Redes Neuronais e Aprendizagem Automática 1

Tamanho: px
Começar a partir da página:

Download "Redes Neuronais e Aprendizagem Automática 1"

Transcrição

1 Redes Neuronais e Aprendizagem Automática 2005/ a aula Instituto Superior Técnico Redes Neuronais e Aprendizagem Automática 1

2 Sumário Árvores de decisão (continuação) Entropia. Selecção de atributos por critério de entropia. Redes Neuronais e Aprendizagem Automática 2

3 Interpretação de entropia A entropia mede a incerteza sobre uma determinada variável aleatória Caso determínistico H(X) = 0 Caso equiprovável: H(X) = log 2 (K) Entropia mede a informação fornecida por uma VA: Maior incerteza = mais informação = maior entropia Menor incerteza = menos informação = menor entropia Em teoria da informação, a entropia mede o número de bits necessário para codificar 1 de K possíveis acontecimentos Caso equiprovável: codificação binária convencional Caso determinístico: 0 bits Casos intermédios: cada acontecimento pode ser codificado com log 2 (P (x i )) bits. Número de bits necessário para codificar cada acontecimento reduz-se com o aumento da probabilidade de ocorrência (menos informativo). Número médio de bits: H(X) Redes Neuronais e Aprendizagem Automática 3

4 Entropia conjunta Entropia conjunta de X e Y H(X, Y ) = n i=1 m P (x i, y k ) log 2 (P (x i, y k )) k=1 X e Y independentes: P (x i, y k ) = P (x i )P (y k ) H(X, Y ) = H(X) + H(Y ) Entropia condicional de X dado Y = y j H(X Y = y j ) = n P (x i Y = y j ) log 2 (P (x i Y = y j )) i=1 Redes Neuronais e Aprendizagem Automática 4

5 Entropia condicional Entropia condicional m H(X Y ) = E[H(X Y = y j )] = H(X Y = y j )P (y j ) j=1 m n P (x i, y j ) log 2 (P (x i y j )) j=1 i=1 (1) H(X Y ) mede a incerteza de X admitindo que se conhece Y. X e Y independentes: H(X Y ) = H(X) Relação determinística: X = F (Y ) P (x i Y = y j ) = δ ik(j), H(X Y ) = 0 (2) m n H(X Y ) = P (y j ) P (x i y j ) log 2 (P (x i y j )) = 0 j=1 Relação determinística: Não há qualquer incerteza (informação) em X quando Y é conhecido. i=1 Redes Neuronais e Aprendizagem Automática 5

6 Entropia condicional e conjunta Entropia condicional H(X, Y ) = H(X Y ) + H(Y ) Informação conjunta de X, Y é igual à informação de X dada Y mais a informação de Y. Redes Neuronais e Aprendizagem Automática 6

7 Informação mútua Informação comum (partilhada) entre X e Y : I(X; Y ) = H(X) H(X Y ) = H(X) + H(Y ) H(X, Y ) Redes Neuronais e Aprendizagem Automática 7

8 Diagramas de Entropia H(X,Y) H(X) H(Y) H(X Y) Caso geral I(X;Y) H(Y X) Redes Neuronais e Aprendizagem Automática 8

9 Diagramas de Entropia 2 H(X,Y) H(X) H(Y) I(X;Y) H(X Y) H(Y X) Variáveis com interdependência determinística Redes Neuronais e Aprendizagem Automática 9

10 Diagramas de Entropia 3 H(X,Y) H(X) H(Y) H(X Y) H(Y X) I(X;Y) Variáveis independentes Redes Neuronais e Aprendizagem Automática 10

11 Telecomunicações Shannon, 1949 Telecomunicações: x(n) H(X) Canal y(n) H(Y) Entropia do emissor: H(X) (taxa de transmissão) Incerteza sobre X à chegada: H(X Y ) (taxa de erro) Informação mútua I(X; Y ) = H(X) H(X Y ) (capacidade do canal) r(n) Redes Neuronais e Aprendizagem Automática 11

12 Selecção de atributo em árvores de decisão Informação mútua entre a saída e o atributo Critério de selecção: atributo com informação mútua máxima com o valor desejado I(Y ; A) = H(Y ) H(Y A) H(Y A) = P (v k )H(Y A = v k ) Redes Neuronais e Aprendizagem Automática 12

13 Interpretação Interpretação Impureza: medida de incerteza ou entropia Entropia do conjunto inicial T H(Y ) = i P (y i ) log 2 P (y i ) Entropia em cada folha v k quando é seleccionado o atributo A: H(Y A = v k ) = i P (y i v k ) log 2 P (y i v k ) Entropia média nas folhas ao seleccionar o atributo A H(Y A) = k P (v k )H(Y A = v k ) Redes Neuronais e Aprendizagem Automática 13

14 Atributo óptimo T A H(Y) v 1 v 2 v3 v4... v Ns T 1 T 2 T 3 T 4... T Ns H(Y A=v ) 1 H(Y A=v ) 2 H(Y A=v ) 3 H(T A=v ) 4 H(Y A=v ) Ns H(Y A) = E[H(Y A=v )] k Ganho de informação (redução de entropia) por seleccionar A I(Y ; A) = H(Y ) H(Y A) Decisão: arg max A I(Y ; A) = arg min A H(Y A) Redes Neuronais e Aprendizagem Automática 14

15 Exemplo: seleccção de atributo A 1 A 2 A 3 Y A 0 1 X 2 A 1 2 X 1 C 1 3 X 1 B 1 4 X 2 B 1 5 X 2 H(Y ) = 2 5 log log = H(Y A 1 = A) = 1 2 log log = 1.0 H(Y A 1 = B) = 0 H(Y A 1 = C) = 0 H(Y A 1 ) = 2 5 H(Y A 1 = A) = H(Y A 2 ) = = H(Y A 3 ) = 0 I(Y ; A 1 ) = I(Y ; A 2 ) = I(Y ; A 3 ) = Redes Neuronais e Aprendizagem Automática 15

16 Exemplo 2: seleccção de atributo Selecção por ganho de informação: atributo A 2 A 1 A 2 Y A X 0 A X 0 A Y 0 A Y 0 A Y 0 A Y 0 B Z 1 B Z 1 B Z 1 B Z 1 B Z 1 B Z 1 B Z 1 B Z1 1 B Z1 1 B Z1 0 B Z1 1 B Z1 1 Selecção por número de erros: atributo A 1 ou A 2 ID3 favorece a selecção de atributos com maior ganho de informação (V. exemplo) De um modo geral, o critério de informação mútua usado pelo ID3 favorece árvores pequenas relativamente a grandes. O método greedy utilizado apenas permite derivar uma solução, que pode não ser globalmente óptima. É possível derivar um algoritmo de selecção da árvore mais curta, testando exaustivamente todas as árvores que produzem um conjunto consistente de hipóteses. O algoritmo ID3 é uma aproximação heurística deste algoritmo usando um método greedy (e, portanto, muito mais eficiente). Redes Neuronais e Aprendizagem Automática 16

Instituto Superior Técnico. 19 de Janeiro de 2001. Parte I

Instituto Superior Técnico. 19 de Janeiro de 2001. Parte I Exame de Compressão e Codificação de Dados Secção de Telecomunicacções DEEC, Instituto Superior Técnico 19 de Janeiro de 1 Parte I Esta parte do exame é constituida por 20 perguntas de resposta múltipla.

Leia mais

Tópicos sobre Teoria da informação e codificação de fonte

Tópicos sobre Teoria da informação e codificação de fonte Tópicos sobre Teoria da informação e codificação de fonte Processamento Digital de Sinal II Artur Ferreira e Paulo Marques ( Dezembro 2003 ) Tópicos a abordar 1. Teoria da informação Informação própria

Leia mais

Prof. Aleksander S. Paterno

Prof. Aleksander S. Paterno Prof. Aleksander S. Paterno Disciplina de Princípios de Comunicações I Teórica ELEMENTOS DE TEORIA DA INFORMAÇÃO AULA em slide 13 20/11/2009 Quarta-feira 15:20 a 17:00 [1] Resumo da aula 13 O que é teoria

Leia mais

Elementos de Teoria da Informação

Elementos de Teoria da Informação Elementos de Teoria da Informação Mário A. T. Figueiredo Departamento de Engenharia Electrotécnica e de Computadores Instituto Superior Técnico 1049-001 Lisboa Portugal Versão 1.5 Novembro de 2007 2 Conteúdo

Leia mais

Codificação de Informação 2010/2011

Codificação de Informação 2010/2011 Codificação de Informação 2010/2011 Sumário: Criptografia Introdução, terminologia, critérios de classificação Alguns métodos de cifra clássicos Noção de segredo perfeito (Shannon) Criptografia e Cripto

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

Algoritmos Genéticos (GA s)

Algoritmos Genéticos (GA s) Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de

Leia mais

Algoritmos Indutores de Árvores de

Algoritmos Indutores de Árvores de Algoritmos Indutores de Árvores de Decisão Fabrício J. Barth Sistemas Inteligentes Análise e Desenvolvimento de Sistemas Faculdades de Tecnologia Bandeirantes Abril de 2013 Problema: Diagnóstico para uso

Leia mais

4. Protocolos Teóricos e Protocolos de Controlo de Ligação Protocolos ARQ; Especificação de Protocolos; Eficiência ARQ.

4. Protocolos Teóricos e Protocolos de Controlo de Ligação Protocolos ARQ; Especificação de Protocolos; Eficiência ARQ. 4. Protocolos Teóricos e Protocolos de Controlo de Ligação Protocolos ARQ; Especificação de Protocolos; Eficiência ARQ. Redes de Comunicações/Computadores I Secção de Redes de Comunicação de Dados Protocolos

Leia mais

Classificação - avaliação de resultados - 1. Mineração de Dados 2013

Classificação - avaliação de resultados - 1. Mineração de Dados 2013 Classificação - avaliação de resultados - 1 Mineração de Dados 2013 Luís Rato (Capítulo 4 do livro Introduction to Data Mining ) Universidade de Évora, Mineração de dados / Data Mining 1 Desempenho Desempenho

Leia mais

Sistemas de Apoio à Decisão Árvores de decisão V 1.2, V.Lobo, EN/ISEGI, 2010

Sistemas de Apoio à Decisão Árvores de decisão V 1.2, V.Lobo, EN/ISEGI, 2010 V., V.Lobo, EN/ISEGI, O que é a árvore de decisão? Arvores de decisão Victor Lobo Algorítmo para tomar decisões (ou classificar) Modo de representar conhecimento Tem penas? Nós (testes, ou conceitos) Comprimento

Leia mais

Processamento e Comunicação Multimédia

Processamento e Comunicação Multimédia Universidade da Beira Interior Departamento de Informática Processamento e Comunicação Multimédia Mestrado em Eng. Informática João Caldeira Maio 2008 Tema Códigos Convolucionais: Codificação JC 2007/2008

Leia mais

Engenharia de Software II

Engenharia de Software II Engenharia de Software II Aula 8 http://www.ic.uff.br/~bianca/engsoft2/ Aula 8-17/05/2006 1 Ementa Processos de desenvolvimento de software Estratégias e técnicas de teste de software (Caps. 13 e 14 do

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest )

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Generalidades A metáfora Biológica Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Operadores Genéticos (Mendel) - recombinação (crossover ) - mutação (mutation ) Algoritmos

Leia mais

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica... SUMÁRIO Pág. LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19 CAPÍTULO 1 - INTRODUÇÃO... 21 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...25 CAPÍTULO 2 - MODELAGEM ESTOCÁSTICA

Leia mais

16.36: Engenharia de Sistemas de Comunicação Aula 14: Códigos cíclicos e detecção de erros

16.36: Engenharia de Sistemas de Comunicação Aula 14: Códigos cíclicos e detecção de erros 16.36: Engenharia de Sistemas de Comunicação Aula 14: Códigos cíclicos e detecção de erros Eytan Modiano Códigos Cíclicos Um código cíclico é um código de bloco linear onde c é uma palavra-chave, e também

Leia mais

Construir um modelo de dados é: - Identificar, Analisar e Registar a política da organização acerca dos dados

