Suponha que esse elevador esteja parado no andar térreo de um edifício e que passe a descrever um 2

Tamanho: px
Começar a partir da página:

Download "Suponha que esse elevador esteja parado no andar térreo de um edifício e que passe a descrever um 2"

Transcrição

1 1. (Unesp 016) Algumas embalagens trazem, impressas em sua superfície externa, informações sobre a quantidade máxima de caixas iguais a ela que podem ser empilhadas, sem que haja risco de danificar a embalagem ou os produtos contidos na primeira caixa da pilha, de baixo para cima. Considere a situação em que três caixas iguais estejam empilhadas dentro de um elevador e que, em cada uma delas, esteja impressa uma imagem que indica que, no máximo, seis caixas iguais a ela podem ser empilhadas. Suponha que esse elevador esteja parado no andar térreo de um edifício e que passe a descrever um movimento uniformemente acelerado para cima. Adotando g = 10 m / s, é correto afirmar que a maior aceleração vertical que esse elevador pode experimentar, de modo que a caixa em contato com o piso receba desse, no máximo, a mesma força que receberia se o elevador estivesse parado e, na pilha, houvesse seis caixas, é igual a a) 4 m / s. b) 8 m / s. c) 10 m / s. d) 6 m / s. e) m / s.. (Ufrgs 015) Dois blocos, 1 e, são arranjados de duas maneiras distintas e empurrados sobre uma superfície sem atrito, por uma mesma força horizontal F. As situações estão representadas nas figuras I e II abaixo. Considerando que a massa do bloco 1 é m1 e que a massa do bloco é m = 3m 1, a opção que indica a intensidade da força que atua entre blocos, nas situações I e II, é, respectivamente, a) F / 4 e F / 4. b) F / 4 e 3F / 4. c) F / e F /. 1

2 d) 3F / 4 e F / 4. e) F e F. 3. (Ifsul 015) O sistema abaixo está em equilíbrio. T1 T A razão entre as intensidades das trações nos fios ideais 1 e vale a) 5 b) 3 3 c) 5 d) 4. (Uern 015) O sistema a seguir apresenta aceleração de m / s e a tração no fio é igual a 7N. Considere que a massa de A é maior que a massa de B, o fio é inextensível e não há atrito na polia. A diferença entre as massas desses dois corpos é igual a (Considere g = 10m / s. ) a) 1kg. b) 3kg. c) 4kg. d) 6kg. 5. (Enem 014) Para entender os movimentos dos corpos, Galileu discutiu o movimento de uma esfera de metal em dois planos inclinados sem atritos e com a possibilidade de se alterarem os ângulos de inclinação, conforme mostra a figura. Na descrição do experimento, quando a esfera de metal é abandonada para descer

3 um plano inclinado de um determinado nível, ela sempre atinge, no plano ascendente, no máximo, um nível igual àquele em que foi abandonada. Se o ângulo de inclinação do plano de subida for reduzido a zero, a esfera a) manterá sua velocidade constante, pois o impulso resultante sobre ela será nulo. b) manterá sua velocidade constante, pois o impulso da descida continuará a empurrá-la. c) diminuirá gradativamente a sua velocidade, pois não haverá mais impulso para empurrá-la. d) diminuirá gradativamente a sua velocidade, pois o impulso resultante será contrário ao seu movimento. e) aumentará gradativamente a sua velocidade, pois não haverá nenhum impulso contrário ao seu movimento. 6. (Uerj 014) O corpo de um aspirador de pó tem massa igual a,0 kg. Ao utilizá-lo, durante um dado intervalo de tempo, uma pessoa faz um esforço sobre o tubo 1 que resulta em uma força de intensidade constante igual a 4,0 N aplicada ao corpo do aspirador. A direção dessa força é paralela ao tubo, cuja inclinação em relação ao solo é igual a 60º, e puxa o corpo do aspirador para perto da pessoa. Considere sen 60 = 0,87, cos 60 = 0,5 e também que o corpo do aspirador se move sem atrito. Durante esse intervalo de tempo, a aceleração do corpo do aspirador, em m/s, equivale a: a) 0,5 b) 1,0 c) 1,5 d),0 7. (G1 - ifce 014) Na figura abaixo, o fio inextensível que une os corpos A e B e a polia têm massas desprezíveis. As massas dos corpos são ma = 4,0 kg e mb = 6,0 kg. Desprezando-se o atrito entre o corpo A e a superfície, a aceleração do conjunto, em m/s, é de (Considere a aceleração da gravidade 10,0 m/s ) a) 4,0. b) 6,0. c) 8,0. d) 10,0. e) 1,0. 3

