UERN FACULDADE DE CÊNCAS EXATAS E NATURAS FANAT DEPARTAMENTO DE

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

MATEMÁTICA PROVA 3º BIMESTRE

MATEMÁTICA PROVA 3º BIMESTRE PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3

Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3 Nota Lista de exercícios de Física / 2 Bimestre Unidades 1, 2 e 3 Data: 18 de maio de 2012 Curso: Ensino Médio 3 ano A Professora: Luciana M.A. Teixeira Nome: Nº Instruções gerais Para a resolução desta

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Aula 12: Correlação e Regressão

Aula 12: Correlação e Regressão Aula 12: Correlação e Regressão Sumário Aula 12: Correlação e Regressão... 1 12.l Correlação... 2 12.2 Diagrama de dispersão... 2 12.3 Correlação linear... 3 12.3.1 Coeficiente de correlação linear...

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS 1 PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS Instruções: Tenha sempre em mãos uma Calculadora Científica, pois a mesma será utilizada exaustivamente

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

Como rodar a regressão no gretl. Usando o Console para calcular elasticidade. Elasticidade. Usando o Console para calcular predição

Como rodar a regressão no gretl. Usando o Console para calcular elasticidade. Elasticidade. Usando o Console para calcular predição Como rodar a regressão no gretl Alguns tópicos do gretl Usando o console: Comando: ols y const 3 Estima uma função linear usando o método de Mínimos Quadrados Ordinários. Elasticidade Intuição: resposta

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

1. Estatística Descritiva

1. Estatística Descritiva Introdução à Estatística Estatística Descritiva 1 1. Estatística Descritiva Suponhamos que dispomos de um conjunto de dados (sem nos preocuparmos como foram obtidos) e pretendemos desenvolver processos

Leia mais

Ficha de Exercícios nº 2

Ficha de Exercícios nº 2 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode

Leia mais

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula Curso Análise de Dados e Políticas Públicas Professor: Pablo Cerdeira Ementa O que Matemática tem a ver com Direito? Muita coisa. Neste curso de Análise de Dados e Políticas Públicas abordaremos três importantes

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais