KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?"

Transcrição

1 KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS

2 TAREFAS PRIMÁRIAS Classificação Regressão Clusterização

3 OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule encontrar os padrões de interpretação humana a partir da descrição dos dados (por ex.: A produção de um determinado cereal na última colheita pode ser apontado a partir de um conjunto de dados armazenados). Predição Wizwhy e Predict utiliza-se algumas variáveis ou campos na base de dados para predizer o desconhecido ou valores futuros de outras variáveis de interesse (por ex.: A previsão da produção do mesmo cereal na próxima colheita a partir do conjunto de dados usado na descrição).

4 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias A) Detecção de desvio identifica mudanças nos padrões anteriormente detectados (relacionado análise estatística). Técnicas clássicas teste de significância (médias, e desvios de padrões,usa-se método estatístico para mineração de dados).

5 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias B) Clustering parecido com segmentação de bases de dados, MAS PARTE DE CONJUNTOS DE CASOS que não possuem resposta previamente conhecidas (usa métodos de REDES NEURAIS).

6 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias Cluster existe um número finito de categorias ou agrupamentos (cluster) para descrever os dados. As categorias podem ser mutualmente exclusivas e exaustivas ou consistir numa representação como categorias hierárquicas ou sobrepostas.

7 Problemas baseados em descoberta de conhecimento pode-se destacar: Cluster Exemplo: subpopulações homogêneas para consumidores do mercado. Débitos X X Cl 3 X X X X X Cl 1 Cl 2 - X os membros das classes não são mais conhecidos - Cluster se sobrepõem Salários O relacionamento do Cluster é a tarefa de estimativa da probabilidade multi-variada de todas variáveis/campos dos BD.

8 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias C) Regras de associação são associações na forma de regras de decisão. Normalmente não existe informação armazenada na BD sobre as características que definem estas regras (é um problema de descoberta de conhecimento normalmente usa-se Árvore de decisão).

9 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias D) Classificação função de aprendizado que mapea um dado em uma das diversas classes pré-definidas (descobrir o relacionamento entre os registros previsores (qualitativos) e o atributo objetivo (meta) usando registros cuja classe é conhecida. (Café, leite e pão. SE comprar café e pão ENTÃO compra manteiga). Exemplo no caso de empréstimo veja abaixo: Débitos (empréstimo) X X * X Decisão linear Salários

10 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias E) Regressão é a função de aprendizado que mapea os dados com predição variável de valores reais - Exemplos de aplicação de regressão: estimar a probabilidade de um paciente sobreviver dado o resultado de um conjunto de exames. predizer a demanda do consumo de um novo produto em função de despesas feitas. no nosso exemplo de empréstimos.

11 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias Débitos X X X X Salários O débito total é visto como uma função linear da renda, a predição é pobre pois existe uma correlação fraca entre duas variáveis.

12 Problemas baseados em descoberta de conhecimento pode-se destacar: Tarefas primárias Tarefas de DM Algoritmos Associados Associações Classificação Clusterização Estatística, Teoria dos Conjuntos Árvores de Decisão, RN Redes Neurais Estatística Análise de cestas de mercado Mercado alvo, Taxas de risco Segmentação de mercado Modelagem de dependência Regressão Linear e não linear RN Colocação de Clientes, modelos de estimativa de preço controle de processo

13 Algoritmo (método de busca): Árvore de Decisão / Regras de Produção - Algoritmo ID3 (Iterative Dichotomizer 3) Você em DM : tem a TAREFA e tem os Algoritmos. Os ALGORITMOS DM por sua vez tem seus componentes primários que são: MODELOS DE REPRESENTAÇÃO MODELOS DE AVALIAÇÃO MODELOS DE BUSCA UM PONTO IMPORTANTE É QUE O ANALISTA DE DADOS COMPREENDA A REPRESENTAÇÃO que está utilizando, pois esta pode ser inerente a um modelo particular (para que não ocorra a sobreposição dos dados de Treinamento por exemplo).

14 MODELOS DE REPRESENTAÇÃO Linguagem L para descrever padrões possíveis de serem descobertas. Na representação da ÁRVORE DE DECISÃO usa-se uma divisão de nós univariados (campos simples).

15 MODELOS DE AVALIAÇÃO Este modelo estima quão bem um determinado padrão (o modelo e seus parâmetros) pode encontrar o critério procurado pelo processo KDD. Pode-se utilizar critérios lógicos ou estatísticos. O princípio da máxima probabilidade escolhe os parâmetros para os modelos que produzem os melhores ajustes para o treinamento dos dados.

16 MODELOS DE BUSCA É determinado por dois componentes: parâmetros de busca e modelos de busca. Os algoritmos devem buscar parâmetros de busca que otimizem o critério do modelo de avaliação dada. Os métodos iterativos são usados de forma geral (por exemplo: método do gradiente descendente retropropagação dos erros em Redes Neurais).

17 TÉCNICAS DE DM O BD é um estoque de informações. A informação recuperada não é obrigatoriamente uma cópia exata das informações armazenada no BD, mas sim a informação que pode ser INFERIDA a partir desses dados.

18 DUAS TÉCNICAS DE INFERÊNCIA SE DESTACAM: DEDUÇÃO E INDUÇÃO Dedução infere a partir de uma seqüência lógica da informação na Base de Dados. Por exemplo nos DBMS relacionais, o operador JOIN aplicado em duas Tabelas relacionais, onde a 1ª administra as relações entre solicitantes de empréstimos e agências bancárias e a 2 administra as relações entre agências e gerentes, INFERE a relação entre solicitantes de empréstimos e gerentes.

19 DUAS TÉCNICAS DE INFERENCIA SE DESTACAM: DEDUÇÃO E INDUÇÃO Indução é a técnica para inferir informação que é GENERALIZADA a partir da informação na base de dados. Por exemplo: a partir das tabelas citadas, pode ser inferido que, cada solicitante de empréstimo tem um gerente responsável. Lembrar que isto não está no BD

20 DUAS TÉCNICAS DE INFERENCIA SE DESTACAM: DEDUÇÃO E INDUÇÃO A diferença mais importante entre DEDUÇÃO e INDUÇÃO é que no primeiro caso, os resultados formados por declaração do mundo real são provavelmente corretas, desde que o BD esteja correto. Enquanto a INDUÇÃO resulta em declarações que são suportadas pelo BD mas não são necessariamente verdades no mundo real. (Veja o exemplo do aquario!).

21 MÉTODOS DE BUSCA EM DM Estatísticos, métodos Lineares Regressão Linear e análise linear de discriminante (superfície de regressão ou classificação é um plano); Métodos não paramétricos (livres do modelo) RNV+P; Métodos da projeção de busca; Métodos das Redes Polinomiais GMDH (Group Method of Data Handling); ALGORITMOS GENÉTICOS = algoritmo de busca alternativa (heurística).

22 MÉTODO DAS ÁRVORES DE DECISÃO E REGRAS Forma de representação simples e fácil de ser compreendida pelos usuários mas pode reduzir a forma funcional do modelo (poder de aproximação do modelo). Por exemplo quando se adotou a divisão do limite sobre o salário t e se aplicou sobre esta variável o conjunto de dados de empréstimos, limitou-se severamente o tipo de classificação através das fronteiras induzidas. As árvores e as regras não são usadas em geral para descrição dos BD pois em geral é um número muito grande de regras.

23 ID3 Foi desenvolvido por Ross Quinlan,1983, e apresenta resultados práticos. Início para classificar movimentos do Xadrez, mas despertou interesse de vários pesquisadores e hoje existe uma centenas de correlatos.

24 ID3 Objetivo: Formar uma árvore de decisão que classifique uma lista de exemplos, ou seja, a partir de um conjuntos de exemplos o algoritmo INDUZ regras do tipo SE...ENTÃO onde cada regra corresponde a um caminho da árvore de decisão.

25 ID3 O conjunto de exemplos é a REPRESENTAÇÃO DO PROBLEMA e tem a forma de uma matriz, onde cada coluna é uma característica, ou atributo do problema e cada linha descreve um exemplo através dos valores dos atributos e sua conclusão, ou classificação.

26 ID3 A qualidade das regras produzidas pelo algoritmo ID3 depende diretamente da qualidade do conjunto de exemplos. A grande VANTAGEM deste algoritmo é a capacidade de gerar uma árvore de decisão a partir de poucos exemplos. Se se tem um conjunto de centenas ou milhares de exemplos o processo ficará difícil e demorado, o ID3, então, utiliza subconjuntos, chamadas janelas.

27 FUNCIONAMENTO BÁSICO DE ALGORITMO 1 Seleciona-se um conjunto janela (subconjunto se for o caso) do conjunto de todos os exemplos. 2 Aplica-se o algoritmo de classificação dos atributos no conjunto janela, para gera a árvore de decisão na forma de regras. 3 Verifica-se a validade das regras, procurando exceções no conjunto de todos os exemplos (discutidas com o especialista). 4 Se existirem exceções, insere algumas delas no conjunto janela e volta-se ao passo 2. OBS.: para escolha do conjunto janela, deve-se levar em conta a proporção da ocorrência de cada classe no conjuntos de exemplos.

28 CLASSIFICAÇÃO DOS ATRIBUTOS A) Encontrar o atributo mais DISCRIMINATÓRIO, ou seja, o que representa menor incerteza com relação às classes, e dividir a janela em sub-janelas referentes a cada valor deste atributo.uma pessoa quer saber se uma empresa vai dar lucro ou não! (A tabela a seguir reflete o conhecimento do assunto.)

29 CLASSIFICAÇÃO DOS ATRIBUTOS L U C R O ID A D E C O M P E T IÇ Ã O T IP O N V e lh o N S o ftw a re N M é d io S S o ftw a re S M é d io N H a rd w a re N V e lh o N H a rd w a re S N o v o N H a rd w a re S N o v o N S o ftw a re S M é d io N S o ftw a re S N o v o S S o ftw a re N M é d io S H a rd w a re N V e lh o S S o ftw a re

30 CLASSIFICAÇÃO DOS ATRIBUTOS Uma pessoa quer saber de uma empresa vai dar lucro ou não! DIALOGO COM ESPECIALISTA E. A empresa é de Hardware ou Software? Pessoa Software E. Seus produtos são novos, velhos ou médio? Pessoa Médios E. Os produtos tem alguma competição significativa? Pessoa Não E. De acordo com os meus conhecimentos esta empresa tende a ter lucro.

31 CLASSIFICAÇÃO DOS ATRIBUTOS Janela classe idade = médio LUCRO IDADE COMPETIÇÃO TIPO Não Médio Sim Software Sim Médio Não Hardware Sim Médio Não Software Não Médio Sim Hardware

32 CLASSIFICAÇÃO DOS ATRIBUTOS B) Esse processo se repete a cada sub-janela, até que todas contenham somente elementos de mesma classe;

33 CLASSIFICAÇÃO DOS ATRIBUTOS C) Verifica-se no conjunto de todos os exemplos aqueles que não são classificados pela árvore fornecida. Então uma seleção destes é feita de forma a incluí-los no conjunto de janelas. A partir da nova janela, o algoritmo formará uma nova árvore de decisão e o processo de classificação se repetirá até que todos os exemplos sejam classificados. A árvore de decisão resultante representa o conjunto de regras que constitui o conhecimento correspondente à lista de exemplos.

34 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação A entropia de um atributo A é a média ponderada das entropias dos valores de A. Por exemplo a entropia de IDADE é a média ponderada das entropias de média, velho e novo.

35 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação Matematicamente N n.º valores do atributo A H(C!A) = P(Vi) e H (C!vi) P(Vi) é a probabilidade do valor vi aparecer no conjunto janela. H(C!vi) é a entropia do valor vi de A dada pela expressão M n.º de classes. H(C!vi) = N i= 1 M j= 1 P(Cj!Vi) * - log 2 P(Cj!Vi)

36 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação P(Cj!Vi) é a probabilidade de se ter um exemplo com valor Vi concluindo Cj. Existem muitas deficiências no algoritmo ID3 as regras produzidas não são probabilísticas; a freqüência de um exemplo não é relevante.

37 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação Para melhorar deve-se calcular o grau de certeza das regras. Para calcular os FC usa-se um algoritmo D-5 baseado na teoria das evidências de Dempster-Shafer. (FC de uma regra é calculado a partir da evidência com que cada condição da regra contribui para a conclusão da regra) A árvore pode mostrar algumas inconsistências, atributos com valores iguais e conclusões diferentes (o especialista resolve).

38 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação Por exemplo a entropia do atributo IDADE H(Classe=sim! IDADE=médio) = -1/2 log 2 1/2 = 0,5 H(Classe=não! IDADE=médio) = -1/2 log 2 1/2 = 0,5 H(Classe! IDADE=médio) = 0,5 + 0,5 =1 (soma dos dois) H Classe! IDADE=novo = - 3/3 log 2 3/3-0 = 0 H Classe! IDADE=velho = - 3/3 log 2 3/3-0 = 0 H(Classe! IDADE) = 4/10 x 1 + 3/10 x 0 + 3/10 x 0 = 0,4 Dos outros H(Classe! Competição) = 0,8752 H(Classe! Tipo) = 1

39 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação Então IDADE será a raiz da árvore de decisão. IDADE Como a entropia Novo e Velha é Zero então já estão classificados NOVO MÉDIO VELHO Resta Janela para IDADE = Médio

40 MÉTODO UTILIZADO PARA ENCONTRAR O ATRIBUTO MAIS DISCRIMINATORIO - cálculo de entropia, onde o atributo de menor entropia é o que contem maior quantidade de informação H(Classe! Competição) = 0 Então competição é o 2º H(Classe! Tipo) = 1 IDADE NOVO MÉDIO VELHO COMPETIÇÃO LUCRO = NÃO LUCRO = SIM

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados Algoritmos Genéticos em Mineração de Dados Descoberta de Conhecimento Descoberta do Conhecimento em Bancos de Dados Processo interativo e iterativo para identificar padrões válidos, novos, potencialmente

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

I.3 Indução de Árvores de Decisão

I.3 Indução de Árvores de Decisão I.3 Indução de Árvores de Decisão Nesta seção serão apresentados alguns conceitos básicos da técnica de indução de árvores de decisão a partir de um exemplo sobre o efeito dos raios solares sobre algumas

Leia mais

Exemplo de Aplicação do DataMinig

Exemplo de Aplicação do DataMinig Exemplo de Aplicação do DataMinig Felipe E. Barletta Mendes 19 de fevereiro de 2008 INTRODUÇÃO AO DATA MINING A mineração de dados (Data Mining) está inserida em um processo maior denominado Descoberta

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

CONCURSO PÚBLICO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI ANALISTA DE GESTÃO RESPOSTAS ESPERADAS PRELIMINARES

CONCURSO PÚBLICO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI ANALISTA DE GESTÃO RESPOSTAS ESPERADAS PRELIMINARES CELG DISTRIBUIÇÃO S.A EDITAL N. 1/2014 CONCURSO PÚBLICO ANALISTA DE GESTÃO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI RESPOSTAS ESPERADAS PRELIMINARES O Centro de Seleção da Universidade Federal de Goiás

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) E o que fazer depois de ter os dados organizados? Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação Ideias base Aprender com o passado Inferir

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação E o que fazer depois de ter os dados organizados? Ideias base Aprender com o passado Inferir

Leia mais

Clustering: K-means and Aglomerative

Clustering: K-means and Aglomerative Universidade Federal de Pernambuco UFPE Centro de Informática Cin Pós-graduação em Ciência da Computação U F P E Clustering: K-means and Aglomerative Equipe: Hugo, Jeandro, Rhudney e Tiago Professores:

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

SAD orientado a MODELO

SAD orientado a MODELO Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a MODELO DISCIPLINA: Sistemas de Apoio a Decisão SAD Orientado a Modelo De acordo com ALTER

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Disciplina: Unidade III: Prof.: E-mail: Período:

Disciplina: Unidade III: Prof.: E-mail: Período: Encontro 08 Disciplina: Sistemas de Banco de Dados Unidade III: Modelagem Lógico de Dados Prof.: Mario Filho E-mail: pro@mariofilho.com.br Período: 5º. SIG - ADM Relembrando... Necessidade de Dados Projeto

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

Segurança da Informação e Proteção ao Conhecimento. Douglas Farias Cordeiro

Segurança da Informação e Proteção ao Conhecimento. Douglas Farias Cordeiro Segurança da Informação e Proteção ao Conhecimento Douglas Farias Cordeiro Risco O risco é medido por sua probabilidade de ocorrência e suas consequências; Pode se realizar uma análise qualitativa ou quantitativa;

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Um Sistema Gerenciador de Banco de Dados (SGBD) é constituído por um conjunto de dados associados a um conjunto de programas para acesso a esses

Leia mais

Juciara Nepomuceno de Souza Rafael Garcia Miani. Teste de Software

Juciara Nepomuceno de Souza Rafael Garcia Miani. Teste de Software Juciara Nepomuceno de Souza Rafael Garcia Miani Teste de Software Técnicas de Teste de Software Testabilidade Operabilidade; Observabilidade; Controlabilidade; Decomponibilidade; Simplicidade; Estabilidade;

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1 Aplicação das técnicas de Mineração de Dados como complemento às previsões estocásticas univariadas de vazão natural: estudo de caso para a bacia do rio Iguaçu Marcio Cataldi 1, Carla da C. Lopes Achão

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 1 Prof.: Patricia Maria Bortolon, D. Sc. Estatística Estatística

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de MINERAÇÃO DE DADOS MINERAÇÃO DE DADOS O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de dados. A mineração de dados é formada por um conjunto de ferramentas e técnicas

Leia mais

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls O objetivo principal do cartão de relatório elementar é comunicar o progresso do aluno para os pais, alunos e outros funcionários

Leia mais

Modelagem da Venda de Revistas. Mônica Barros. Julho de 1999. info@mbarros.com 1

Modelagem da Venda de Revistas. Mônica Barros. Julho de 1999. info@mbarros.com 1 Modelagem da Venda de Revistas Mônica Barros Julho de 1999 info@mbarros.com 1 Modelagem Matemática e Previsão de Negócios Em todas as empresas, grandes e pequenas, é necessário fazer projeções. Em muitos

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

Fernando Fonseca Ana Carolina

Fernando Fonseca Ana Carolina Banco de Dados Ciclo de Desenvolvimento de Sistemas de BD Investigação dos Dados Modelagem dos Dados Modelagem Conceitual Projeto do Banco de Dados Fernando Fonseca Ana Carolina Implementação do Banco

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Estatística: Conceitos e Organização de Dados Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Introdução O que é Estatística? É a parte da matemática aplicada que

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

dissertação. 2 Credibilidade total, em linhas gerais, seria a capacidade de representar o comportamento

dissertação. 2 Credibilidade total, em linhas gerais, seria a capacidade de representar o comportamento 13 1 Introdução Esta dissertação é o estudo de um problema estatístico de classificação que diz respeito à precificação de seguros de automóveis. Devido às particularidades deste ramo, a formação dos contratos,