4 8. (G1 - ifsp 014) Roldanas móveis são utilizadas para vantagens mecânicas, ou seja, aplica-se uma determinada força a uma extremidade do sistema e transmite-se à outra extremidade uma força de maior intensidade. Esse tipo de recurso é comumente utilizado em guindastes de construção civil para levantar materiais de grandes massas. Um modelo semelhante ao dos guindastes está apresentado na figura, em que são colocadas 3 roldanas móveis e 1 fixa. Considerando a massa M igual a 500 kg sendo levantada a partir do repouso em um local cuja aceleração gravitacional é de 10 m/s, podemos afirmar que, após s, ela atingirá a velocidade, em m/s, de a) 4. b) 8. c) 10. d) 1. e) (Upe 013) Suponha um bloco de massa m = kg inicialmente em repouso sobre um plano horizontal sem atrito. Uma força F = 16 N é aplicada sobre o bloco, conforme mostra a figura a seguir. Qual é a intensidade da reação normal do plano de apoio e a aceleração do bloco, respectivamente, sabendose que sen 60 = 0,85, cos 60 = 0,50 e g = 10 m/s? a) 6,4 N e 4 m/s b) 13, 6 N e 4 m/s c) 0,0 N e 8 m/s d) 16,0 N e 8 m/s e) 8,00 N e 8 m/s 10. (Uespi 01) A figura a seguir ilustra duas pessoas (representadas por círculos), uma em cada margem de um rio, puxando um bote de massa 600 kg através de cordas ideais paralelas ao solo. Neste instante, o ângulo que cada corda faz com a direção da correnteza do rio vale θ = 37, o módulo da força de tensão em cada corda é F = 80 N, e o bote possui aceleração de módulo 0,0 m/s, no sentido contrário ao da correnteza (o sentido da correnteza está indicado por setas tracejadas). Considerando sen(37 ) = 0,6 e cos(37 ) = 0,8, qual é o módulo da força que a correnteza exerce no bote? 4

5 a) 18 N b) 4 N c) 6 N d) 116 N e) 138 N 11. (Ita 01) O arranjo de polias da figura é preso ao teto para erguer uma massa de 4 kg, sendo os fios inextensíveis, e desprezíveis as massas das polias e dos fios. Desprezando os atritos, determine: 1. O valor do módulo da força F necessário para equilibrar o sistema.. O valor do módulo da força F necessário para erquer a massa com velocidade constante. 3. A força ( F ou peso?) que realiza maior trabalho, em módulo, durante o tempo T em que a massa está sendo erguida com velocidade constante. 1. (Ufpa 011) Belém tem sofrido com a carga de tráfego em suas vias de trânsito. Os motoristas de ônibus fazem frequentemente verdadeiros malabarismos, que impõem desconforto aos usuários devido às forças inerciais. Se fixarmos um pêndulo no teto do ônibus, podemos observar a presença de tais forças. Sem levar em conta os efeitos do ar em todas as situações hipotéticas, ilustradas abaixo, considere que o pêndulo está em repouso com relação ao ônibus e que o ônibus move-se horizontalmente. Sendo v a velocidade do ônibus e a sua aceleração, a posição do pêndulo está ilustrada corretamente a) na situação (I). b) nas situações (II) e (V). c) nas situações (II) e (IV). d) nas situações (III) e (V). e) nas situações (III) e (IV). 5

