Universidade Estadual de Campinas

Tamanho: px
Começar a partir da página:

Download "Universidade Estadual de Campinas"

Transcrição

1 Universidade Estadual de Campinas Nathalia Cristina Ribeiro Ra:

2 Universidade Estadual de Campinas Fernando Torres 2

3 Sumário. Introdução 4 Biografia de Leonardo Fibonacci 5 O que é uma seqüência? 6 Seqüência de Fibonacci 7 Representações de Fibonacci 9 Aplicações 11 Identidades de Fibonacci 13 Bibliografia 15 3

4 Introdução. A sucessão de Fibonacci ou seqüência de Fibonacci é uma seqüência de números naturais, na qual os primeiros dois termos são 0 e 1, e cada termo subseqüente corresponde à soma dos dois precedentes. A seqüência tem o nome do matemático pisano do século XIII Leonardo de Pisa, conhecido como Leonardo Fibonacci, e os termos da seqüência são chamados números de Fibonacci. Os números de Fibonacci são, portanto, os números que compõem a seguinte seqüência de números inteiros 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, Em termos matemáticos, a seqüência é definida recursivamente pela fórmula abaixo, sendo os dois primeiros termos F 0 = 0 e F 1 = 1. Em seu livro de 1202, intitulado Liber Abaci, Fibonacci introduziu a seqüência na matemática da Europa Ocidental, embora ela já tivesse sido descrita anteriormente por matemáticos indianos. Pela convenção moderna, a seqüência inicial com F 0 = 0, no Liber Abaci, ela começava com F 1 = 1, omitindose o zero inicial, e alguns ainda escrevem a seqüência dessa forma. A seqüência de Fibonacci tem aplicações na análise de mercados financeiros, na ciência da computação e na teoria dos jogos. Também aparece em configurações biológicas, como, por exemplo, na disposição dos galhos das árvores ou das folhas em uma haste, no arranjo do cone da alcachofra, do abacaxi, ou no desenrolar da samambaia. 4

5 Biografia de Leonardo Fibonacci. Leonardo Fibonacci, também conhecido como Leonardo de Pisa, Leonardo Pisano ou ainda Leonardo Bigollo, mas, na maioria das vezes, simplesmente como Fibonacci foi um matemático italiano, tido como o primeiro grande matemático europeu da Idade Média. É considerado por alguns como o mais talentoso matemático ocidental da Idade Média. Ficou conhecido pela descoberta da sequência de Fibonacci e pelo seu papel na introdução dos algarismos arábicos na Europa. Com outros matemáticos do seu tempo, contribuiu para o renascimento das ciências exatas, após a decadência do último período da antiguidade clássica e do início da Idade Média, mas Fibonacci destacou-se ao escrever o Liber Abaci, em1202 (atualizado em 1254), a primeira obra importante sobre matemática desde Eratóstenes, isto é, mais de mil anos antes. O Liber Abaci introduziu os numerais hindu-arábicos na Europa, além de discutir muitos problemas matemáticos. Fibonacci é também conhecido pela sequência numérica nomeada após sua morte como sequência de Fibonacci. Ele não descobriu, mas usou-a como exemplo no Liber Abaci. 5

6 O que é uma sequencia? Seqüência é todo conjunto ou grupo no qual seus elementos estão escritos em uma determinada ordem. Exemplos: a) 0,2,4,6,8,10,...) é a seqüência dos números pares. b) (1,3,5,7,9,11,...) é a seqüência dos números ímpares. c) (0,5,10,15,20,25,...) é a seqüência dos múltiplos de 5. As seqüências são classificadas em: finita ou infinita. Em uma seqüência numérica, o primeiro termo é representado por a 1, o segundo termo por a 2, o terceiro termo por a 3, e assim sucessivamente. Em uma seqüência numérica finita o último termo é representado por a n. A letra n indica a quantidade de termos da seqüência ou a posição de cada termo. Muitas seqüências são geradas de observações do cotidiano, como a de Fibonacci. 6

7 Seqüência de Fibonacci. No ocidente, a seqüência de Fibonacci apareceu pela primeira vez no livro Liber Abaci, embora ela já tivesse sido descrita por matemáticos indianos. Fibonacci criou a seqüência que leva seu nome a partir da observação do crescimento de uma população de coelhos. Os números descrevem a quantidade de casais em uma população de coelhos após n meses, partindo dos seguintes pressupostos: No primeiro mês nasce apenas um casal, Casais amadurecem sexualmente (e reproduzem-se) apenas após o segundo mês de vida, Não há problemas genéticos no cruzamento consangüíneo, Todos os meses, cada casal fértil dá a luz a um novo casal, E os coelhos nunca morrem. Com essas condições, inicia-se a construção da seqüência: No 1º mês há apenas 1 casal de coelhos. Como a maturidade sexual dos coelhos dá-se somente a partir do segundo mês de vida, no mês seguinte continua havendo apenas 1 casal. No 3º mês teremos o nascimento de mais um casal, totalizando 2 casais. No 4º mês, com o nascimento de mais um casal, gerado pelo casal inicial, (visto que o segundo ainda não amadureceu sexualmente ) teremos 3 casais. No mês seguinte (5º), com nascimento de dois novos casais gerados pelo casal 1 e pelo casal 2, totalizam-se 5 casais. Seguindo essa lógica e as condições estabelecidas previamente por Fibonacci temos a seqüência: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,... Ela representa a quantidade de casais de coelhos mês a mês. Observando com mais cuidado, pode-se perceber que qualquer termo posterior dessa seqüência é obtido adicionando os dois termos anteriores. Mas genericamente, chama-se seqüência de Fibonacci qualquer função g onde g(n + 2) = g(n) + g(n + 1). Essas funções são precisamente as de formato g(n) = af(n) + bf(n + 1) para alguns números a e b, então as seqüências de Fibonacci formam um espaço vetorial com as funções F(n) e F(n + 1) como base. Em particular, a seqüência de Fibonacci com F(1) = 1 e F(2) = 3 é conhecida como os números de Lucas. A importância dos números de Lucas L(n) reside no fato deles gerarem a Proporção áurea para as enésimas potências: Os números de Lucas se relacionam com os de Fibonacci pela fórmula: 7

8 Com esta fórmula podemos montar a seqüência de Fibonacci e descobrir, por exemplo, quantos coelhos foram gerados no sexto mês, basta aplicar a fórmula descrita acima até chegar ao ponto inicial de 1 e 1, como mostra a figura abaixo: Ou seja, no sexto mês foram gerados 8 coelhos. F(6) = (F(6) - 1) + (F(6) - 2) = 5 e 4 8 ( Soma do Resultado de F(5) e F(4) ) F(5) = (F(5) - 1) + (F(5) - 2) = 4 e 3 5 ( Soma do Resultado de F(4) e F(3) ) F(4) = (F(4) - 1) + (F(4) - 2) = 3 e 2 3 ( Soma do Resultado de F(3) e F(2) ) F(3) = (F(3) - 1) + (F(3) - 2) = 2 e 1 2 F(2) = (F(2) - 1) + (F(2) - 2) = 1 e 0 1 e a primeira posição 1. 8