Leia mais

Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua

Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua Inferências Geográfica: Inferência Bayesiana Processo Analítico Hierárquico Classificação contínua Análise Multi-Critério Classificação continua (Lógica Fuzzy) Técnica AHP (Processo Analítico Hierárquico)

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Elicitação de requisitos e análise

Elicitação de requisitos e análise Elicitação de requisitos e análise Esta atividade divide-se em dois esforços maiores: Elicitação dos requisitos em si Técnicas de elicitação Análise do que foi elicitado Processo de análise 1 Que é um

Leia mais

Revisão de Banco de Dados

Revisão de Banco de Dados Revisão de Banco de Dados Fabiano Baldo 1 Sistema de Processamento de Arquivos Antes da concepção dos BDs o registro das informações eram feitos através de arquivos. Desvantagens: Redundância e Inconsistência

Leia mais

Gerenciamento de Projetos Técnicas e Ferramentas iniciais

Gerenciamento de Projetos Técnicas e Ferramentas iniciais Gerenciamento de Projetos Técnicas e Ferramentas iniciais Metodologia Aula Teórica Exemplos e Exercícios práticos Questões de concursos anteriores Metodologia e Bibliografia Fontes PMBOK, 2004. Project

Leia mais

Planejamento - 7. Planejamento do Gerenciamento do Risco Identificação dos riscos. Mauricio Lyra, PMP

Planejamento - 7. Planejamento do Gerenciamento do Risco Identificação dos riscos. Mauricio Lyra, PMP Planejamento - 7 Planejamento do Gerenciamento do Risco Identificação dos riscos 1 O que é risco? Evento que representa uma ameaça ou uma oportunidade em potencial Plano de gerenciamento do risco Especifica

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

MESTRADO EM PESQUISA DE MERCADOS 2006 2007

MESTRADO EM PESQUISA DE MERCADOS 2006 2007 MESTRADO EM PESQUISA DE MERCADOS 2006 2007 PROGRAMA DAS DISCIPLINAS 1 1º trimestre PESQUISA DE MERCADOS Objectivos Pretende-se que os alunos: (a) adquiram os conceitos e semântica próprios do tema, (b)

Leia mais

Engenharia de Requisitos de Software

Engenharia de Requisitos de Software Engenharia de Requisitos de Software Marcelo Otone Aguiar, MSc, PMP PROJETOS 1 O que é Projeto Um projeto é um esforço temporário empreendido para criar um produto, serviço ou resultado exclusivo. PMI

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Engenharia de Software

Engenharia de Software Engenharia de Software Roteiro Inspeção Defeitos dos Software Classificação dos Erros Técnica de Leitura Ad-hoc Checklist Exercício Inspeção Inspeção de Software Definição É um método de análise estática

Leia mais

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi Metodologias de Desenvolvimento de Sistemas Analise de Sistemas I UNIPAC Rodrigo Videschi Histórico Uso de Metodologias Histórico Uso de Metodologias Era da Pré-Metodologia 1960-1970 Era da Metodologia

Leia mais

GERAÇÃO DE VIAGENS. 1.Introdução

GERAÇÃO DE VIAGENS. 1.Introdução GERAÇÃO DE VIAGENS 1.Introdução Etapa de geração de viagens do processo de planejamento dos transportes está relacionada com a previsão dos tipos de viagens de pessoas ou veículos. Geralmente em zonas

Leia mais

CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO

CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO 1. OS CRITÉRIOS DE DECISÃO Dentre os métodos para avaliar investimentos, que variam desde o bom senso até os mais sofisticados modelos matemáticos, três

Leia mais

Lógica Indutiva. Aula 4. Prof. André Martins

Lógica Indutiva. Aula 4. Prof. André Martins Lógica Indutiva Aula 4 Prof. André Martins É uma bruxa? Lógica Clássica (Dedutiva) Na Lógica Clássica, determinamos a veracidade de proposições a partir de outras proposições que julgamos verdadeiras.