6 13. (Unb 011) A palavra átomo foi 1 cunhada pelos gregos, mas, nas primeiras décadas do século XIX, não havia evidência experimental de que a matéria fosse composta de átomos. (...) Em 187, o naturalista inglês Robert Brown observou que grãos de pólen boiando em um copo de água se movimentavam constantemente, em um zigue-zague caótico, sem que nenhuma força os empurrasse. Brown chegou a achar que o pólen estivesse vivo, mas recuou em seguida: o efeito era o mesmo com pó de granito. Ali estava um mistério para ser resolvido. Alguns cientistas, no entanto, especularam que o movimento browniano fosse causado pelo choque aleatório entre as moléculas que compunham o sistema. Anos depois, Albert Einstein cogitou que, embora os átomos fossem pequenos demais para serem observados, seria possível estimar o seu tamanho calculando-se seu impacto cumulativo em objetos grandes como um grão de pólen. Se a teoria atômica estivesse certa, então deveria ser possível, analisando-se o movimento das partículas grandes (chamado movimento browniano), calcular as dimensões físicas dos átomos. Einstein assumiu que o movimento aleatório das partículas em suspensão era causado pela colisão de trilhões e trilhões de moléculas de água e computou o peso e o tamanho dos átomos, dando a primeira prova experimental de existência deles. Einstein foi além: calculou que um grama de hidrogênio continha 3, átomos, valor surpreendentemente próximo do real. Sua fórmula foi confirmada em 1908 pelo francês Jean Perrin. Abria-se ali o mundo do muito pequeno. Internet: < Especial Einstein: 100 anos de relatividade (com adaptações). Tendo o texto como referência inicial e considerando os múltiplos aspectos que ele suscita, julgue os itens a seguir. a) Se for analisada, isoladamente, a observação de que grãos de pólen boiando em um copo de água se movimentavam constantemente, em um zigue-zague caótico, sem que nenhuma força os empurrasse contraria a segunda lei de Newton. b) No trecho e computou o peso e o tamanho dos átomos, o autor deveria referir-se à massa do átomo e não, ao seu peso, uma vez que a força peso, reação à força de contato normal, não é uma grandeza física da matéria. c) Segundo o modelo de Bohr, o átomo é considerado um núcleo de prótons e nêutrons com elétrons orbitando à sua volta. Dessa forma, um elétron teria velocidade tangencial em torno do núcleo de módulo igual a kqe v = mr, em que k é a constante eletrostática, Q é a carga do núcleo, e é a carga do elétron, R é o raio de órbita do elétron e m é sua massa. 14. (Espcex (Aman) 011) Três blocos A, B e C de massas 4 kg, 6 kg e 8 kg, respectivamente, são dispostos, conforme representado no desenho abaixo, em um local onde a aceleração da gravidade g vale 10m / s. Desprezando todas as forças de atrito e considerando ideais as polias e os fios, a intensidade da força horizontal F que deve ser aplicada ao bloco A, para que o bloco C suba verticalmente com uma aceleração constante de m / s, é de: a) 100 N b) 11 N c) 14 N d) 140 N e) 176 N 6

7 15. (Uft 011) Uma pequena esfera de chumbo com massa igual a 50 g é amarrada por um fio, de comprimento igual a 10 cm e massa desprezível, e fixada no interior de um automóvel conforme figura. O carro se move horizontalmente com aceleração constante. Considerando-se hipoteticamente o ângulo que o fio faz com a vertical igual a 45 graus, qual seria o melhor valor para representar o módulo da aceleração do carro? Desconsidere o atrito com o ar, e considere o módulo da aceleração da gravidade igual a 9,8 m s. a) 5,3 m s. b) 8, m s c) 9,8 m s d) 7,4 m s e) 6,8m s 16. (Uftm 011) A figura 1 mostra um carrinho transportando um corpo de massa m por um plano sem atrito, inclinado em 30º com a horizontal. Ele é empurrado para cima, em linha reta e com velocidade constante, por uma força constante de intensidade F1 = 80 N. A figura mostra o mesmo carrinho, já sem o corpo de massa m, descendo em linha reta, e mantido com velocidade constante por uma força também constante de intensidade F = 60 N. Adotando g = 10 m/s, pode-se afirmar que a massa m vale, em kg, a). b) 4. c) 6. d) 8. e) 10. 7