9 Representações de Fibonacci. Para analisar a seqüência de Fibonacci (e, em geral, quaisquer seqüências) é conveniente obter outras maneiras de representá-la matematicamente. Função geradora: Uma função geradora para uma seqüência qualquer é a função ou seja, uma série potências formais em que cada coeficiente é um elemento da seqüência. Os números de Fibonacci possuem a seguinte função geradora Quando se expande esta função em potências de seqüência de Fibonacci:, os coeficientes são justamente os termos da Forma Explicita: Conforme mencionado por Johannes Kepler, a taxa de crescimento dos números de Fibonacci, que é F(n + 1) /F(n), tende à Proporção áurea, denominada φ. Esta é a raiz positiva da equação de segundo grau x² x 1 = 0, então φ² = φ + 1. Se multiplicarmos ambos os lados por φ n, teremos φ n+2 = φ n+1 + φ n, então a função φ n é uma seqüência de Fibonacci. É possível demonstrar que a raiz negativa da mesma equação, 1 φ, tem as mesmas propriedades, então as duas funções φ n e (1 φ) n formam outra base para o espaço. Ajustando os coeficientes para obter os valores iniciais adequados F(0) = 0 e F(1) = 1, tem-se a fórmula de Binet: Este resultado também pode ser derivado utilizando-se a técnica de funções geradoras, ou a técnica de resolver relações de recorrência. Quando n tende a infinito, o segundo termo tende a zero, e os números de Fibonacci tendem à exponencial φ n / 5. O segundo termo já começa pequeno o suficiente para que os números de Fibonacci possam ser obtidos usando somente o primeiro termo arredondado para o inteiro mais próximo. Forma Matricial: Para argumentos muito grandes, quando utiliza-se um computador bignum, é mais fácil calcular os números de Fibonacci usando a seguinte equação matricial: 9

10 em que a potência de n é calculada elevando-se a matriz ao quadrado repetidas vezes. Um exemplo de aplicação desta expressão matricial é na demonstração do teorema de Lamé sobre o algoritmo de Euclides para o cálculo do MDC. 10

11 Aplicações. Os números de Fibonacci são importantes para a análise em tempo real do algoritmo euclidiano, para determinar o máximo divisor comum de dois números inteiros. Matiyasevich mostrou que os números de Fibonacci podem ser definidos por uma Equação diofantina, o que o levou à solução original do Décimo Problema de Hilbert. Os números de Fibonacci aparecem na fórmula das diagonais de um triângulo de Pascal. Um uso interessante da seqüência de Fibonacci é na conversão de milhas para quilômetros. Por exemplo, para saber aproximadamente a quantos quilômetros 5 milhas correspondem, pega-se o número de Fibonacci correspondendo ao número de milhas (5) e olha-se para o número seguinte (8). 5 milhas são aproximadamente 8 quilômetros. Esse método funciona porque, por coincidência, o fator de conversão entre milhas e quilômetros (1.609) é próximo de φ (1.618) (obviamente ele s ó é útil para aproximações bem grosseiras: além do fator de conversão ser diferente de φ, a série converge para φ). Em música os números de Fibonacci são utilizados para a afinação, tal como nas artes visuais, determinar proporções entre elementos formais. Um exemplo é a Música para Cordas, Percussão e Celesta de Béla Bartók. Le Corbusier usou a seqüência de Fibonacci na construção do seu modulor, um sistema de proporções baseadas no corpo humano e aplicadas ao projeto de arquitetura. Em The Wave Principal, Elliot defende a idéia que as flutuações do mercado seguem um padrão de crescimento e decrescimento que pode ser analisado segundo os números de Fibonacci, uma vez determinada a escala de observação. Defende que as relações entre picos e vales do gráfico da flutuação de bolsa tendem a seguir razões numéricas aproximadas das razões de dois números consecutivos da seqüência de Fibonacci. Teorias mais recentes defendem que é possível encontrar relações de ouro entre os pontos de pico e os de vale, como no gráfico abaixo: 11

12 Se tomarmos o valor entre o início do ciclo e o primeiro pico, e o compararmos com o valor entre este pico e o pico máximo, encontraremos também o número de ouro. O ciclo, naturalmente, pode estar invertido, e os momentos de pico podem se tornar momentos de vale, e vice-versa. 12