Leia mais

CONSULTA PÚBLICA Nº 008/2010. Revisão da Metodologia de Estabelecimento dos Limites dos Indicadores Coletivos de Continuidade

CONSULTA PÚBLICA Nº 008/2010. Revisão da Metodologia de Estabelecimento dos Limites dos Indicadores Coletivos de Continuidade CONSULTA PÚBLICA Nº 008/2010 Revisão da Metodologia de Estabelecimento dos Limites dos Indicadores Coletivos de Continuidade Rio de Janeiro, 23 de Agosto de 2010 Apresentamos a seguir as nossas respostas

Leia mais

Dadas a base e a altura de um triangulo, determinar sua área.

Dadas a base e a altura de um triangulo, determinar sua área. Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação ana.santos@qi.edu.br Conceitos Preliminares

Leia mais

Engenharia de Software III

Engenharia de Software III Engenharia de Software III Casos de uso http://dl.dropbox.com/u/3025380/es3/aula6.pdf (flavio.ceci@unisul.br) 09/09/2010 O que são casos de uso? Um caso de uso procura documentar as ações necessárias,

Leia mais

ESTRUTURA INTERNA DO SISTEMA ESTRUTURA GERAL DO SGBD. Desempenho do BD ÙSatisfação do usuário. A performance do sistema depende:

ESTRUTURA INTERNA DO SISTEMA ESTRUTURA GERAL DO SGBD. Desempenho do BD ÙSatisfação do usuário. A performance do sistema depende: ESTRUTURA INTERNA DO SISTEMA ESTRUTURA GERAL DO SGBD Desempenho do BD ÙSatisfação do usuário USUÁRIO A performance do sistema depende: da eficiência das estruturas de dados utilizadas; como o sistema opera

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas

CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas CURSO DE ENGENHARIA DE AVALIAÇÕES IMOBILIÁRIAS METODOLOGIAS CIENTÍFICAS - REGRESSÃO LINEAR MÓDULO BÁSICO E AVANÇADO - 20 horas cada Vagas Limitadas MÓDULO BÁSICO DIAS HORÁRIO 13/02/2014 14:00 ÁS 18:00

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

Disciplina de Banco de Dados Parte V

Disciplina de Banco de Dados Parte V Disciplina de Banco de Dados Parte V Prof. Elisa Maria Pivetta CAFW - UFSM Modelo de Dado Relacional O Modelo Relacional O Modelo ER é independente do SGDB portanto, deve ser o primeiro modelo gerado após

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

O SOFTWARE SPP Eucalyptus

O SOFTWARE SPP Eucalyptus Rua Raul Soares, 133/201 - Centro - Lavras MG CEP 37200-000 Fone/Fax: 35 3821 6590 O SOFTWARE SPP Eucalyptus 1/7/2008 Inventar GMB Consultoria Ltda Ivonise Silva Andrade INTRODUÇÃO Um dos grandes problemas

Leia mais

Engenharia de Software II

Engenharia de Software II Engenharia de Software II Aula 10 http://www.ic.uff.br/~bianca/engsoft2/ Aula 10-24/05/2006 1 Ementa Processos de desenvolvimento de software Estratégias e técnicas de teste de software (Caps. 13 e 14

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAIS

SISTEMAS DE INFORMAÇÃO GERENCIAIS SISTEMAS DE INFORMAÇÃO GERENCIAIS Aluno: Luiza Cavalcanti Marques Orientador: Silvio Hamacher Introdução A modelagem e a utilização de bancos de dados em atividades gerenciais têm sofrido um aumento significativo

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

PROCESSO DE DESENVOLVIMENTO DE SOFTWARE. Modelos de Processo de Desenvolvimento de Software