Construir um modelo de dados é: - Identificar, Analisar e Registar a política da organização acerca dos dados 4. Modelo Entidade Associação 4.1. Introdução Modelo de Dados. Visão dos dados em vez de visão das aplicações. Eliminação de redundâncias. Partilha de dados pelas aplicações Construir um modelo de dados

Leia mais

Errata. Livro: Transmissão Digital - Princípios e Aplicações Edição:1ª Código: 4391 Autores: Dayan Adionel Guimarães & Rausley Adriano Amaral de Souza

Errata. Livro: Transmissão Digital - Princípios e Aplicações Edição:1ª Código: 4391 Autores: Dayan Adionel Guimarães & Rausley Adriano Amaral de Souza Errata Livro: Transmissão Digital - Princípios e Aplicações Edição:1ª Código: 4391 Autores: Dayan Adionel Guimarães & Rausley Adriano Amaral de Souza Página 3 Primeiro parágrafo Excluir o seguinte texto

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Francisco José da Silva e Silva Laboratório de Sistemas Distribuídos (LSD) Departamento de Informática / UFMA http://www.lsd.ufma.br

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

Probabilidade. Definições e Conceitos

Probabilidade. Definições e Conceitos Probabilidade Definições e Conceitos Definições Probabilidade Medida das incertezas relacionadas a um evento Chances de ocorrência de um evento Aplicação em: Avaliação de Desempenho de Sistemas Engenharia

Leia mais

Qual a sua chance de ganhar?...o ensino de probabilidade através de jogos

Qual a sua chance de ganhar?...o ensino de probabilidade através de jogos Qual a sua chance de ganhar?...o ensino de probabilidade através de jogos Elaine Gabriel do Nascimento Universidade Estadual da Paraíba Brasil elainegn@oi.com.br Júlio Pereira da Silva Universidade Estadual

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero? Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

Tabela de Símbolos. Análise Semântica A Tabela de Símbolos. Principais Operações. Estrutura da Tabela de Símbolos. Declarações 11/6/2008

Tabela de Símbolos. Análise Semântica A Tabela de Símbolos. Principais Operações. Estrutura da Tabela de Símbolos. Declarações 11/6/2008 Tabela de Símbolos Análise Semântica A Tabela de Símbolos Fabiano Baldo Após a árvore de derivação, a tabela de símbolos é o principal atributo herdado em um compilador. É possível, mas não necessário,

Leia mais

Circuitos Lógicos e Digitais

Circuitos Lógicos e Digitais PUC-Campinas - Faculdade de Engenharia de Telecomunicações Circuitos Lógicos e Digitais Prof. Frank Behrens Circuitos Combinacionais Aplicação em Circuitos para Divididos em quatro classes de circuitos:

Leia mais

Avaliação de Processos Produtivos - APP

Avaliação de Processos Produtivos - APP Avaliação de Processos Produtivos - APP Aula 13 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades,

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs) Procura com Retrocesso para CSPs Procura Local para CSPs Estrutura dos CSPs Problemas de Satisfação

Leia mais

Especificação de Caso de Uso

Especificação de Caso de Uso Versão: 1.0 Especificação de Caso de Uso UCCITES020 Versão: 1.0 Histórico da Revisão Data Versão Descrição Autor 24/08/2013 1.0 Criação do documento. Naiana Lima Celso Normal.dotmNormal.dotmNormal.dotmDocumento1

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

DO ANALÓGICO AO DIGITAL: CONCEITOS E

DO ANALÓGICO AO DIGITAL: CONCEITOS E DO ANALÓGICO AO DIGITAL: CONCEITOS E TÉCNICAS BÁSICASB Fernando Pereira Instituto Superior TécnicoT Digitalização Processo onde se expressa informação analógica de forma digital. A informação analógica

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Como saber se a comunicação verbal é bem sucedida?