8 Gabarito: Resposta da questão 1: [C] A figura mostra as forças agindo na caixa debaixo e no sistema formado pelas caixas de cima e do meio. - N 1 : intensidade da força que o piso do elevador exerce na caixa debaixo. - N : intensidade do par ação-reação entre a caixa debaixo e o sistema formado pelas caixas de cima e do meio. - P : intensidade do peso da caixa debaixo. - P : intensidade do peso do sistema formado pelas caixas de cima e do meio. Sendo m a massa de cada caixa, se o elevador estivesse em repouso, a caixa debaixo receberia do piso uma força de intensidade N N 1 1 = 6P. igual à do peso do conjunto de seis caixas. Assim: Sendo a a máxima aceleração do elevador, quando ele estiver subindo em movimento acelerado ou descendo em movimento retardado, tem-se: - Para o sistema formado pelas caixas de cima e do meio: N P = ma N = P+ ma. - Para a caixa debaixo: N1 P N = ma 6P P ( ma + P) = ma 6P P P = ma + ma 3m g = 3ma a = g a = 10 m/s. Resposta da questão : [D] Nos dois casos a aceleração tem mesmo módulo: F F = ( m1 + m) a F = ( m1 + 3 m1 ) a F = 4 m1 a a =. 4 m1 Calculando as forças de contato: F 3 F F1 = m a F1 = 3 m 1 F 1 =. 4 m1 4 F F F1 = m1 a F1 = m 1 F 1 =. 4 m1 4 Resposta da questão 3: [D] Do diagrama abaixo, determinamos a força resultante para cada corpo: 8

9 Para o corpo 1: T1 = P1 + T Para o corpo : T = P Então, T1 = P1 + P T1 = T1 = 100 N T = 40 N T1 T Logo, a razão será: T = = T 40 Resposta da questão 4: [B] Como a massa do bloco A é maior que a massa do bloco B, a tendência do sistema de blocos é girar no sentido anti-horário, ou em outras palavras, o bloco A descer e o bloco B subir. Desta forma, temos que: Analisando os blocos separadamente, temos que no bloco A só existe duas forças atuando, sendo elas o peso do bloco A e a tração do fio. Assim, FR = ma a = PA T ma = 10 ma 7 8 ma = 7 ma = 9 kg 9

10 Analogamente, no bloco B temos duas forças atuando, sendo elas o peso do bloco e a tração do fio. Assim, FR = mb a = T PB mb = 7 10 mb 1 mb = 7 mb = 6 kg Assim, a diferença entre as massas dos blocos será de: ma mb = 9 6 = 3 kg Resposta da questão 5: [A] Se o ângulo de inclinação do plano de subida for reduzido à zero, a esfera passa a se deslocar num plano horizontal. Sendo desprezíveis as forças dissipativas, a resultante das forças sobre ela é nula, portanto o impulso da resultante também é nulo, ocorrendo conservação da quantidade de movimento. Então, por inércia, a velocidade se mantém constante. Resposta da questão 6: [B] F x A resultante das forças sobre o corpo do aspirador é a componente horizontal da força aplicada no cabo. ( ) Aplicando o Princípio Fundamental da Dinâmica: 1 Fx = m a Fcos60 = m a 4 a = a = 1 m / s. Resposta da questão 7: [B] Aplicando o Princípio Fundamental da Dinâmica ao sistema: ( ) PB = ma + mb a 60 = 10 a a = 6 m/s. Resposta da questão 8: [A] NOTA: na figura dada, está errada a notação F = 750 N. F = 750 N As formas corretas são: ou F = 750 N. A figura mostra a distribuição de forças pelas polias. 10