13 Identidades de Fibonacci. F(n + 1) = F(n) + F(n 1) F(0) + F(1) + F(2) + + F(n) = F(n + 2) 1 F(1) + 2 F(2) + 3 F(3) + + n F(n) = n F(n + 2) F(n + 3) + 2 É possível essas identidades usando diferentes métodos. Mas, entretanto, nós queremos demonstrar uma elegante prova para cada um de seus usos aqui. Particularmente, F(n) podem ser interpretados como o número de formas de adicionar 1's e 2's até n 1, convencionando-se que F(0) = 0, significando que nenhuma soma irá adicionar até -1, e que F(1) = 1, significando que a soma 0 será "adicionada" até 0. Aqui a ordem dos números importa. Por exemplo, e são consideradas duas diferentes somas e são contadas duas vezes. Prova da primeira identidade: Sem perda de generalidade, podemos assumir n 1. Então F(n + 1) conta o número de formas de somar 1's e 2's até n. Quando a primeira parcela é 1, há F(n) formas de completar a contagem para n 1; quando a primeira parcela é 2, há F(n 1) formas de completar a contagem para n 2. Portanto, no total, há F(n) + F(n 1) formas de completar a contagem para n. Prova da segunda identidade: Contamos o número de formas de somar 1's e 2's até n + 1 de forma que pelo menos uma das parcelas é 2. Como antes, há F(n + 2) formas de somar 1's e 2's até n + 1 quando n 0. Já que há apenas uma soma n + 1 que não usa nenhum 2, a saber (n + 1 termos), subtraímos 1 de F(n + 2). Equivalentemente, podemos considerar a primeira ocorrência de 2 como uma parcela. Se, em uma soma, a primeira parcela é 2, então há F(n) formas de completar a contagem para n 1. Se a segunda parcela é 2, mas a primeira é 1, então há F(n 1) formas de completar a contagem para n 2. Continuando este raciocínio iremos chegar à ( n + 1)-ésima parcela. Se é 2, mas todas as n parcelas anteriores são 1's, então há F(0) formas de completar a contagem para 0. Se uma soma contém 2 como uma parcela, a primeira ocorrência de tal parcela deve tomar lugar entre a primeira e a (n + 1)-ésima posição. Portanto F(n) + F(n 1) + + F(0) dá a contagem desejada. Prova da Terceira Identidade: Essa identidade pode ser estabelecida em duas fases. Primeiro, contamos o número de formas de somar 1's e 2's até -1, 0,, ou n + 1 tal que pelo menos uma das parcelas seja 2. Pela nossa primeira igualdade, há F(n + 2) 1 formas de somar até n + 1; F(n + 1) 1 formas de somar até n; ; e, finalmente, F(2) 1 formas de somar até 1. Como F(1) 1 = F(0) = 0, podemos adicionar todos as somas n + 1 e aplicar a segunda igualdade novamente para obter: [F(n + 2) 1] + [F(n + 1) 1] + + [F(2) 1] = [F(n + 2) 1] + [F(n + 1) 1] + + [F(2) 1] + [F(1) 1] + F(0) = F(n + 2) + [F(n + 1) + + F(1) + F(0)] (n + 2) = F(n + 2) + F(n + 3) (n + 2). Por outro lado, observamos a partir da segunda igualdade que existem: F(0) + F(1) + + F(n 1) + F(n) meios somando com n + 1; F(0) + F(1) + + F(n 1) meios somando com n; 13

14 F(0) meio somando com -1. Somando todas as somas n + 1, vemos que há (n + 1) F(0) + n F(1) + + F(n) formas de somar até -1, 0,, ou n + 1. Já que os dois métodos de contagem se referem ao mesmo número, temos: (n + 1) F(0) + n F(1) + + F(n) = F(n + 2) + F(n + 3) (n + 2) Finalmente, completamos a prova subtraindo a igualdade acima de n + 1 vezes a segunda igualdade. 14

15 Bibliografia

Naturalmente. Série Matemática na Escola

Naturalmente. Série Matemática na Escola Naturalmente Série Matemática na Escola Objetivos 1. Apresentar algumas relações matemáticas presentes na natureza; 2. Motivar a descoberta de processos de otimização, que envolvem relações de geometria

Leia mais

OS NÚMEROS DE FIBONACCI

OS NÚMEROS DE FIBONACCI UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA OS NÚMEROS DE FIBONACCI Disciplina: MA148 Fundamentos da Matemática Professor responsável: Fernando Eduardo