Como saber se a comunicação verbal é bem sucedida? Como saber se a comunicação verbal é bem sucedida? Referências: Davidson, Donald, A nice derangement of epitaphs, in Martinich, A. P. (ed.), The Philosophy of Language, Oxford, Oxford University Press,

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 6 Abril 09 5 Modelos preditivos para classificação 5. Introdução Os modelos descritivos, tal como apresentados atrás, limitam-se à sumarização dos dados

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Aula 04. Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros

Aula 04. Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros Aula 04 Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros Prof. Otávio Gomes otavio.gomes@ifmg.edu.br sites.google.com/a/ifmg.edu.br/otavio-gomes/ 1 Bytes A maioria dos microcomputadores

Leia mais

Redes de Computadores 3ª Colecção Exercícios diversos 16 de Dezembro de 2005 Spanning Tree, Protocolo IP, Encaminhamento em redes IP e Cam.

Redes de Computadores 3ª Colecção Exercícios diversos 16 de Dezembro de 2005 Spanning Tree, Protocolo IP, Encaminhamento em redes IP e Cam. I Bridging Transparente Spanning Tree 1) Considere a rede local, da figura. Admitindo que as bridges são transparentes e correm o algoritmo Spanning Tree (IEEE 802.1d) HOST Y HOST Z HOST X Bridge Prioridade

Leia mais

Árvores de Classificação

Árvores de Classificação UNIVERSIDADE DOS AÇORES -DEPARTAMENTO DE MATEMÁTICA- MONOGRAFIA Árvores de Classificação Aluno: Marco António dos Santos Rodrigues 2004/2005 Índice Introdução 1 Capítulo I Métodos de Classificação 2 1.

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

Transmissão de Dados

Transmissão de Dados T 1 Transmissão de Dados FEUP/DEEC/RCD 2002/03 MPR/JAR T 2 Terminologia e Conceitos Meios de transmissão A transmissão de sinais, sob a forma de ondas electromagnéticas, é suportada em meios de transmissão

Leia mais

Método de Monte Carlo e ISO

Método de Monte Carlo e ISO Método de Monte Carlo e ISO GUM para cálculo l de incerteza Prof. Dr. Antonio Piratelli Filho Universidade de Brasilia (UnB) Faculdade de Tecnologia Depto. Engenharia Mecânica 1 Introdução: Erro x incerteza

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

BC-0504 Natureza da Informação

BC-0504 Natureza da Informação BC-0504 Natureza da Informação Aulas 2 Entropia na termodinâmica e na teoria da informação Equipe de professores de Natureza da Informação Parte 4 Os pilares da teoria da informação Os estudos de criptografia

Leia mais

MD5 no Android como mecanismo de autenticação na API do Google Maps. Claudio André claudio.andre@correios.net.br

MD5 no Android como mecanismo de autenticação na API do Google Maps. Claudio André claudio.andre@correios.net.br MD5 no Android como mecanismo de autenticação na API do Google Maps Claudio André claudio.andre@correios.net.br 2011 MD5 no Android como mecanismo de autenticação na API do Google Maps Primeira parte Sumário

Leia mais

TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA

TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA TÉCNICAS DE DATA MINING EM BIOINFORMÁTICA Notas de apoio ao módulo Técnicas de Data Mining em Bioinformática Instituto Superior Técnico Outubro de 2005 Arlindo L. Oliveira, Paulo Franco, Ana Teresa Freitas,Cláudia

Leia mais

Relação potência ou alométrica

Relação potência ou alométrica Relação potência ou alométrica Relação potência : Y = α β (,y > 0 ; α > 0) 0.5 * ^2 0 2 4 6 8 10 12 β > 1 y = α 0.5 * ^(1/2) 0.2 0.4 0.6 0.8 1.0 y = α β < 1 Transformação : Logaritmizando, obtém-se: 0

Leia mais

Teste de Software Estrutural ou Caixa Branca. Disciplina de Engenharia de Software prof. Andrey Ricardo Pimentel andreyrp@hotmail.