11 Aplicando o princípio fundamental da dinâmica ao bloco de massa M: 8 F P = M a = 500 a a = m/s. ( ) Calculando a velocidade: Resposta da questão 9: [A] ( ) v = v0 + a t v = 0 + v = 4 m/s. A figura abaixo mostra as forças que agem no bloco. As forças verticais anulam-se. Ou seja: N + Fsen60 = P N + 16x0,85 = 0 N = 0 13,6 = 6,4N Na horizontal FR = ma Fcos 60 = ma 16x0,5 = a a = 4,0 m/s Resposta da questão 10: [D] Apresentando as forças atuantes no bote coplanares ao leito do rio, temos: 11

12 Em que Fx representa a componente da força F no sentido oposto da correnteza. Fx = F.cos37 = 80.0,8 = 64N Assim sendo, temos:. Fx Fatr. = m. a.64 Fatr. = 600.0,0 18 Fatr. = 1 Fatr. = 18 1 Fatr. = 116N Resposta da questão 11: a) Se o sistema está em equilíbrio estático, a resultante das forças é nula. A figura ilustra essa situação de equilíbrio. T P m g 40 F = = = = F = 60 N b) Se o sistema é erguido com velocidade constante, é uma situação de equilíbrio dinâmico. A resultante das forças também é nula. Assim T P m g 40 F = = = = F = 60 N c) Enquanto o corpo sobe h, a extremidade livre do fio desce 4h. Como a velocidade é constante, de acordo 1

13 P F =. com a conclusão do item anterior: 4 Calculando os módulos dos trabalhos: τp = P h P τf = F SΔ= 4 h = P h 4 Resposta da questão 1: [B] τ = P F. τ Quando o ônibus está em repouso ou em movimento retilíneo e uniforme, a pêndulo está posicionado verticalmente. Quando o movimento e retilíneo e acelerado, por inércia, o pêndulo tende a ficar em relação a Terra, inclinadose para trás em relação ao ônibus, como em (II). Quando o movimento e retilíneo e retardado, por inércia, o pêndulo tende a continuar com a mesma velocidade em relação à Terra, inclinando-se para frente em relação ao ônibus, como em (V). Resposta da questão 13: a) Correto. A segunda lei de Newton afirma que resultante das forças atuando em um ponto material é igual ao produto de sua massa pela aceleração adquirida: F = m a. Ora, se não há forças atuando na partícula, sua aceleração vetorial deve ser nula, não podendo haver movimentos em zigue-zague. b) Incorreta. A primeira parte da afirmativa está correta: o autor deveria referir-se à massa do átomo e não ao seu peso, porém NÃO é reação à força normal. c) Incorreta. Essa resolução da velocidade orbital do elétron usando a Física Clássica é valida apenas para os átomos de hidrogênio e hélio. Resposta da questão 14: [E] Tratando o conjunto de blocos como se fosse um só, teremos a força F a favor do movimento e os pesos de B e C contrários. Aplicando a Segunda Lei de Newton ao conjunto, teremos: ( ) Resposta da questão 15: [C] result F (PB + P C ) = m a F 140 = 18x F = 176N A figura mostra as forças que agem na esfera e a sua resultante. 13

14 Como podemos observar: ma = mg a = g = 9,8m / s. Resposta da questão 16: [B] Lembremos inicialmente que, num plano inclinado, as componentes do peso são: Tangencial: Px = P senθ = m g senθ ; Py = Pcosθ = m g cosθ Normal:. Nos dois casos mostrados os movimentos são uniformes, ou seja, a resultante é nula. Isso significa que a ( P v x ) componente tangencial do peso é equilibrada pela força F v 1 na subida e pela força F v na descida. Sendo M a massa do carrinho, equacionemos as duas situações: ( ) Px = F 1 1 M + m g sen30 = 80 Px = F M g sen30 = 60 Subtraindo membro a membro as duas equações: M + m g sen30 M g sen30 = 0 M + m M g sen30 = 0 ( ) ( ) 0 0 m g sen30 = 0 m = = m = 4 kg. 14