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Educação Matemática. Profª. Andréa Cardoso MATEMÁTICA - LICENCIATURA 2015/2

Educação Matemática. Profª. Andréa Cardoso MATEMÁTICA - LICENCIATURA 2015/2 Educação Matemática Profª. Andréa Cardoso MATEMÁTICA - LICENCIATURA 2015/2 UNIDADE I: EDUCAÇÃO MATEMÁTICA E ENSINO Álgebra simbólica na Europa 2 Na Europa, o ocidente toma conhecimento da matemática árabe,

Leia mais

Lista de Exercícios 3 Laço de Repetição For e While

Lista de Exercícios 3 Laço de Repetição For e While Introdução à Ciência da Computação - 1191 Lista de Exercícios Laço de Repetição For e While Observações: As listas de exercícios serão corrigidas por um corretor automático, portanto é necessário que as

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Área de Publicação: Matemática TERMO GERAL DA SEQUÊNCIA DE FIBONACCI E OS INCRÍVEIS CARTÕES MÁGICOS MEIRA DE FREITAS, Otacilia 1 ; DORNELLAS DIAS, Leticia 2 ; CORDEIRO DE MORAIS FILHO, Daniel 3 1 Matemática

Leia mais

E-book. Expansões e Retrações. Fibonacci

E-book. Expansões e Retrações. Fibonacci Curso Análise Técnica na Prática E-book Expansões e Retrações de Fibonacci Um grande abraço e bom curso! Elaborado por: Mauri Mendes Celular: (12) 98156-4910 E-mail: contato@academianegocios.com.br Site:

Leia mais

NÚMEROS DE FIBONACCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA

NÚMEROS DE FIBONACCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA 385 NÚMEROS DE FIBONCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA Larissa Prado de Figueiredo (Uni-FEF) Antônio Carlos da Siva Filho (Uni-FEF) INTRODUÇÃO Fibonacci nasceu na Itália, mas foi educado

Leia mais

a) Defina uma função para obter o máximo entre dois números

a) Defina uma função para obter o máximo entre dois números IP, Resoluções comentadas, Semana 2 jrg, vs 002, Out-2012 a) Defina uma função para obter o máximo entre dois números A versão mais imediata talvez seja esta: public static int maior ( int a, int b ) {

Leia mais

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos.

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos. 2017, NÚMERO 1, VOLUME 5 ISSN 2319-023X Universidade Federal de Sergipe - UFS evilson@ufs.br Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo estendido das divisões

Leia mais

O Triângulo de Pascal

O Triângulo de Pascal O Triângulo de Pascal Márcio Nascimento da Silva 6 de fevereiro de 009 Resumo O Triângulo de Pascal ou Triângulo Artimético ou na Itália, Triângulo de Tartaglia) é um triângulo numérico infinito definido

Leia mais

PROGRAMAÇÃO DE COMPUTADORES V - TCC Modulo 6 : Funções Escopo de Variáveis: Globais x Locais Aura - Erick

PROGRAMAÇÃO DE COMPUTADORES V - TCC Modulo 6 : Funções Escopo de Variáveis: Globais x Locais Aura - Erick PROGRAMAÇÃO DE COMPUTADORES V - TCC- 00.323 Modulo 6 : Funções Escopo de Variáveis: Globais x Locais Aura - Erick aconci@ic.uff.br, erickr@id.uff.br Roteiro Funções Escopo de Variáveis Variáveis Globais

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

FIBONACCI & GEOMETRIA FRACTAL

FIBONACCI & GEOMETRIA FRACTAL FIBONACCI & GEOMETRIA FRACTAL A Sequência de Fibonacci descreve como as coisas podem crescer através da geometria fractal. Exemplos de como essa disposição numérica ocorre podem ser vistos em diversos

Leia mais

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

Números de Fibonacci. f n = f n 1 + f n 2. A condição inicial é de que há um par no primeiro mês e dois pares no segundo mês: f 1 = 1, f 2 = 2

Números de Fibonacci. f n = f n 1 + f n 2. A condição inicial é de que há um par no primeiro mês e dois pares no segundo mês: f 1 = 1, f 2 = 2 Números de Fibonacci Leonardo Pisano Fibonacci nasceu por volta de 1170 e morreu por volta de 1250 em Pisa, atualmente pertencente à Itália. Durante sua vida ele viajou pela Europa e pelo Norte da África,

Leia mais

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano?