Teste de Software Estrutural ou Caixa Branca. Disciplina de Engenharia de Software prof. Andrey Ricardo Pimentel andreyrp@hotmail. Teste de Software Estrutural ou Caixa Branca Disciplina de Engenharia de Software prof. Andrey Ricardo Pimentel andreyrp@hotmail.com Contexto da Aula Introdução a ES Qualidade Métricas de Software Planejamento

Leia mais

Controladores Lógicos Programáveis 2

Controladores Lógicos Programáveis 2 Escola Superior de Tecnologia Instituto Politécnico de Castelo Branco Departamento de Informática Curso de Engenharia Informática Automação e Controlo Industrial Ano Lectivo de 2004/2005 Controladores

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

Deve justificar convenientemente todas as suas respostas.

Deve justificar convenientemente todas as suas respostas. nstituto Superior de Engenharia de Lisboa Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores Secção de Redes de Comunicação de Dados RC (LEC / LESTE) Exame ª Chamada 0/0/06

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

NOTA À 2ª EDIÇÃO... VII PREFÁCIO... IX. No Renascimento de uma Nova Era... IX PREÂMBULO... XIII. Organização do livro... xiii. Destinatários...

NOTA À 2ª EDIÇÃO... VII PREFÁCIO... IX. No Renascimento de uma Nova Era... IX PREÂMBULO... XIII. Organização do livro... xiii. Destinatários... NOTA À 2ª EDIÇÃO... VII PREFÁCIO... IX No Renascimento de uma Nova Era... IX Índice PREÂMBULO... XIII Organização do livro... xiii Destinatários... xiv Utilização do livro... xiv Agradecimentos... xiv

Leia mais

IES-300. Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br

IES-300. Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br IES-300 Tecnologia em Análise e Desenvolvimento de Sistemas Prof. Me. Álvaro d Arce alvaro@darce.com.br Teste de Caixa Branca 2 Teste de Componentes: Caixa Branca Teste de Caixa Branca Grafo de Fluxo de

Leia mais

Conteúdo. SCC5909 Fundamentos de Multimídia. Ementa do Curso. 1. Apresentação da Disciplina. Ementa do Curso. Ementa do Curso

Conteúdo. SCC5909 Fundamentos de Multimídia. Ementa do Curso. 1. Apresentação da Disciplina. Ementa do Curso. Ementa do Curso SCC5909 Fundamentos de Multimídia Aula 1 Conteúdo Apresentação da disciplina Conceitos e definições em multimídia Princípios de compressão Prof.: Dr. Rudinei Goularte (rudinei@icmc.usp.br) Instituto de

Leia mais

UNIVERSIDADE DE ÉVORA

UNIVERSIDADE DE ÉVORA UNIVERSIDADE DE ÉVORA Análise da entropia como medida de incerteza e valor ordinal da informação no mercado bolsista de acções português. Dissertação apresentada como requisito parcial para a obtenção

Leia mais

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1 Aplicação das técnicas de Mineração de Dados como complemento às previsões estocásticas univariadas de vazão natural: estudo de caso para a bacia do rio Iguaçu Marcio Cataldi 1, Carla da C. Lopes Achão

Leia mais

Capítulo 2. Elementos de um Sistema de Telecomunicações Digital

Capítulo 2. Elementos de um Sistema de Telecomunicações Digital Capítulo 2 Elementos de um Sistema de Telecomunicações Digital Conceito de Comunicação Digital: Transmissão de informação em forma digital a partir de uma fonte geradora da informação até um ou mais destinatários.

Leia mais

CODIFICAÇÃO NA PRESENÇA DO VALOR UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE.

CODIFICAÇÃO NA PRESENÇA DO VALOR UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE. UNIVERSIDADE ESTADUAL DE MARINGÁ PROGRAMA DE CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA (Doutorado) LUCIANO PANEK CODIFICAÇÃO NA PRESENÇA DO VALOR SEMÂNTICO DA INFORMAÇÃO

Leia mais

PROJETO DA DISCIPLINA. PES II Processo de Engenharia de Software II

PROJETO DA DISCIPLINA. PES II Processo de Engenharia de Software II UNIOESTE - Universidade Estadual do Oeste do Paraná CCET - Centro de Ciências Exatas e Tecnológicas Colegiado de Informática Curso de Bacharelado em Informática PROJETO DA DISCIPLINA PES II Processo de