PROCESSO DE DESENVOLVIMENTO DE SOFTWARE. Modelos de Processo de Desenvolvimento de Software PROCESSO DE DESENVOLVIMENTO DE SOFTWARE Introdução Modelos de Processo de Desenvolvimento de Software Os modelos de processos de desenvolvimento de software surgiram pela necessidade de dar resposta às

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD)

CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD) 1 CAPÍTULO 7. SISTEMAS DE APOIO À DECISÃO (SAD) SISTEMAS DE SUPORTE À DECISÃO (SSD) A necessidade dos SAD surgiu em decorrência de diversos fatores, como, por exemplo: Competição cada vez maior entre as

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

CAPÍTULO 2 MATEMÁTICA FINANCEIRA

CAPÍTULO 2 MATEMÁTICA FINANCEIRA CAPÍTULO 2 MATEMÁTICA FINANCEIRA A Matemática Financeira se preocupa com o valor do dinheiro no tempo. E pode-se iniciar o estudo sobre o tema com a seguinte frase: NÃO SE SOMA OU SUBTRAI QUANTIAS EM DINHEIRO

Leia mais

Qualidade de Dados em Data Warehouse

Qualidade de Dados em Data Warehouse Qualidade de Dados em Data Warehouse Prof. Dr. Jorge Rady de Almeida Jr. Escola Politécnica da USP C/1 Relevância do Tema Principal motivação p/ manter alta QD: impactos nos lucros DW: tomada de decisões

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: alcione.miranda@gmail.com Introdução O primeiro passo

Leia mais

fagury.com.br. PMBoK 2004

fagury.com.br. PMBoK 2004 Este material é distribuído por Thiago Fagury através de uma licença Creative Commons 2.5. É permitido o uso e atribuição para fim nãocomercial. É vedada a criação de obras derivadas sem comunicação prévia

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

O que é, e para que serve o Cronograma:

O que é, e para que serve o Cronograma: O que é, e para que serve o Cronograma: O cronograma é um instrumento de planejamento e controle semelhante a um diagrama em que são definidas e detalhadas minuciosamente as atividades a serem executadas

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS

TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS Luciene Bianca Alves ITA Instituto Tecnológico de Aeronáutica Praça Marechal Eduardo Gomes, 50 Vila das Acácias

Leia mais

Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS

Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Consultas... 5 3. Relatórios... 8 4. Conclusões... 11

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Knowledge Discovery and Data Mining Extensão-UFMS-DCT

Knowledge Discovery and Data Mining Extensão-UFMS-DCT Knowledge Discovery and Data Mining Extensão-UFMS-DCT Introdução ao Processo de KDD Esta introdução se baseou quase que integralmente nas transparências produzidas por: Daniel L. Silver (dsilver@mgmt.dal.ca)

Leia mais

Para construção dos modelos físicos, será estudado o modelo Relacional como originalmente proposto por Codd.

Para construção dos modelos físicos, será estudado o modelo Relacional como originalmente proposto por Codd. Apresentação Este curso tem como objetivo, oferecer uma noção geral sobre a construção de sistemas de banco de dados. Para isto, é necessário estudar modelos para a construção de projetos lógicos de bancos

Leia mais

Nome da Empresa. <Nome do Projeto> Plano de Desenvolvimento de Software. Versão <1.0>

Nome da Empresa. <Nome do Projeto> Plano de Desenvolvimento de Software. Versão <1.0> Nome da Empresa Plano de Desenvolvimento de Software Versão Histórico de Revisões Data Versão Descrição Autor 2/7 Índice Analítico 1. Objetivo

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados)

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) 1 UNIVERSIDADE DO CONTESTADO / UnC CAMPUS CONCÓRDIA/SC CURSO DE SISTEMAS DE INFORMAÇÃO Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) (Apostila da disciplina elaborada pelo

Leia mais