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? B"H Fibonacci Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? O matemático italiano Leonardo Pisano (de Pisa), cujo apelido

Leia mais

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

MATEMÁTICA 1º BIM MÉDIO INT. EM AGRONEGÓCIO 2º ANO

MATEMÁTICA 1º BIM MÉDIO INT. EM AGRONEGÓCIO 2º ANO Postado em 04 / 03 / 13 SEQUÊNCIAS NUMÉRICAS E PROGRESSÃO ARITMÉTICA Aluno(a): TURMA: 1- SEQUÊNCIAS O estudo das sequencias lógicas despertou o interesse de vários estudiosos/pesquisadores Um deles foi

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

QUADRADO MÁGICO - ORDEM 3

QUADRADO MÁGICO - ORDEM 3 FORTRAN - LÚDICO CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de linhas igual ao número de colunas); b) domínio: com

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 4 a Lista de Exercícios Gabarito de algumas questões. Este gabarito foi feito direto no computador

Leia mais

Identidades algébricas

Identidades algébricas LIÇÃO 5 Identidades algébricas Dos três tipos básicos de transformações algébricas: decomposições, reduções e fatorações, os dois primeiros já foram estudados na lição anterior. Antes de passarmos ao terceiro

Leia mais

RELATO DE EXPERIÊNCIA SOBRE PADRÕES MATEMÁTICOS NA RESOLUÇÃO DE PROBLEMAS DE POTENCIAÇÃO

RELATO DE EXPERIÊNCIA SOBRE PADRÕES MATEMÁTICOS NA RESOLUÇÃO DE PROBLEMAS DE POTENCIAÇÃO RELATO DE EXPERIÊNCIA SOBRE PADRÕES MATEMÁTICOS NA RESOLUÇÃO DE PROBLEMAS DE POTENCIAÇÃO Educação Matemática nos Anos Finais do Ensino Fundamental e Ensino Médio GT: 10 RESUMO Este estudo consiste em um

Leia mais

PROFMAT Exame de Qualificação Gabarito

PROFMAT Exame de Qualificação Gabarito PROFMAT Exame de Qualificação 2012-1 Gabarito 1. (10pts) Um corpo está contido num ambiente de temperatura constante. Decorrido o tempo (em minutos), seja a diferença entre a temperatura do corpo e do

Leia mais

Luciana Santos da Silva Martino

Luciana Santos da Silva Martino Sumário APLICAÇÕES DA INDUÇÃO Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 11 de agosto de 2017 Sumário 1 Definição por Recorrência 2 Binômio

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 4. TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 1). Achando os divisores de um número natural 2). Quantidade de divisores de um número natural 3). Decidindo se um número natural divide outro 4). Extrema

Leia mais

Material Teórico - Módulo Progressões Aritméticas. PAs Inteiras e Soma dos Termos de uma PA. Primeiro Ano

Material Teórico - Módulo Progressões Aritméticas. PAs Inteiras e Soma dos Termos de uma PA. Primeiro Ano Material Teórico - Módulo Progressões Aritméticas PAs Inteiras e Soma dos Termos de uma PA Primeiro Ano Autor: Prof. Ulisses Lima Parente Autor: Prof. Antonio Caminha M. Neto 1 A soma dos termos de uma

Leia mais

1).- Significado de congruência e de congruência numérica

1).- Significado de congruência e de congruência numérica 5. CONGRUÊNCIAS NUMÉRICAS 1). Significado de congruência e de congruência numérica 2). Exemplos exploratórios e a notação mod q 3). Definição geral de congruência numérica 4). Regras: somando e multiplicando

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1 Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;