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Códigos Lineares CAPÍTULO 4

Códigos Lineares CAPÍTULO 4 CAPÍTULO 4 Códigos Lineares 1. Definição, pârametros e peso mínimo Seja F q o corpo de ordem q. Portanto, pelo Teorema 3.24, q = p m para algum primo p e inteiro positivo m. Definição 4.1. Um código linear

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas Meta-heurísticas 105 meta-heurísticas Propriedades e Características: são estratégias que guiam o processo de pesquisa; - o objectivo a atingir é a exploração eficiente do espaço de pesquisa de modo a

Leia mais

Teoria da Informação

Teoria da Informação Departamento de Engenharia Electrotécnica e de Computadores Exercícios de Teoria da Informação Sílvio A. Abrantes 2000 2 . Teoria de Shannon e códigos de fonte.. Uma fonte produz letras estatisticamente

Leia mais

Otimização por Descida de Gradiente

Otimização por Descida de Gradiente Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Otimização por Descida de Gradiente Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Fabio Bento fbento@ifes.edu.br

Fabio Bento fbento@ifes.edu.br Fabio Bento fbento@ifes.edu.br Eletrônica Digital Sistemas de Numeração e Códigos 1. Conversões de Binário para Decimal 2. Conversões de Decimal para Binário 3. Sistema de Numeração Hexadecimal 4. Código

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Module Introduction. Programação. Cap. 4 Algoritmos e Programação Estruturada

Module Introduction. Programação. Cap. 4 Algoritmos e Programação Estruturada 5374 : Engenharia Informática 6638 : Tecnologias e Sistemas de Informação 9099 : Bioengenharia 10135 : Ciências Biomédicas Cap. 4 Algoritmos e Estruturada Module Introduction Algoritmos e Estruturada Objectivos:

Leia mais

Testes de Software. Testes de Software. Teste de Validação. Teste de Defeito. Modelo de Entrada e Saída. Modelo de Entrada e Saída

Testes de Software. Testes de Software. Teste de Validação. Teste de Defeito. Modelo de Entrada e Saída. Modelo de Entrada e Saída DCC / ICEx / UFMG Testes de Software Testes de Software Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo Teste de software buscam por erros ou anomalias em requisitos funcionais e não funcionais Classificação

Leia mais

RAID. Propõe o aumento da confiabilidade e desempenho do armazenamento em disco. RAID (Redundant Array of Independent Disks )

RAID. Propõe o aumento da confiabilidade e desempenho do armazenamento em disco. RAID (Redundant Array of Independent Disks ) RAID O que é um RAID? RAID RAID (Redundant Array of Independent Disks ) Matriz Redundante de Discos Independentes Propõe o aumento da confiabilidade e desempenho do armazenamento em disco. RAID Surgiu

Leia mais

Características do sinal de voz

Características do sinal de voz Características do sinal de voz Análise na freuência: a voz apresenta um conteúdo espectral ue vai de 0 Hz a 0 khz; os sons vozeados ou nasais (e.g. vogais e algumas consoantes j, l, m) apresentam um espectro

Leia mais

Métodos e Algoritmos de Data Mining(parte 2)

Métodos e Algoritmos de Data Mining(parte 2) Robert Groth Métodos e Algoritmos de Data Mining(parte 2) Usama Fayyad et al 1 Métodos e Algoritmos de Data Mining Soluções distância (K-NN e clustering) Naïve-Bayes Arvores de decisão Regras de associação

Leia mais

Autómatos Finitos Determinísticos

Autómatos Finitos Determinísticos Ficha 2 Autómatos Finitos Determinísticos 2.1 Introdução Se olharmos, de forma simplificada, para um computador encontramos três componentes principais: a) A unidade de processamento central b) As unidades

Leia mais

Conversão Digital Analógico e Analógico Digital. Disciplina: Eletrônica Básica Prof. Manoel Eusebio de Lima

Conversão Digital Analógico e Analógico Digital. Disciplina: Eletrônica Básica Prof. Manoel Eusebio de Lima Conversão Digital Analógico e Analógico Digital Disciplina: Eletrônica Básica Prof. Manoel Eusebio de Lima Agenda Grandezas Digitais e Analógicas Por que converter? Diagrama básico para conversão Conversores