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Segunda Lei de Newton 1. (G1 - UTFPR 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). Coluna I Afirmação

Leia mais

Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir

Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir Questão 01 Três blocos A, B, e C, de massa,, estão numa superfície lisa e horizontal, desprovida de atritos. Aplica-se no bloco A uma força

Leia mais

a 2,0 m / s, a pessoa observa que a balança indica o valor de

a 2,0 m / s, a pessoa observa que a balança indica o valor de 1. (Fuvest 015) Uma criança de 30 kg está em repouso no topo de um escorregador plano de,5 m,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo instante, ela começa a deslizar e percorre

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06 Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está

Leia mais

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1 COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A): SÉRIE: 1º DATA: / / 2014 LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO DE FÍSICA 1 1. Em um trecho retilíneo e horizontal de uma ferrovia, uma composição

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d

Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.

Leia mais

1. (Espcex (Aman) 2012) Um elevador possui massa de 1500 kg. Considerando a

1. (Espcex (Aman) 2012) Um elevador possui massa de 1500 kg. Considerando a 1. (Espcex (Aman) 01) Um elevador possui massa de 1500 kg. Considerando a aceleração da gravidade igual a 10 m s, a tração no cabo do elevador, quando ele sobe vazio, com uma aceleração de 3 m s, é de:

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

LISTA UERJ! (Considere π 3. ) a) 9 m/s. b) 15 m/s. c) 18 m/s. d) 60 m/s.

LISTA UERJ! (Considere π 3. ) a) 9 m/s. b) 15 m/s. c) 18 m/s. d) 60 m/s. 1. (Unicamp 014) As máquinas cortadeiras e colheitadeiras de cana-de-açúcar podem substituir dezenas de trabalhadores rurais, o que pode alterar de forma significativa a relação de trabalho nas lavouras

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador?

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador? Elevadores 1. (Uftm 01) No resgate dos mineiros do Chile, em 010, foi utilizada uma cápsula para o transporte vertical de cada um dos enclausurados na mina de 700 metros de profundidade. Considere um resgate

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F.

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. COLÉGIO PEDRO II - UNIDADE CENTRO Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. Lima Aluno(a): Nº Turma 1) Um bombeiro deseja

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material.

Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material. Física 53. O gráfico da velocidade em função do tempo (em unidades aritrárias), associado ao movimento de um ponto material ao longo do eixo x, é mostrado na figura aaixo. Assinale a alternativa que contém

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013

Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 01 - A figura mostra uma série de fotografias estroboscópicas de duas esferas, A e B, de massas diferentes. A esfera A foi abandonada em queda livre

Leia mais

Física. Plano Inclinado. Questão 01 - (UNITAU SP/2015)

Física. Plano Inclinado. Questão 01 - (UNITAU SP/2015) Questão 01 - (UNITAU SP/2015) No sistema mecânico abaixo, os dois blocos estão inicialmente em repouso. Os blocos são, então, abandonados e caem até atingir o solo. Despreze qualquer forma de atrito e

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

Potência Mecânica. Está(ão) correta(s) apenas a) I. b) II. c) I e II. d) I e III. e) II e III.

Potência Mecânica. Está(ão) correta(s) apenas a) I. b) II. c) I e II. d) I e III. e) II e III. Potência Mecânica 1. (Upe 2013) Considerando-se um determinado LASER que emite um feixe de luz cuja potência vale 6,0 mw, é CORRETO afirmar que a força exercida por esse feixe de luz, quando incide sobre

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h.

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h. 1. (Uerj 016) No solo da floresta amazônica, são encontradas partículas ricas em 1 fósforo, trazidas pelos ventos, com velocidade constante de 0,1m s, desde o deserto do Saara. Admita que uma das partículas

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

Escolha sua melhor opção e estude para concursos sem gastar nada

Escolha sua melhor opção e estude para concursos sem gastar nada Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Um momento, por favor

Um momento, por favor Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força 1. (Espcex (Aman) 015) Em uma espira condutora triangular equilátera, rígida e homogênea, com lado medindo 18 cm e massa igual a 4,0 g, circula uma corrente elétrica i de 6,0 A, no sentido anti-horário.

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

Lista de Exercício 3 MUV

Lista de Exercício 3 MUV Nome: Curso: Disciplina: FÍSICA I / MECÂNICA CLÁSSICA Lista de Exercício 3 MUV 1) Um móvel, cujo espaço inicial é S0 8m, se desloca a favor da trajetória, em movimento acelerado, com velocidade inicial

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira 1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira www.proamfer.com.br amfer@uol.com.br 1 Em uma experiência, a barra homogênea, de secção reta constante e peso 100

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura

Leia mais

Física setor F 01 unidade 01

Física setor F 01 unidade 01 Vale relembrar três casos particulares: ) a r e b r tem mesma direção e mesmo sentido: a b s = a+ b s ) a r e b r têm mesma direção e sentidos opostos: a s = a b s b a r e b r têm direções perpendiculares

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2015 Série 1º ANO Lista de Exercícios 4º Bim TURMA (S) ABC Valor da Lista R$ MAT Disciplina: FISICA Professor: JEFFERSON Data:

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO:

DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO: DISCIPLINA: Física PROFESSORES: Marcus Sant Ana / Fabiano Dias DATA: / / 2014 VALOR: 20,0 pontos NOTA: ASSUNTO: Trabalho de Recuperação Final SÉRIE: 1ª série EM TURMA: NOME COMPLETO: Nº: I N S T R U Ç

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Recuperação. - Mecânica: ramo da Física que estuda os movimentos; Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Problemas de Mecânica e Ondas

Problemas de Mecânica e Ondas Problemas de Mecânica e Ondas (LEMat, LQ, MEiol, MEmbi, MEQ) Tópicos: olisões: onservação do momento linear total, conservação de energia cinética nas colisões elásticas. onservação do momento angular

Leia mais

e) Primeira Lei de Kepler. c) Lei de Ampére;

e) Primeira Lei de Kepler. c) Lei de Ampére; Física Módulo 2 - Leis de Newton 1) De acordo com a Primeira Lei de Newton: a) Um corpo tende a permanecer em repouso ou em movimento retilíneo uniforme quando a resultante das forças que atuam sobre ele

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Questão 46 Questão 47

Questão 46 Questão 47 Questão 46 Questão 47 Um estudante que se encontrava sentado em uma praça, em frente de um moderno edifício, resolveu observar o movimento de um elevador panorâmico. Após haver efetuado algumas medidas,

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

FÍSICA. Valores de algumas grandezas físicas:

FÍSICA. Valores de algumas grandezas físicas: Valores de algumas grandezas físicas: Aceleração da gravidade: 10 m/s Velocidade da luz no vácuo: 3,0 x 10 8 m/s. Velocidade do som no ar: 330 m/s Calor latente de fusão do gelo: 80 cal/g Calor específico

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabaritos... 11 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

LISTA EXTRA MRU e MRUV - 2ª SÉRIE LISTA EXTRA MRU e MRUV - ª SÉRIE 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência:

Leia mais

= + + = = + = = + 0 AB

= + + = = + = = + 0 AB FÍSIC aceleração da gravidade na Terra, g 0 m/s densidade da água, a qualquer temperatura, r 000 kg/m 3 g/cm 3 velocidade da luz no vácuo 3,0 x 0 8 m/s calor específico da água @ 4 J/(ºC g) caloria @ 4

Leia mais

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON Aluno (a): N Série: 1º Professor : Vinicius Jacques Data: 03/08/2010 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON 01. Explique a função do cinto de segurança de um carro, utilizando o

Leia mais

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C 1. (Mackenzie 015) Uma esfera metálica A, eletrizada com carga elétrica igual a 0,0 μc, é colocada em contato com outra esfera idêntica B, eletricamente neutra. Em seguida, encosta-se a esfera B em outra

Leia mais

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =

Leia mais