Leia mais

Aplicações da Matemática 3º ano da Licenciatura em Educação Básica. Fibonacci. Caderno de Atividades

Aplicações da Matemática 3º ano da Licenciatura em Educação Básica. Fibonacci. Caderno de Atividades Aplicações da Matemática 3º ano da Licenciatura em Educação Básica Fibonacci Caderno de Atividades Universidade dos Açores Docente: Professor Doutor Ricardo Cunha Teixeira Discentes: Andreia Fernandes,

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Resoluções. Aula 1 NÍVEL 2. Classe

Resoluções. Aula 1 NÍVEL 2. Classe www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Implementações aritméticas

Implementações aritméticas PMO v.5, n.1, 2017 ISSN: 2319-023X https://doi.org/10.21711/2319023x2017/pmo51 Implementações aritméticas Evilson Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

Sequência divergente: toda sequência que não é convergente.

Sequência divergente: toda sequência que não é convergente. 1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse

Leia mais

Algoritmos e Lógica de Programação. 6ª Lista de Exercícios Comandos de Repetição

Algoritmos e Lógica de Programação. 6ª Lista de Exercícios Comandos de Repetição Algoritmos e Lógica de Programação 6ª Lista de Exercícios Comandos de Repetição 1. Qual a saída do programa abaixo? int i; for (i = 0; i < 10; i += 2) printf("%d\n", i / 2); 2. Qual a saída do programa

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Primeira Maratona de Matemática - Gabarito

Primeira Maratona de Matemática - Gabarito Primeira Maratona de Matemática - Gabarito 1) Cada um dos três amigos, Mário, João e Felipe, pratica uma, e apenas uma, das modalidades esportivas: futebol, basquetebol ou natação Nenhuma das três modalidades

Leia mais

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos 1 Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG Primos Definição: Livro VII dos Elementos de Euclides de Alexandria (360 a.c - 295 a.c). Dado qualquer número inteiro n,

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Verificando que em cada termo: o número de cubos cinzentos é igual à

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 2

ESTRUTURAS DE REPETIÇÃO - PARTE 2 AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo

Leia mais

Linguagem C ESTRUTURA DE CONTROLE

Linguagem C ESTRUTURA DE CONTROLE ESTRUTURA DE CONTROLE REPETIÇÃO PARA / ENQUANTO Jaime Evaristo (http://professor.ic.ufal.br/jaime/) Slide 1 ESTRUTURA DE REPETIÇÃO - Utilizando PARA Na repetição uma sequência de comandos deve ser executada

Leia mais

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Introdução Objetivo: estudar o método

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014 1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre

Leia mais

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos Relações de recorrência 8. RELAÇÕES DE RECORRÊNCIA Introdução a relações de recorrência Modelagem com relações de recorrência Solução de relações de recorrência Exemplos e aplicações Relações de recorrência

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

Método de indução. José Carlos Santos

Método de indução. José Carlos Santos Método de indução José Carlos Santos O termo «indução» tem origem na Filosofia. A entrada do Dicionário de Filosofia de Simon Blackburn que lhe diz respeito começa do seguinte modo: Indução Termo usado

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta

Leia mais

Análise de dados em Fisica de Particulas

Análise de dados em Fisica de Particulas Análise de dados em Fisica de Particulas Magno V.T. Machado Instituto de Fisica - UFRGS Escola de Fisica de Particulas e Campos. Agosto 05-09, 2013 Números aleatórios e Monte Carlo Muitas aplicações computacionais

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Álgebra Linear Semana 04

Álgebra Linear Semana 04 Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa

Leia mais

1. Múltiplos e divisores

1. Múltiplos e divisores Escola Básica de Santa Marinha Matemática 2009/2010 7º Ano Síntese dos conteúdos Números e operações 1 Múltiplos e divisores Múltiplo de um número é todo o número que se obtém multiplicando o número dado

Leia mais

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes

Leia mais

Material Teórico - Módulo Cônicas. Hipérboles. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Cônicas. Hipérboles. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Hipérboles Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução Já vimos que as hipérboles são as