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO)

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO) PLANIFICAÇÃO ANUAL MACS Matemática Aplicada às Ciências Sociais Curso de Línguas e Humanidades º ANO (º ANO) Ano Lectivo 0/05 Planificação º Ano - MACS º Período Número de Aulas Previstas 0 Apresentação

Leia mais

Universidade Estadual do Ceará Laboratório de Redes de Computadores e Segurança - LARCES

Universidade Estadual do Ceará Laboratório de Redes de Computadores e Segurança - LARCES Universidade Estadual do Ceará Laboratório de Redes de Computadores e Segurança - LARCES Máquinas de Aprendizagem Árvores de Decisão Felipe de Almeida Xavier João Gonçalves Filho FORTALEZA 2011 1 Sumário

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

Caracterização semântica de sinais acústicos Aplicação à classificação automática de peças cerâmicas

Caracterização semântica de sinais acústicos Aplicação à classificação automática de peças cerâmicas Caracterização semântica de sinais acústicos Aplicação à classificação automática de peças cerâmicas Tese de Mestrado Miguel Falcão o Moreira de Sousa FEUP 1999/2002 Sumário Caracterização do problema

Leia mais

PortugalAves Introdução online de dados do Atlas

PortugalAves Introdução online de dados do Atlas PortugalAves Introdução online de dados do Atlas Versão 1 1 Visitas sistemáticas Introdução O PortugalAves é uma base de dados espacial na Internet sobre a ocorrência e distribuição de aves em Portugal.

Leia mais

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira Universidade Federal de Alagoas Instituto de Matemática Imagem Prof. Thales Vieira 2014 O que é uma imagem digital? Imagem no universo físico Imagem no universo matemático Representação de uma imagem Codificação

Leia mais

3 Sistemas Criptográficos

3 Sistemas Criptográficos 3 Sistemas Criptográficos 3.1 Introdução À medida que a Internet se populariza, a quantidade de documentos e transações eletrônicas aumenta. A necessidade de segurança eletrônica é uma realidade, e a Criptografia

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

Descoberta de Conhecimento em Bases de Dados. Classificação

Descoberta de Conhecimento em Bases de Dados. Classificação Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Descoberta de Conhecimento em Bases de Dados. Classificação Descoberta

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Métodos e Algoritmos de Data Mining(parte 3)

Métodos e Algoritmos de Data Mining(parte 3) Robert Groth Métodos e Algoritmos de Data Mining(parte 3) Usama Fayyad et al 1 Métodos e Algoritmos de Data Mining Soluções distância (K-vizinhos mais próximos) Naïve-Bayes Arvores de decisão Regras de

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

Planeamento e Controlo de Projectos

Planeamento e Controlo de Projectos Planeamento e Controlo de Projectos Transparências de apoio à leccionação de aulas teóricas Versão 2.1 c 2010, 2006, 1998 Maria Antónia Carravilla José Fernando Oliveira FEUP Planeamento e Controlo de

Leia mais

3 Aprendizado de Máquina em Jogos Eletrônicos

3 Aprendizado de Máquina em Jogos Eletrônicos 3 Aprendizado de Máquina em Jogos Eletrônicos Jogos populares como xadrez e dama foram um dos pioneiros a utilizarem técnicas de Aprendizado de Máquina (AM), também denominada na literatura como Machine

Leia mais

Índice. Modelos e Procedimentos

Índice. Modelos e Procedimentos Sumário Introdução ao projecto de lógica sequencial. Índice Modelos e Procedimentos Abstracção de elementos com estado Formas de lógica sequencial Representação de Máquinas de Estados Finitas Parte da

Leia mais

Um circuito comparador permite determinar se dois números binários são iguais, e não o sendo, qual deles é o maior.

Um circuito comparador permite determinar se dois números binários são iguais, e não o sendo, qual deles é o maior. Circuitos comparadores ESTV-ESI-Sistemas Digitais-Circuitos MSI e LSI (2) 1/11 Um circuito comparador permite determinar se dois números binários são iguais, e não o sendo, qual deles é o maior. Comparador

Leia mais