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Regularidades Numéricas- Sequências e Matemática Financeira

Regularidades Numéricas- Sequências e Matemática Financeira Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 2º Ano 2º Bimestre/ 2013 Plano de Trabalho Regularidades Numéricas- Sequências e Matemática Financeira Tarefa 3 Cursista:

Leia mais

4.1 Cálculo do mdc: algoritmo de Euclides parte 1

4.1 Cálculo do mdc: algoritmo de Euclides parte 1 page 92 92 ENCONTRO 4 4.1 Cálculo do mdc: algoritmo de Euclides parte 1 OAlgoritmodeEuclidesparaocálculodomdcbaseia-senaseguintepropriedade dos números naturais. Observamos que essa propriedade está muito

Leia mais

Ricardo J. da Silva. Estudos de. Sequências Numéricas

Ricardo J. da Silva. Estudos de. Sequências Numéricas Ricardo J. da Silva Estudos de Sequências Numéricas Ricardo J. da Silva São Paulo novembro de 2013 1 Obra inédita reúne informações embutidas na Tabuada de Pitágoras que nos revelam regularidades e sequências

Leia mais

Meu nome: Minha Instituição:

Meu nome: Minha Instituição: Meu nome: Minha Instituição: 1. André, Samuel e Renan desenvolveram três desafios matemáticos relacionados à geometria para uma competição entre eles. Desse modo, cada um teria que resolver os dois desafios

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos

Leia mais

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z) CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

Arquitetura de Computadores Sistema de Numeração. Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão

Arquitetura de Computadores Sistema de Numeração. Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão Arquitetura de Computadores Sistema de Numeração Apresentado por Prof. Fred Sauer Mat. Elaborado por Prof. Ricardo Quintão A base de representação numérica de um número está relacionada com a quantidade

Leia mais

6. Frações contínuas como as melhores aproximações de um número real

6. Frações contínuas como as melhores aproximações de um número real 6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas

Leia mais

O Número de Ouro e a Divina Proporção

O Número de Ouro e a Divina Proporção O Número de Ouro e a Divina Proporção Patricia Camara Martins 1 1 Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná Caixa Postal 711

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Aritmética Binária e Complemento a Base. Introdução ao Computador 2010/1 Renan Manola

Aritmética Binária e Complemento a Base. Introdução ao Computador 2010/1 Renan Manola Aritmética Binária e Complemento a Base Introdução ao Computador 2010/1 Renan Manola Sumário Soma e multiplicação binária; Subtração e divisão binária; Representação com sinal; Complemento a base. Adição

Leia mais

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,?

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,? SÉRIES NUMÉRICAS Séries Numéricas Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos: 2,10,12,16,17,18,19,?

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7!

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7! REALIZAÇÃO CANÔNICA DA SEQÜÊNCIA DE FIBONACCI Paulo Franca Bandel (IC) 1 & Marcos Antonio Botelho Labmat Laboratório de Matemática Experimental Departamento de Matemática Instituto Tecnológico de Aeronáutica

Leia mais

TEORIA DOS NÚMEROS : MMC E MDC

TEORIA DOS NÚMEROS : MMC E MDC 1. (Col. Naval 016) Sejam x e y números reais tais que xy 3. Sendo assim, o valor mínimo de 8 8 x y é a) múltiplo de 18. b) um número primo. c) divisível por 5. d) divisível por 13. e) par maior que 300..

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos Fundamentos Tecnológicos Equações Algébricas e Equação de 1º Grau Início da aula 06 Equações Algébricas Expressões Algébricas - Definição Expressões algébricas são expressões matemáticas que apresentam

Leia mais

Aula: Fatorial e binomial

Aula: Fatorial e binomial Aula: Fatorial e binomial BINOMIAIS E TRIÂNGULO DE PASCAL Fatorial e binomial Fatorial de um número inteiro e não negativo n se define como sendo a expressão: n! = n(n 1). (n 2). (n 3). (n 4)... 2. 1 Indicação:

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais